
Catching Bugs in the Web of Program Invariants

Cormac Flanagan Matthew Flatt Shriram Krishnamurthi Stephanie Weirich

Matthias Felleisen

Department of Computer Science�

Rice University�

Houston� Texas �����������

cormac�cs�rice�edu

Abstract

MrSpidey is a user�friendly� interactive static debugger
for Scheme� A static debugger supplements the stan�
dard debugger by analyzing the program and pinpoint�
ing those program operations that may cause run�time
errors such as dereferencing the null pointer or apply�
ing non�functions� The program analysis of MrSpidey
computes value set descriptions for each term in the
program and constructs a value �ow graph connect�
ing the set descriptions� Using the set descriptions�
MrSpidey can identify and highlight potentially erro�
neous program operations� whose cause the program�
mer can then explore by selectively exposing portions
of the value �ow graph�

� Introduction

A reliable program does not mis�apply program op�
erations� Addition always operates on numbers� not
strings� Concatenation works with strings� not num�
bers� To avoid the abuse of program operations� most
languages impose a restrictive type system� which for�
bids the �syntactic� formation of certain faulty program
phrases� However� type systems are too coarse to solve
the general problem� which includes array indexing out�
side of its proper bounds� division by zero� dereferencing
of null pointers� and jumping to non�function pointers�
These problems are beyond the capabilities of standard
type systems� and di�erent languages deal with such
run�time errors in di�erent ways�

Unsafe languages like C ��	
 ignore the problem and
leave it to the programmer to insert checks where ap�
propriate� As a result C programs are notoriously prone
to inexplicable crashes ���
� In contrast� safe languages

�The authors are supported in part by NSF grants CCR ��������
and CDA��������	

such as SML ���
 and Scheme �

 equip all program oper�
ations with appropriate run�time checks� These checks
guarantee that misapplications of program operations
immediately raise an error signal� instead of returning
random bit�patterns� Although this solution ensures
that programs don�t return random results� it is unsat�
isfactory because errors are not signaled until run�time�
What is needed instead� is a static analysis tool that
assists the programmer in verifying the preconditions
of program operations� This kind of tool is a static
debugger�
Recent advances in proof technology have brought

static debugging within reach� Methods like abstract
interpretation ��
� control��ow analysis ���� ��� ��
 or
set�based analysis ���� ��
 establish invariants about
the sets of values that variables and expressions may
assume� Thus� if an array index expression does not as�
sume values outside of the appropriate range� an array
bound check is super�uous� and an indexing error will
never be signaled for this expression� Or� if the value set
of a function variable only contains closures� the func�
tion application does not need to be checked� and will al�
ways succeed� Past research on static debuggers mainly
focused on the synthesis of the invariants ��
� However�
the presentation and� in particular� the explanation of
these invariants were neglected� We believe that synthe�
sizing invariants is not enough� Instead� a programmer
must be able to inspect the invariants and browse their
underlying proof� Then� if some set invariant contains
an unexpected element� the programmer can determine
whether the element results from a �aw in the program
or approximations introduced by the proof system�
We have developed a static debugger for Scheme�

called MrSpidey� which allows the programmer to browse
program invariants and their derivations� We selected
set�based analysis as the underlying proof technology
of MrSpidey� for the following three reasons� First� set�
based analysis produces accurate program invariants for
Scheme�like languages� even in the presence of complex
control��ow and data��ow patterns� Second� set�based
analysis is intuitive� It interprets program operations as
na��ve set�theoretic operations on sets of run�time values�



and propagates these sets of values along the program�s
data��ow paths� in a manner that is easily understood
by the programmer� Third� by appropriately annotat�
ing the set�based analysis algorithm� we can provide a
supporting explanation in the form of a value �ow graph
for each invariant produced by the analysis�
Since MrSpidey is to be used as part of the typical

program development cycle� we have integrated it with
DrScheme� of our program development environment�
On demand� MrSpidey marks up the program in the ed�
itor without distorting its lexical or syntactic structure�
The mark�ups visibly identify those program operations
that are not provably safe� Associated hyper�links pro�
vide�

� a value�set invariant for each expression and vari�
able� and

� a graphical explanation for each invariant�

The programmer can browse the information and thus
improve his understanding of the program�s execution
behavior�
The rest of the paper proceeds as follows� The fol�

lowing section outlines the information computed by
MrSpidey� The user interface that presents this infor�
mation to the programmer is described in the third
section� and the fourth section presents the results of
a preliminary experiment evaluating the usefulness of
MrSpidey� Technical details involved in the implemen�
tation are covered in the �fth section� and the sixth
section describes related work� The seventh section
presents our conclusions and future research directions�

� Set�Based Analysis

MrSpidey�s underlying set�based analysis algorithmhan�
dles all fundamental constructs of Scheme� including
conditionals� assignable variables� mutable structures�
and �rst�class continuations� In this section� we outline
the information produced by the analysis in terms of a
simple functional subset of Scheme� For a full presen�
tation of set�based analysis for a realistic language� we
refer the interested reader to a related report ��
�

��� The Source Language

The sample language is a simpli�ed� ��calculus�like lan�
guage� see Figure �� The language includes the prim�
itives cons� car� and cdr for list manipulation� which
will serve to illustrate the treatment of primitive opera�
tions� and a number of basic constants� The semantics
of the source language can be formulated as a variant of
Plotkins �v�calculus ���
� Each term in the language is
labeled� and we assume that all labels in a program are
distinct� For clarity� labels are occasionally omitted�

��� Set�Based Analysis

Set�based analysis computes information about the sets
of values that program variables and terms may assume

P � Program ��� �de�ne x M � � � �
M�N � � ��� V l

j �M M �l

j �cons M M �l

j �car M �l

j �cdr M �l

V � Value ��� c j x
j ��x�M �
j �cons V V �

c � Const � Num � fnil� � � �g
n � Num � f�� �� �� � � �g
x � Vars � fx� y� z� � � �g
l � Label

Figure �� The Source Language �

during execution� Because these sets of values are typ�
ically in�nite� set�based analysis uses a �nite number
of program�dependent abstract values� Each abstract
value corresponds to a particular constructor expres�
sion in the analyzed program� and represents the set of
run�time values that can be created by that construc�
tor expression� The set of abstract values used for the
analysis of a program P is��

AbsValueP � f�cons l� l�� j �cons M
l�
� M l�

� � � Pg
�f��x�M � j ��x�M � � Pg
�fc j c � Pg

The abstract value �cons l� l�� represents the set of val�
ues �cons V� V�� that may be returned by the expres�

sion �cons M l�
� M l�

� �� where each Vi is a possible value

of the term M li
i � Similarly� the abstract value ��x�M �

represents the set of closures that may be created from
the ��expression ��x�M �� The set of abstract values
also contains all constants occurring in the program�
Set�based analysis produces a �nite table called an

abstract store� which maps variables and labels to sets
of abstract values�

S � AbsStore � �Vars � Label� �� P�AbsValueP �

An abstract store is valid if it conservatively approxi�
mates the sets of values that variables and terms assume
during an execution�

��� Deriving Abstract Stores

MrSpidey employs a two stage algorithm to derive a
valid abstract store for a program� First� it derives con�
straints in a syntax�directed manner from the program
text� These constraints conservatively approximate the

�We use the following notations throughout the paper
 P denotes
the power�set constructor� f 
 A �� B denotes that f is a total
function from A to B� and M � P denotes that the term M occurs
in the program P 	



data�ow relationships of the analyzed program� Sec�
ond� it determines the minimal �i�e�� most accurate� ab�
stract store satisfying these constraints� This abstract
store is a valid abstract store for the analyzed program�
Let us illustrate the syntax�directed derivation of

constraints for two kinds of sentences�

� �cons M
l�
� M

l�
� �

l

The evaluation of this term produces the result
�cons V� V��� if V� and V� are values of the terms

M l�
� and M l�

� respectively� Since all such results
are represented by the abstract value �cons l� l���
the analyzer adds the constraint

�cons l� l�� � S�l�

to the global set of program constraints� which en�
sures that S�l� represents all possible results of the
cons expression�

� �M l�
� M

l�
� �

l�

Suppose the value set for the function expression
M l�

� includes the function ��x�N
l�� Then the vari�

able x may be bound to the result of the argument
expressionM l�

� � In addition� the result of the func�
tion body N l is returned as the result of the appli�
cation expression itself� By adding the constraint

��x�NL� � S�l��

S�l�� � S�x� S�L� � S�l��

where L ranges over the set of labels� the analyzer
captures this potential �ow of values�

Constraints for the remaining classes of terms can
be constructed in an analogous manner� Solving the
derived constraints to produce a valid abstract store is
straightforward ���
�

��� A Sample Analysis

Consider the following toy program�

�de�ne sum
�� tree�
�if �number� tree�

tree
�� �sum �car treel��l� �
�sum �cdr tree������

�sum �cons �cons nill� �l� �l� �l��l� �

The program de�nes the function sum� which com�
putes the sum of all leaves in a binary numeric tree�
Such a tree is either a leaf� represented as a number� or
an interior node containing two sub�trees� represented
as a pair� However� sum is applied to the ill�formed tree
�cons �cons nil �� ��� When executed� the program

��tree� � � �� � S�sum� ���

S�tree� nNum � S�l�� ���

�cons Lx Ly� � S�l��

S�Lx� � S�l��
�
�

��x�N � � S�sum�

S�l�� � S�x�
���

nil � S�l�� ���

� � S�l�� ���

�cons l� l�� � S�l�� �	�

� � S�l
� ���

�cons l� l
� � S�l�� ���

��x�N � � S�sum�

S�l�� � S�x�
����

Figure �� Simpli�ed Constraints for sum

raises an error because the primitive operation car is
applied to the inappropriate argument nil�
Since the complete list of set constraints for this pro�

gram is quite long� we present only �simpli�ed versions
of� the set constraints that a�ect position l� which rep�
resents the potential arguments of car� see Figure ��
Constraints ��� and ���� model the �ow of argument

values into the formal parameter x at two of the appli�
cation sites of the function sum� Constraint �
� mod�
els the behavior of the operation car� Constraints ���
and ��� through ��� arise from syntactic values in the
program� Constraint ��� captures the notion that the
possible values of tree in the else part of the condi�
tional expression cannot include numbers� because of
the number� predicate�
To solve these constraints for S�l��� we derive the

implied invariants�

From ���� ���� � S�l�� � S�tree� ����
From ���� ���� � �cons l� l
� � S�tree� ����
From ���� ���� � �cons l� l
� � S�l�� ��
�
From �
�� ��
� � S�l�� � S�l�� ����
From �	�� ���� � �cons l� l�� � S�l�� ����
From ���� ��� � S�l�� � S�tree� ����
From ����� ���� � �cons l� l�� � S�tree� ��	�
From ���� ��	� � �cons l� l�� � S�l�� ����
From �
�� ���� � S�l�� � S�l�� ����
From ���� ���� � nil � S�l�� ����
From ����� ���� � nil � S�tree� ����
From ���� ���� � nil � S�l�� ����



No further invariants relating to S�l�� are implied by
the set constraints� Hence�

S�l�� � f�cons l� l��� �cons l� l
�� nilg

This information provides a warning that the set of ar�
guments of the operation car may include the inappro�
priate value nil�

��� Identifying Potential Run�Time Errors

By inspecting the set invariants for the arguments of
each program operation� MrSpidey can identify those
program operations that may cause run�time errors and
can �ag them for inspection by the programmer� For
example� in the program sum� since the value set at
position l� contains the value nil� the evaluation of
�car treel� � may raise a run�time error� An inspection
of the value �ow graph explains why nil may appear
at l��
At the moment�MrSpidey checks the uses of Scheme

primitives� the function position of applications� and
the parameter lists of functions �for potential arity con�
�icts�� Future extensions are discussed below�

��� Value Flow Information

While deriving an abstract store for the analyzed pro�
gram� the set�based analysis algorithm also constructs
a �ow graph ���
 from the subset relations� The �ow
graph models how values ��ow� through a program dur�
ing an execution� and provides an intuitive explanation
for each value�set invariant produced by the analysis�
Let us illustrate this idea by considering how the

value nil �ows through the program sum � During an
execution� the expression nill� simply returns the value
nil� which becomes the �rst element of the pair created
by �cons nill� �l��l� � Since this pair is a result value
of the expression treel� � the value nil is extracted by
�car treel� �l� � This value is then bound to the formal
parameter tree via the function call �sum �car treel� �l� ��
and gets returned as the result of the expression treel� �
This �ow of values is modeled by the subset in�

variants produced during set�based analysis� The spe�
ci�c invariants that describe the �ow of the value nil
through the program� from the constructor expression
nill� to the expression treel� � are�

nil � S�l��
S�l�� � S�l��
S�l�� � S�tree�

S�tree� nNum � S�l��

� The User Interface of MrSpidey

A program invariant browser must �t seamlessly into a
programmer�s work pattern� It must provide the pro�
grammer with useful information in a natural� easily
accessible manner� and with a minimum of disruption

to the program development cycle� For these reasons�
we integrated MrSpidey with DrScheme� our Scheme
programming environment�
MrSpidey uses program mark�ups to characterize a

program�s run�time behavior in an easily accessible man�
ner� The mark�ups are simple font and color changes
that do not a�ect the lexical or syntactic structure of
the program� They represent information about the
program�s behavior� By clicking on one of the marked�
up tokens or phrases� a programmer can make the in�
formation visible�

��� Identifying Potential Run�Time Errors

Program operations that may signal run�time errors
during an execution are a natural starting point in the
static debugging process� MrSpidey identi�es these po�
tentially erroneous operations by highlighting them via
font and color changes� Any primitive operation that
may be applied to inappropriate arguments� thus rais�
ing a run�time error� is highlighted in red �or under�
lined on monochrome screens�� A run�time argument
check is required at each of these potentially faulty op�
erations� Primitive operations that never raise errors
are shown in green� These operations do not require
run�time checks� Any function that may be applied
to an incorrect number of arguments is highlighted by
displaying the lambda keyword in red �or underlined��
and any application expression where the function sub�
expression may return a non�closure is highlighted by
displaying the enclosing parentheses in red �or under�
lined� � Figure 
 contains examples of these three kinds
of potential errors�
MrSpidey also presents summary information describ�

ing the number and type of potential run�time errors in
each top�level de�nition� together with a hyperlink to
that de�nition� By following these hyperlinks� the pro�
grammer can directly access the potentially erroneous
expressions�

��� Presenting Value Set Information

MrSpidey provides an inferred value set invariant for
each variable and term in the program� Because the
value set representation used in abstract stores is ver�
bose and di�cult to read� MrSpidey uses the following
set�description language �SDL� to describe these sets�

� � SDL ��� c
j ��x�M �
j �cons � � �
j �� �� � � � �n�
j �rec ���� ��
 � � � ��n �n
� � �
j �

� � SDV � f�� �� �� � � �g

The expression �� �� � � � �n� denotes the union of the
sets of values described by �� through �n� The recursive
set�description expression �rec ���� ��
 � � � ��n �n
� � �



Figure 
� Identifying Potential Run�Time Errors

binds the set�description variables �SDV � ��� � � � � �n�
and these bindings are visible within ��� � � � � �n� � � The
meaning of this recursive set�description expression is
the set of values described by � � where each �i is bound
to �i� The transformation from an abstract store to set�
description expressions is described in Subsection ����
MrSpidey computes a closed set�description expres�

sion for each variable and term in the program from the
abstract store produced by set�based analysis� It relates
each program variable to its set�description expression
via a hyperlink on that variable� It also relates each
compound term in the program with a set�description
expression via a hyperlink on the opening parenthesis
of that term� Clicking on a hyperlink causes a box con�
taining the corresponding set�description expression to
be inserted to the right of the phrase in the bu�er� Fig�
ure � shows the set�description expression displayed by
clicking on the variable tree�

��� The Value Flow Browser

During the constraint derivation phase of the set�based
analysis� MrSpidey constructs a value �ow graph from
subset relations� The value �ow graph models the �ow
of values between various points in the program� Each

edge in this graph is presented as an arrow overlaid on
the program text� Because a large numbers of arrows
would clutter the program text� these arrows are pre�
sented in a demand�driven fashion� To inspect the in�
coming edges for a given program term� the programmer
clicks on the value set invariant of that term� Figure �
shows the incoming edges for the parameter tree�
Hyperlinks associated with the head and tail of each

arrow provide a fast means of navigating through tex�
tually distinct but semantically related parts of the pro�
gram� which is especially useful on larger programs�
Clicking on one end of an arrow moves the focus of the
editor bu�er to the term at the other end of the arrow�
and also causes the value set invariant for that term to
be displayed�
Using these facilities� a programmer who encounters

a surprising value set invariant can proceed in an iter�
ative fashion to expose the portions of the value �ow
graph that in�uence that invariant� To expedite this
iterative process� MrSpidey also provides an ancestor
facility that automatically exposes all portions of the
value �ow graph that in�uence a particular invariant�
thus providing the programmer with a complete expla�
nation for that invariant�
In some cases� the number of arrows presented by



Figure �� Value Set Information

Figure �� Value Source Information

the ancestor facility is excessive� Since the programmer
is typically only interested in a particular class of val�
ues� MrSpidey incorporates a �lter facility that allows
the programmer to restrict the displayed edges to those
that a�ect the �ow of certain kinds of values� This fa�
cility is extremely useful for quickly understanding why
a primitive operation may be applied to inappropriate
argument values�

��� A Sample Debugging Session

To illustrate the e�ectiveness of MrSpidey as a static
program debugger� we describe how this tool can be

used to identify and eliminate the potential run�time
error in the program sum�
When MrSpidey is invoked� the primitive operation

car is highlighted� indicating that this operation may
raise a run�time error� Inspecting the value set for the
operation argument� tree� �see Figure �� shows that this
set includes the inappropriate argument nil� By using
the ancestor and �lter facilities� we can view how this er�
roneous value �ows through the program� see Figure ��
The displayed information makes it obvious that the
error is caused by application of sum to the ill�formed
tree �cons �cons nil �� ���
Although space restrictions force us to present a triv�



Figure �� Flow of nil

ial program� our initial experiences indicate that the
same static debugging process scales well to large pro�
grams�

� Experimental Results

We evaluated the e�ectiveness of MrSpidey�s explana�
tory mode with an experiment� We constructed a text�
based system� called MrSpidey�textual� that resembles
an ML�style type�checker and Wright and Cartwright�s
soft typer ���
� MrSpidey�textual produces an anno�
tated version of the source program� which identi�es
those program operations that require run�time checks�
Using additional commands� a programmermay inquire
about the value sets of global and local de�nitions� and
the mismatch between the expected arguments and in�
ferred value sets of program operations�
The participating group consisted of �� students tak�

ing an undergraduate course on programming languages�
The students had been introduced to the basics of types
and type�safety� All students had a working knowledge
of Scheme� none had previously used either static de�
bugger� They were given a �� minute lecture on set�
based analysis and a �� minute tutorial on the use of
the two systems�
The participants were split into two groups� with

people of comparable skill separated based on home�
work assignments� For each test program� the par�
ticipants in one group used MrSpidey�graphical� while
those in the other group used MrSpidey�textual� with
the groups alternating analysis tools between programs�
The participants were not allowed to execute the pro�

grams�
The participants had thirty minutes to work on each

of six programs� The programs were excerpts� ranging
from one to four pages in length� of larger projects�
Each excerpt contained at least one bug and possibly
additional run�time checks inserted due to the approx�
imate nature of the analysis� The participants were
asked to classify the cause of each run�time check as
either�

� a program error� or

� a weakness in the proof system�

In the �rst case� the participants were asked to �x the
program� in the second case� they were asked to explain
why this check would never raise an error at run�time�
We observed the progress of the participants and

their interaction with the tools� The participants typi�
cally used most� if not all� of the facilities of MrSpidey�
With the graphical version� students used both the an�
cestor and �lter facilities to display portions of the �ow�
graph explaining the derivation of certain value set in�
variants� They mentioned that the ability to track down
the origin of values� and especially to focus attention on
selected classes of values� was particularly useful in un�
derstanding and eliminating checks and errors�
Our observations also suggest that the graphical user

interface provides much easier access to the results of
the analysis than the textual interface� The users of
MrSpidey�textual typically had to work with three dif�
ferent sources of information� the source program� the
annotated code� and the console window� The users
of MrSpidey�graphical could avoid this context switch�



ing since all of these information sources were com�
bined into a single window� Indeed� one user of Mr�
Spidey�textual tried to reconstruct exactly the infor�
mation provided by MrSpidey�graphical� The student
began annotating the printed copy of a test program
with value set descriptions and with arrows describing
portions of the value �ow graph�
Our productivity measurements were inconclusive due

to what we believe was an overly arti�cial experimental
setup� We intend to continue our observations through
the rest of the semester and to report on them in an
expanded version of the paper�

� The Implementation of MrSpidey

MrSpidey is a component of DrScheme� a comprehen�
sive Scheme development environment� DrScheme con�
sists of several components� Its core component is MrEd�
the syntax interface is Zodiac� The following subsec�
tions describe these components in some details and
provide pointers to relevant technical reports�

��� Macro Expansion

A useful interface for MrSpidey must present the results
of the program analysis in terms of the original source
program� Hence� the environment requires a front�end
for processing source text that can correlate the inter�
nal representation of programs with their source loca�
tion� For Scheme� this correlation task is complicated
by the powerful macro systems of typical implementa�
tions because macros permit arbitrary rearrangements
of syntax�
MrSpidey exploits Zodiac ���
 for its front�end� Zo�

diac is a tool�kit for generating language front�ends that
are suitable for interactive environments� It includes a
hygienic high�level macro system that relates each ex�
pression in the macro�expanded code to its source lo�
cation� MrSpidey exploits this information to associate
value set invariants with expressions in the source pro�
gram and to present portions of the value �ow�graph as
arrows relating terms in the program text�

��� Converting an Abstract Store to Set�

Description Expressions

MrSpidey computes a set�description expression for each
term M l from the abstract store representation as fol�
lows� First� it views the set environment as a regular�
tree grammar with root non�terminal l� and uses a stan�
dard algorithm to simplify this grammar ��
� Second� it
eliminates unnecessary non�terminals from this gram�
mar� by replacing references to these non�terminals with
the right�hand side of the appropriate production rules�
If the resulting grammar contains only the single non�
terminal l� it expresses the grammar as a non�recursive
set�description expression� Otherwise� it expresses the
grammaras a recursive set�description expression� where

the remaining non�terminals �other than l� become set�
description variables�

��� Identifying Potential Run�Time Errors

Scheme contains a large number of primitive proce�
dures� MrSpidey represents the set of appropriate ar�
guments for each primitive procedure as a regular�tree
grammar �or RTG�� Since the value set of each argu�
ment expression is also represented as an RTG� decid�
ing whether a primitive is used correctly reduces to the
inclusion question between two RTGs� Although the
general question is PSPACE�complete ��
� for our spe�
ci�c application it can be decided in time linear in the
size of the argument�s RTG� because the RTG of the
expected arguments is deterministic and small�

��� Graphical Engine

MrSpidey�s graphical component is implemented using
MrEd ��
� a Scheme�based engine for constructing graph�
ical user interfaces� The core of the engine is am C���
like object system and a portable graphics library� This
library de�nes high�level GUI elements� such as win�
dows� buttons� and menus� which are embedded within
Scheme as special primitive classes�
MrEd�s graphical class library includes a powerful�

extensible text editor class� This editor class is used in
MrSpidey to display analyzed programs� including the
boxes containing value set information and the arrows
describing the value �ow graph� Value set boxes are
easily embedded in the program text because an edi�
tor bu�er can contain other bu�ers as part of its text�
The arrows used to present �ow information are not
part of the editor�s standard built�in functionality� but
it was easy to extend the editor class with arrow draw�
ing capabilities using other components of the graphical
library�
MrEd�s object system provides a robust integration

between the Scheme implementation and the underly�
ing graphical class library� The integration of the li�
brary through the object system is easily understood
by GUI programmers� The object system also provides
an important tool for designing and managing the com�
ponents of a graphical interface� Because the imple�
mentation of MrSpidey exploits this object system� it
can absorb future enhancements to the editor and it is
easily intergrated into the DrScheme environment�
Applications developed with MrEd including Mr�

Spidey and DrScheme are fully portable across the
major windowing systems �X!Windows� Microsoft Win�
dows� and MacOS�� MrEd�s portability� its object sys�
tem� and its rich class library enabled MrSpidey"s im�
plementors to focus on the interesting parts of their
application�



� Related Work

A number of interactive analysis tools and static debug�
ging systems have been developed for other program�
ming languages� Some address di�erent concerns� none
provide an explanation of the derived invariants�
Syntox ��
 is a static debugger for a subset of Pascal�

Like MrSpidey� it associates run�time invariants� i�e��
numeric ranges� with statements in the program� Be�
cause Syntox does not provide an explanation of these
invariants� it is di�cult for a programmer to decide
whether an unexpected invariant is caused by a weak�
ness in the proof system or a �aw in the program� In
addition� the existing system processes only a �rst�order
language� though Bourdoncle explains how to extend
the analysis ���Section �
�
Several environments ���� �� �
� �	� ��
 have been

built for parallel programming languages to expose de�
pendencies� thus allowing the programmer to tune pro�
grams to minimize these dependencies� In particular�
MrSpidey has many similarities to the ParaScope ����
�
 and D editors ��

� Both MrSpidey and the edi�
tors provide information at varying levels of granularity�
both retain source correlation through transformations�
and both depict dependencies graphically� However�
unlike MrSpidey� the editors process a language with
extremely simple control� and data��ow facilities� and
therefore do not need to provide a supporting explana�
tion for the derived dependencies�

� Summary and Future Work

MrSpidey is an interactive static debugging tool that
supports the production of reliable software� It identi�
�es the program operations that may signal errors dur�
ing an execution and describes the sets of erroneous ar�
gument values that may cause those errors� Unlike pre�
vious systems� it also provides an explanation of how
those erroneous values �ow through the program� Its
graphical user interface presents this information to the
programmer in a natural and intuitive manner� Exper�
imental results support our belief that these this infor�
mation facilitates static program debugging�
MrSpidey also functions as an interactive optimiza�

tion tool� Using MrSpidey� the programmer can tune
a program so that its value set invariants accurately
characterize its execution behavior� thus enabling nu�
merous program optimizations that depend on these in�
variants� including variant check elimination ��� ��� ���
�� ��
� synchronization optimization �	
� partial evalu�
ation ���
� closure analysis ��

� dead�code elimination
and constant�folding� To investigate this potential� we
implemented variant check elimination as part of Mr�
Spidey� Preliminary results indicate that the resulting
tool expedites the production of e�cient programs� We
intend to investigate this area in more depth�
We adapted set�based analysis for use as the un�

derlying proof technology used in MrSpidey� Set�based

analysis can be extended to produce accurate informa�
tion on numeric ranges ���
� This information is useful
for eliminating array bounds checks and for array data
dependence analysis� Other program analyses that pro�
duce information similar to set�based analysis but which
provide alternative cost�accuracy tradeo�s could also
be adapted for use in MrSpidey ���� ��� ��� �
�

Availability DrScheme� including MrSpidey� is avail�
able at http���www�cs�rice�edu� scheme�packages�
drscheme�

Acknowledgments We thank Corky Cartwright and
Bruce Duba for discussions concerning the philosophy
of soft typing and Nevin Heintze for hints on the im�
plementation of set�based analysis� We also gratefully
acknowledge the students in the ���� COMP
�� pro�
gramming languages course at Rice University for their
participation in the experiment�

References

��
 Aiken� A�� Wimmers� E� L�� and Lakshman�
T� K� Soft typing with conditional types� In Pro�
ceedings of the ACM Sigplan Conference on Prin�
ciples of Programming Languages ������� pp� ��
!
�	
�

��
 Bourdoncle� F� Abstract debugging of higher�
order imperative languages� In Proceedings of the
ACM SIGPLAN ��� Conference on Programming
Language Design and Implementation �June ���
��
pp� ��!���

�

 Clinger� W�� and Rees� J� �Eds��� The rev�
ised� report on the algorithmic language scheme�
ACM Lisp Pointers �� 
 �July ������

��
 Cooper� K� D�� Hall� M� W�� Hood�
R�� Kennedy� K�� McKinley� K�� Mellor�
Crummey� J�� Torczon� L�� and Warren� S�
The Parascope parallel programming environment�
Proceedings of the IEEE �February ���
�� ���!��
�

��
 Cousot� P�� and Cousot� R� Abstract interpre�
tation� A uni�ed lattice model for static analyses
of programs by construction or approximation of
�xpoints� In Proceedings of the ACM Sigplan Con�
ference on Principles of Programming Languages
���		�� pp� �
�!����

��
 Flanagan� C�� and Felleisen� M� Set�based
analysis for full Scheme and its use in soft�typing�
Rice University Computer Science TR�����
�

�	
 Flanagan� C�� and Felleisen� M� The seman�
tics of future and its use in program optimiza�
tions� In Proceedings of the ACM Sigplan Con�
ference on Principles of Programming Languages
������� pp� ���!����

��
 Flatt� M� MrEd� An engine for portable graphi�
cal user interfaces� Rice University Computer Sci�
ence TR�������� Rice University�



��
 G�ecseg� F�� and Steinby� M� Tree Automata�
Akad"emiai Kiad"o� Budapest� �����

���
 Heintze� N� Set based analysis of arithmetic�
Tech� Rep� CMU�CS��
����� Carnegie Mellon Uni�
versity� December ���
�

���
 Heintze� N� Set�based analysis of ML programs�
In Proceedings of the ACM Conference on Lisp and
Functional Programming ������� pp� 
��!
�	�

���
 Henglein� F� Dynamic typing� syntax and proof
theory� Science of Computer Programming 		
������� pp� ��	!�
��

��

 Hiranandani� S�� Kennedy� K�� Tseng� C��
W�� and Warren� S� The D editor� A new inter�
active parallel programming tool� In Proceedings of
Supercomputing �������

���
 Jagannathan� S�� and Weeks� S� A uni�
�ed treatment of �ow analysis in higher�order lan�
guages� In 		nd ACM Symposium on Principles of
Programming Languages ������� pp� 
�
!��	�

���
 Jagannathan� S�� and Wright� A� K� Ef�
fective �ow analysis for avoiding run�time checks�
In Proc� 	nd International Static Analysis Sym�
posium
 LNCS ��� �September ������ Springer�
Verlag� pp� ��	!���� Preliminary version ap�
pears as part of Technical Report DAIMI�PB ��
�
#Aarhus University� May �����

���
 Kennedy� K�� McKinley� K�� and Tseng� C��
W� Interactive parallel programming using the
ParaScope Editor� IEEE Transactions on Paral�
lel and Distributed Systems 	� 
 �July ������

��	
 Kernighan� B� W�� and Ritchie� D� M� The
C Programming Language� Prentice�Hall� �����

���
 Krishnamurthi� S� Zodiac� A programming en�
vironment builder� Rice University Computer Sci�
ence TR�������� Rice University�

���
 Malmkj�r� K�� Heintze� N�� and Danvy� O�
ML partial evaluation using set�based analysis�
Tech� Rep� CMU�CS�������� Carnegie Mellon Uni�
versity� �����

���
 Miller� B�� Koski� D�� Lee� C� P�� Maganty�
V�� Murthy� P�� Natarajan� A�� and Steidl�
J� Fuzz revisited� A re�examination of the reliabil�
ity of unix utilities and services� Computer Science
Department� University of Wisconsin� �����

���
 Milner� R�� Tofte� M�� and Harper� R� The
De�nition of Standard ML� The MIT Press� Cam�
bridge� Massachusetts and London� England� �����

���
 Plotkin� G� D� Call�by�name� call�by�value� and
the ��calculus� Theoretical Comput� Sci� � ���	���
���!����

��

 Shao� Z�� and Appel� A� Space�e�cient closure
representations� In Proceedings of the ACM Sympo�
sium on Lisp and Functional Programming �������
pp� ���!����

���
 Shei� B�� and Gannon� D� Sigmacs� A pro�
grammable programming environment� In Ad�
vances in Languages and Compilers for Parallel
Computing� The MIT Press� August �����

���
 Shivers� O� Control��ow Analysis of Higher�
Order Languages
 or Taming Lambda� PhD thesis�
Carnegie�Mellon University� �����

���
 Stefanescu� D�� and Zhou� Y� An equational
framework for the �ow analysis of higher order
functional programs� In Proceedings of the ACM
Conference on Lisp and Functional Programming
������� pp� 
��!
�	�

��	
 Wolfe� M� J� The Tiny loop restructuring re�
search tool� In Proceedins of the ���� International
Conference on Parallel Processing �August ������

���
 Wright� A�� and Cartwright� R� A practical
soft type system for scheme� In Proceedings of the
ACM Conference on Lisp and Functional Program�
ming ������� pp� ���!����


