Catching Bugs in the Web of Program Invariants

Cormac Flanagan Matthew Flatt

Shriram Krishnamurthi

Stephanie Weirich

Matthias Felleisen

Department of Computer Science,
Rice University,
Houston, Texas 77005-1892*
cormac@cs.rice.edu

Abstract

MrSpidey is a user-friendly, interactive static debugger
for Scheme. A static debugger supplements the stan-
dard debugger by analyzing the program and pinpoint-
ing those program operations that may cause run-time
errors such as dereferencing the null pointer or apply-
ing non-functions. The program analysis of MrSpidey
computes value set descriptions for each term in the
program and constructs a value flow graph connect-
ing the set descriptions. Using the set descriptions,
MrSpidey can identify and highlight potentially erro-
neous program operations, whose cause the program-
mer can then explore by selectively exposing portions
of the value flow graph.

1 Introduction

A reliable program does not mis-apply program op-
erations. Addition always operates on numbers, not
strings. Concatenation works with strings, not num-
bers. To avoid the abuse of program operations, most
languages impose a restrictive type system, which for-
bids the (syntactic) formation of certain faulty program
phrases. However, type systems are too coarse to solve
the general problem, which includes array indexing out-
side of its proper bounds, division by zero, dereferencing
of null pointers, and jumping to non-function pointers.
These problems are beyond the capabilities of standard
type systems, and different languages deal with such
run-time errors in different ways.

Unsafe languages like C [17] ignore the problem and
leave it to the programmer to insert checks where ap-
propriate. As aresult C programs are notoriously prone
to inexplicable crashes [20]. In contrast, safe languages

*The authors are supported in part by NSF grants CCR 91-22518
and CDA-9414170.

such as SML [21] and Scheme [3] equip all program oper-
ations with appropriate run-time checks. These checks
guarantee that misapplications of program operations
immediately raise an error signal, instead of returning
random bit-patterns. Although this solution ensures
that programs don’t return random results, it is unsat-
isfactory because errors are not signaled until run-time.
What 1s needed instead, is a static analysis tool that
assists the programmer in verifying the preconditions
of program operations. This kind of tool is a static
debugger.

Recent advances in proof technology have brought
static debugging within reach. Methods like abstract
interpretation [5], control-flow analysis [25, 26, 14] or
set-based analysis [11, 10] establish invariants about
the sets of values that variables and expressions may
assume. Thus, if an array index expression does not as-
sume values outside of the appropriate range, an array
bound check is superfluous, and an indexing error will
never be signaled for this expression. Or, if the value set
of a function variable only contains closures, the func-
tion application does not need to be checked, and will al-
ways succeed. Past research on static debuggers mainly
focused on the synthesis of the invariants [2]. However,
the presentation and, in particular, the explanation of
these invariants were neglected. We believe that synthe-
sizing invariants is not enough. Instead, a programmer
must be able to inspect the invariants and browse their
underlying proof. Then, if some set invariant contains
an unexpected element, the programmer can determine
whether the element results from a flaw in the program
or approximations introduced by the proof system.

We have developed a static debugger for Scheme,
called MrSpidey, which allows the programmer to browse
program invariants and their derivations. We selected
set-based analysis as the underlying proof technology
of MrSpidey, for the following three reasons. First, set-
based analysis produces accurate program invariants for
Scheme-like languages, even in the presence of complex
control-flow and data-flow patterns. Second, set-based
analysis is intuitive. It interprets program operations as
naive set-theoretic operations on sets of run-time values,



and propagates these sets of values along the program’s
data-flow paths, in a manner that is easily understood
by the programmer. Third, by appropriately annotat-
ing the set-based analysis algorithm, we can provide a
supporting explanation in the form of a value flow graph
for each invariant produced by the analysis.

Since MrSpidey is to be used as part of the typical
program development cycle, we have integrated it with
DrScheme, of our program development environment.
On demand, MrSpidey marks up the program in the ed-
itor without distorting its lexical or syntactic structure.
The mark-ups visibly identify those program operations
that are not provably safe. Associated hyper-links pro-
vide:

e a value-set invariant for each expression and vari-

able, and
e a graphical explanation for each invariant.

The programmer can browse the information and thus
improve his understanding of the program’s execution
behavior.

The rest of the paper proceeds as follows. The fol-
lowing section outlines the information computed by
MrSpidey. The user interface that presents this infor-
mation to the programmer is described in the third
section, and the fourth section presents the results of
a preliminary experiment evaluating the usefulness of
MrSpidey. Technical details involved in the implemen-
tation are covered in the fifth section, and the sixth
section describes related work. The seventh section
presents our conclusions and future research directions.

2 Set-Based Analysis

MrSpidey’s underlying set-based analysis algorithm han-
dles all fundamental constructs of Scheme, including
conditionals, assignable variables, mutable structures,
and first-class continuations. In this section, we outline
the information produced by the analysis in terms of a
simple functional subset of Scheme. For a full presen-
tation of set-based analysis for a realistic language, we
refer the interested reader to a related report [6].

2.1 The Source Language

The sample language 1s a simplified, A-calculus-like lan-
guage: see Figure 1. The language includes the prim-
itives coms, car, and cdr for list manipulation, which
will serve to illustrate the treatment of primitive opera-
tions, and a number of basic constants. The semantics
of the source language can be formulated as a variant of
Plotkins A,-calculus [22]. Each term in the language is
labeled, and we assume that all labels in a program are
distinct. For clarity, labels are occasionally omitted.

2.2 Set-Based Analysis

Set-based analysis computes information about the sets
of values that program variables and terms may assume

P ¢ Program = (define x M) ...
M,N € A = 1%
(M M)
| (cons M M)
| (car M)
| (edr M)
V € Value = cla
| (Az. M)
| (cons V V)
¢ € Const = Num U {nil,...}
n € Num = {0,1,2,..}
r € Vars = {e,y,2,...}
l € Label

Figure 1: The Source Language A

during execution. Because these sets of values are typ-
ically infinite, set-based analysis uses a finite number
of program-dependent abstract values. Each abstract
value corresponds to a particular constructor expres-
sion in the analyzed program, and represents the set of
run-time values that can be created by that construc-
tor expression. The set of abstract values used for the
analysis of a program P is:!

AbsValuep = {(cons i l2) | (cons ]\4111 MZIQ) e P}
U{(Az. M) | (Az. M) € P}
Ofe | ce P}

The abstract value (cons {y I5) represents the set of val-
ues (cons V; V3) that may be returned by the expres-

sion (cons ]\4111 MZIQ), where each V; is a possible value

of the term Mil’. Similarly, the abstract value (Azx. M)
represents the set of closures that may be created from
the A-expression (Az. M). The set of abstract values
also contains all constants occurring in the program.

Set-based analysis produces a finite table called an
abstract store, which maps variables and labels to sets
of abstract values:

S € AbsStore = (Vars U Label) — P(AbsValuep)

An abstract store is wvalid if 1t conservatively approxi-
mates the sets of values that variables and terms assume
during an execution.

2.3 Deriving Abstract Stores

MrSpidey employs a two stage algorithm to derive a
valid abstract store for a program. First, it derives con-
straints in a syntax-directed manner from the program
text. These constraints conservatively approximate the

1We use the following notations throughout the paper: P denotes
the power-set constructor; f : A —— B denotes that f is a total
function from A to B; and M € P denotes that the term M occurs
in the program P.



dataflow relationships of the analyzed program. Sec-
ond, it determines the minimal (i.e., most accurate) ab-
stract store satisfying these constraints. This abstract
store is a valid abstract store for the analyzed program.

Let us illustrate the syntax-directed derivation of
constraints for two kinds of sentences:

e (cons ]\4111 Mzb)l
The evaluation of this term produces the result

(cons Vi Va), if V1 and V5 are values of the terms

]\4111 and ]\4212 respectively. Since all such results
are represented by the abstract value (cons [} I5),
the analyzer adds the constraint

(cons l; 15) € S(1)

to the global set of program constraints, which en-
sures that S({) represents all possible results of the
cons expression.

o (Mt Mp)'
Suppose the value set for the function expression
M!" includes the function (Az. N*). Then the vari-
able z may be bound to the result of the argument
expression Mzb. In addition, the result of the func-

tion body NV is returned as the result of the appli-
cation expression itself. By adding the constraint

(Az. NL) € S(1h)
S(la) CS(z)  S(L) C S(ls)

where L ranges over the set of labels, the analyzer
captures this potential flow of values.

Constraints for the remaining classes of terms can
be constructed in an analogous manner. Solving the
derived constraints to produce a valid abstract store is
straightforward [11].

2.4 A Sample Analysis

Consider the following toy program:

(define sum
(Atree.
(if (number? tree)
iree
(+ (sum (car treell)l2)
(sum (cdr tree))))))

(sum (cons (cons nills 1'4)ls b))

The program defines the function sum, which com-
putes the sum of all leaves in a binary numeric tree.
Such a tree is either a leaf, represented as a number, or
an interior node containing two sub-trees, represented
as a pair. However, sum is applied to the ill-formed tree
(cons (cons nil 1) 2). When executed, the program

(Atree. ---) € S(sum) (1)
S(tree) \ Num C S(ly) (2)

(cons Ly Ly) € S(lh)
S(L) € () )

(Az. N) € S(sum)
S(i2) € 5(2) @

nil € 8(13)

(Az. N) € S(sum)
S0 € S(2) (o)

Figure 2: Simplified Constraints for sum

raises an error because the primitive operation car is
applied to the inappropriate argument nil.

Since the complete list of set constraints for this pro-
gram is quite long, we present only (simplified versions
of) the set constraints that affect position /; which rep-
resents the potential arguments of car: see Figure 2.

Constraints (4) and (10) model the flow of argument
values into the formal parameter x at two of the appli-
cation sites of the function sum. Constraint (3) mod-
els the behavior of the operation car. Constraints (1)
and (5) through (9) arise from syntactic values in the
program. Constraint (2) captures the notion that the
possible values of free in the else part of the condi-
tional expression cannot include numbers, because of
the number? predicate.

To solve these constraints for S({y), we derive the
implied invariants:

From (1), (10) : S(l7) C S(tree) (11)
From (9), (11) : (cons [5 lg) € S(tree) (12)
From (2),(12) : (comns 5 ls) € S(Iy) (13)
From (3),(13) : S(ls) C S(l2) (14)
From (7),(14) : (comns I3 ;) € 8(I») (15)
From (1), (4) : S(l2) C S(tree) (16)
From (15), (16) : (cons I3 ;) € S(tree) (17)
From (2), (17) : (comns I3 14) € S(Iy) (18)
From (3), (18) : S(l3) C S(l2) (19)
From (5), (19) : nil € §(ls) (20)
From (16), (20) : nil € S(tree) (21)
From (2),(21) : nil € S(ly) (22)



No further invariants relating to S({1) are implied by
the set constraints. Hence:

S(1) = {(cons I3 l3), (cons I5 I5),nil}

This information provides a warning that the set of ar-
guments of the operation car may include the inappro-
priate value nil.

2.5 Identifying Potential Run-Time Errors

By inspecting the set invariants for the arguments of
each program operation, MrSpidey can identify those
program operations that may cause run-time errors and
can flag them for inspection by the programmer. For
example, in the program sum, since the value set at
position l; contains the value nil, the evaluation of
(car tree't) may raise a run-time error. An inspection
of the value flow graph explains why nil may appear
at ll.

At the moment, MrSpidey checks the uses of Scheme
primitives, the function position of applications, and
the parameter lists of functions (for potential arity con-
flicts). Future extensions are discussed below.

2.6 Value Flow Information

While deriving an abstract store for the analyzed pro-
gram, the set-based analysis algorithm also constructs
a flow graph [14] from the subset relations. The flow
graph models how values “flow” through a program dur-
ing an execution, and provides an intuitive explanation
for each value-set invariant produced by the analysis.

Let us illustrate this idea by considering how the
value nil flows through the program sum. During an
execution, the expression nil* simply returns the value
nil, which becomes the first element of the pair created
by (comns nils 1%4)%. Since this pair is a result value
of the expression tree’', the value nil is extracted by
(car tree't)'z. This value is then bound to the formal
parameter tree via the function call (sum (car tree'r)2),
and gets returned as the result of the expression tree'.

This flow of values is modeled by the subset in-
variants produced during set-based analysis. The spe-
cific invariants that describe the flow of the value nil
through the program, from the constructor expression
nil’s to the expression tree't, are:

nil € 8(13)
S(ls) € S(lh)

S(l2) € S(tree)
S(tree)\ Num C S(hh)

3 The User Interface of MrSpidey

A program invariant browser must fit seamlessly into a
programmer’s work pattern. It must provide the pro-
grammer with useful information in a natural, easily
accessible manner, and with a minimum of disruption

to the program development cycle. For these reasons,
we integrated MrSpidey with DrScheme, our Scheme
programming environment.

MrSpidey uses program mark-ups to characterize a
program’s run-time behavior in an easily accessible man-
ner. The mark-ups are simple font and color changes
that do not affect the lexical or syntactic structure of
the program. They represent information about the
program’s behavior. By clicking on one of the marked-
up tokens or phrases, a programmer can make the in-
formation visible.

3.1 Identifying Potential Run-Time Errors

Program operations that may signal run-time errors
during an execution are a natural starting point in the
static debugging process. MrSpidey identifies these po-
tentially erroneous operations by highlighting them via
font and color changes. Any primitive operation that
may be applied to inappropriate arguments, thus rais-
ing a run-time error, is highlighted in red (or under-
lined on monochrome screens). A run-time argument
check 1s required at each of these potentially faulty op-
erations. Primitive operations that never raise errors
are shown in green. These operations do not require
run-time checks. Any function that may be applied
to an incorrect number of arguments is highlighted by
displaying the lambda keyword in red (or underlined),
and any application expression where the function sub-
expression may return a non-closure is highlighted by
displaying the enclosing parentheses in red (or under-
lined) . Figure 3 contains examples of these three kinds
of potential errors.

MrSpidey also presents summary information describ-
ing the number and type of potential run-time errors in
each top-level definition, together with a hyperlink to
that definition. By following these hyperlinks, the pro-
grammer can directly access the potentially erroneous
expressions.

3.2 Presenting Value Set Information

MrSpidey provides an inferred value set invariant for
each variable and term in the program. Because the
value set representation used in abstract stores is ver-
bose and difficult to read, MrSpidey uses the following
set-description language (SDL) to describe these sets:

T € SDL = c

| (Az. M)

| (cons 7 1)

[(+ 7 ... ™)

I rec ([ag 7] [an T]) T)
a € SOV = Ha,B,7,...}

The expression (+ 7 ... 7,) denotes the union of the
sets of values described by 7 through 7,,. The recursive
set-description expression (rec ([ay 7] ... [an T]) T)



[*] MrSpidey: sum-comments.ss

File Show Clear Filter Options

{define sum

{lambda (tree) ;
{if {number? tree) ;
tree

{+ {sum {car tree))
{sum {cdr treell )} H

{sum {cons {cons nil 1) 2} ;
{sum) ;

Lpplied to incorrect # of arguments
No check on number?

Potential run-time error on <ar
and odr

Causes error on car
Arity error

{’'not-a-function 5} ; Invoking a non-function

[ =]
CHECEZS: H
sum 3 {2 prim} {1 lambda)

Zexpre 1 {1 ap)

TOTAL CHECES: 4 f{of 12 possible checks is 33.0%)

EMouse: Left—typesparents Midde—Ancestors Right—Close

Figure 3: Identifying Potential Run-Time Errors

binds the set-description variables (SDV) ay, ..., an,
and these bindings are visible within 7, ..., 7,, 7. The
meaning of this recursive set-description expression is
the set of values described by 7, where each «; is bound
to ;. The transformation from an abstract store to set-
description expressions 1s described in Subsection 5.2.

MrSpidey computes a closed set-description expres-
sion for each variable and term in the program from the
abstract store produced by set-based analysis. It relates
each program variable to its set-description expression
via a hyperlink on that variable. It also relates each
compound term in the program with a set-description
expression via a hyperlink on the opening parenthesis
of that term. Clicking on a hyperlink causes a box con-
taining the corresponding set-description expression to
be inserted to the right of the phrase in the buffer. Fig-
ure 4 shows the set-description expression displayed by
clicking on the variable tree.

3.3 The Value Flow Browser

During the constraint derivation phase of the set-based
analysis, MrSpidey constructs a value flow graph from
subset relations. The value flow graph models the flow
of values between various points in the program. Each

edge in this graph is presented as an arrow overlaid on
the program text. Because a large numbers of arrows
would clutter the program text, these arrows are pre-
sented in a demand-driven fashion. To inspect the in-
coming edges for a given program term, the programmer
clicks on the value set invariant of that term. Figure 5
shows the incoming edges for the parameter tree.

Hyperlinks associated with the head and tail of each
arrow provide a fast means of navigating through tex-
tually distinct but semantically related parts of the pro-
gram, which is especially useful on larger programs.
Clicking on one end of an arrow moves the focus of the
editor buffer to the term at the other end of the arrow,
and also causes the value set invariant for that term to
be displayed.

Using these facilities, a programmer who encounters
a surprising value set invariant can proceed in an iter-
ative fashion to expose the portions of the value flow
graph that influence that invariant. To expedite this
iterative process, MrSpidey also provides an ancestor
facility that automatically exposes all portions of the
value flow graph that influence a particular invariant,
thus providing the programmer with a complete expla-
nation for that invariant.

In some cases, the number of arrows presented by




[#] MrSpidey: sum.ss

File Show Clear Filter Onptions

{define sum
{lambda (tree)
{if {number? tree)
tree

nil})

{(+ {(sum {(car tree|{+ {cons {cons nil num) num)|))
{cons nil num)

{sum (cdr tree)})}))

{(sum {(cons {(cons nil 1) 2))

Figure 4: Value Set Information

[#] MrSpidey: sum.ss

File Show Clear Filter Onptions

{define sum

num

{cons nil num)
nil})

{lambda (tree|{+ {cons {cons nil num) num) |}

tree)

car tree))
cdr treel )il

{sum dcons {(cons nil 1) 2))

Figure 5: Value Source Information

the ancestor facility is excessive. Since the programmer
is typically only interested in a particular class of val-
ues, MrSpidey incorporates a filter facility that allows
the programmer to restrict the displayed edges to those
that affect the flow of certain kinds of values. This fa-
cility is extremely useful for quickly understanding why
a primitive operation may be applied to inappropriate
argument values.

3.4 A Sample Debugging Session

To illustrate the effectiveness of MrSpidey as a static
program debugger, we describe how this tool can be

used to identify and eliminate the potential run-time
error in the program sum.

When MrSpidey is invoked, the primitive operation
car is highlighted, indicating that this operation may
raise a run-time error. Inspecting the value set for the
operation argument, tree, (see Figure 4) shows that this
set includes the inappropriate argument nil. By using
the ancestor and filter facilities, we can view how this er-
roneous value flows through the program: see Figure 6.
The displayed information makes it obvious that the
error is caused by application of sum to the ill-formed
tree (cons (cons nil 1) 2).

Although space restrictions force us to present a triv-




[®] MrSpidey: Sum.ss

File Show Clear Filter Options

{define sum

{lambda |

num
{cons nil num)}

N nil)

{+ {cons {cons nil num} num) |}

{(if {(numbex? kree)
tree

{(+ (sum

nil})

car*tree|{+ {cons {cons nil num) num)|))
{cons nil num)

cdr treelllil)

11 1) 23]

{sum

{sum {(cons {(cons

Figure 6: Flow of nil

1al program, our initial experiences indicate that the
same static debugging process scales well to large pro-
grams.

4 Experimental Results

We evaluated the effectiveness of MrSpidey’s explana-
tory mode with an experiment. We constructed a text-
based system, called MrSpidey/textual, that resembles
an ML-style type-checker and Wright and Cartwright’s
soft typer [28]. MrSpidey/textual produces an anno-
tated version of the source program, which identifies
those program operations that require run-time checks.
Using additional commands, a programmer may inquire
about the value sets of global and local definitions, and
the mismatch between the expected arguments and in-
ferred value sets of program operations.

The participating group consisted of 15 students tak-

ing an undergraduate course on programming languages.

The students had been introduced to the basics of types
and type-safety. All students had a working knowledge
of Scheme; none had previously used either static de-
bugger. They were given a 25 minute lecture on set-
based analysis and a 45 minute tutorial on the use of
the two systems.

The participants were split into two groups, with
people of comparable skill separated based on home-
work assignments. For each test program, the par-
ticipants in one group used MrSpidey/graphical, while
those in the other group used MrSpidey/textual, with
the groups alternating analysis tools between programs.
The participants were not allowed to execute the pro-

grams.

The participants had thirty minutes to work on each
of six programs. The programs were excerpts, ranging
from one to four pages in length, of larger projects.
Each excerpt contained at least one bug and possibly
additional run-time checks inserted due to the approx-
imate nature of the analysis. The participants were
asked to classify the cause of each run-time check as
either:

® a program error, or
e a weakness in the proof system.

In the first case, the participants were asked to fix the
program; in the second case, they were asked to explain
why this check would never raise an error at run-time.

We observed the progress of the participants and
their interaction with the tools. The participants typi-
cally used most, if not all, of the facilities of MrSpidey.
With the graphical version, students used both the an-
cestor and filter facilities to display portions of the flow-
graph explaining the derivation of certain value set in-
variants. They mentioned that the ability to track down
the origin of values, and especially to focus attention on
selected classes of values, was particularly useful in un-
derstanding and eliminating checks and errors.

Our observations also suggest that the graphical user
interface provides much easier access to the results of
the analysis than the textual interface. The users of
MrSpidey /textual typically had to work with three dif-
ferent sources of information: the source program, the
annotated code, and the console window. The users
of MrSpidey/graphical could avoid this context switch-




ing since all of these information sources were com-
bined into a single window. Indeed, one user of Mr-
Spidey/textual tried to reconstruct exactly the infor-
mation provided by MrSpidey/graphical. The student
began annotating the printed copy of a test program
with value set descriptions and with arrows describing
portions of the value flow graph.

Our productivity measurements were inconclusive due
to what we believe was an overly artificial experimental
setup. We intend to continue our observations through
the rest of the semester and to report on them in an
expanded version of the paper.

5 The Implementation of MrSpidey

MrSpidey is a component of DrScheme, a comprehen-
sive Scheme development environment. DrScheme con-
sists of several components. Its core component is MrEd;
the syntax interface is Zodiac. The following subsec-
tions describe these components in some details and
provide pointers to relevant technical reports.

5.1 Macro Expansion

A useful interface for MrSpidey must present the results
of the program analysis in terms of the original source
program. Hence, the environment requires a front-end
for processing source text that can correlate the inter-
nal representation of programs with their source loca-
tion. For Scheme, this correlation task is complicated
by the powerful macro systems of typical implementa-
tions because macros permit arbitrary rearrangements
of syntax.

MrSpidey exploits Zodiac [18] for its front-end. Zo-
diac 1s a tool-kit for generating language front-ends that
are suitable for interactive environments. It includes a
hygienic high-level macro system that relates each ex-
pression in the macro-expanded code to its source lo-
cation. MrSpidey exploits this information to associate
value set invariants with expressions in the source pro-
gram and to present portions of the value flow-graph as
arrows relating terms in the program text.

5.2 Converting an Abstract Store to Set-
Description Expressions

MrSpidey computes a set-description expression for each
term M? from the abstract store representation as fol-
lows: First, it views the set environment as a regular-
tree grammar with root non-terminal [, and uses a stan-
dard algorithm to simplify this grammar [9]. Second, it
eliminates unnecessary non-terminals from this gram-
mar, by replacing references to these non-terminals with
the right-hand side of the appropriate production rules.
If the resulting grammar contains only the single non-
terminal [, it expresses the grammar as a non-recursive
set-description expression. Otherwise, it expresses the
grammar as a recursive set-description expression, where

the remaining non-terminals (other than !) become set-
description variables.

5.3 Identifying Potential Run-Time Errors

Scheme contains a large number of primitive proce-
dures. MrSpidey represents the set of appropriate ar-
guments for each primitive procedure as a regular-tree
grammar (or RTG). Since the value set of each argu-
ment expression is also represented as an RTG, decid-
ing whether a primitive is used correctly reduces to the
inclusion question between two RTGs. Although the
general question is PSPACE-complete [9], for our spe-
cific application it can be decided in time linear in the
size of the argument’s RTG, because the RTG of the
expected arguments is deterministic and small.

5.4 Graphical Engine

MrSpidey’s graphical component is implemented using
MrEd [8], a Scheme-based engine for constructing graph-
ical user interfaces. The core of the engine is am C+-+-
like object system and a portable graphics library. This
library defines high-level GUI elements, such as win-
dows, buttons, and menus, which are embedded within
Scheme as special primitive classes.

MrEd’s graphical class library includes a powerful,
extensible text editor class. This editor class is used in
MrSpidey to display analyzed programs, including the
boxes containing value set information and the arrows
describing the value flow graph. Value set boxes are
easily embedded in the program text because an edi-
tor buffer can contain other buffers as part of its text.
The arrows used to present flow information are not
part of the editor’s standard built-in functionality, but
1t was easy to extend the editor class with arrow draw-
ing capabilities using other components of the graphical
library.

MrEd’s object system provides a robust integration
between the Scheme implementation and the underly-
ing graphical class library. The integration of the li-
brary through the object system is easily understood
by GUI programmers. The object system also provides
an important tool for designing and managing the com-
ponents of a graphical interface. Because the imple-
mentation of MrSpidey exploits this object system, it
can absorb future enhancements to the editor and it is
easily intergrated into the DrScheme environment.

Applications developed with MrEd—including Mr-
Spidey and DrScheme—are fully portable across the
major windowing systems (X-Windows, Microsoft Win-
dows, and MacOS). MrEd’s portability, its object sys-
tem, and its rich class library enabled MrSpidey$ im-
plementors to focus on the interesting parts of their
application.



6 Related Work

A number of interactive analysis tools and static debug-
ging systems have been developed for other program-
ming languages. Some address different concerns; none
provide an explanation of the derived invariants.

Syntox [2] is a static debugger for a subset of Pascal.
Like MrSpidey, 1t associates run-time invariants, i.e.,
numeric ranges, with statements in the program. Be-
cause Syntox does not provide an explanation of these
invariants, it is difficult for a programmer to decide
whether an unexpected invariant is caused by a weak-
ness in the proof system or a flaw in the program. In
addition, the existing system processes only a first-order
language, though Bourdoncle explains how to extend
the analysis [2:Section 5].

Several environments [16, 4, 13, 27, 24] have been
built for parallel programming languages to expose de-
pendencies, thus allowing the programmer to tune pro-
grams to minimize these dependencies. In particular,
MrSpidey has many similarities to the ParaScope [16,
4] and D editors [13]. Both MrSpidey and the edi-
tors provide information at varying levels of granularity;
both retain source correlation through transformations;
and both depict dependencies graphically. However,
unlike MrSpidey, the editors process a language with
extremely simple control- and data-flow facilities, and
therefore do not need to provide a supporting explana-
tion for the derived dependencies.

7 Summary and Future Work

MrSpidey is an interactive static debugging tool that
supports the production of reliable software. It identi-
fies the program operations that may signal errors dur-
ing an execution and describes the sets of erroneous ar-
gument values that may cause those errors. Unlike pre-
vious systems, it also provides an explanation of how
those erroneous values flow through the program. Its
graphical user interface presents this information to the
programmer in a natural and intuitive manner. Exper-
imental results support our belief that these this infor-
mation facilitates static program debugging.

MrSpidey also functions as an interactive optimiza-
tion tool. Using MrSpidey, the programmer can tune
a program so that its value set invariants accurately
characterize its execution behavior, thus enabling nu-
merous program optimizations that depend on these in-
variants, including variant check elimination [6, 15, 28,
1, 12], synchronization optimization [7], partial evalu-
ation [19], closure analysis [23], dead-code elimination
and constant-folding. To investigate this potential, we
implemented variant check elimination as part of Mr-
Spidey. Preliminary results indicate that the resulting
tool expedites the production of efficient programs. We
intend to investigate this area in more depth.

We adapted set-based analysis for use as the un-
derlying proof technology used in MrSpidey. Set-based

analysis can be extended to produce accurate informa-
tion on numeric ranges [10]. This information is useful
for eliminating array bounds checks and for array data
dependence analysis. Other program analyses that pro-
duce information similar to set-based analysis but which
provide alternative cost/accuracy tradeoffs could also
be adapted for use in MrSpidey [14, 15, 12, 1].

Availability DrScheme, including MrSpidey, is avail-
able at http://www.cs.rice.edu/ scheme/packages/
drscheme.

Acknowledgments We thank Corky Cartwright and
Bruce Duba for discussions concerning the philosophy
of soft typing and Nevin Heintze for hints on the im-
plementation of set-based analysis. We also gratefully
acknowledge the students in the 1996 COMP311 pro-
gramming languages course at Rice University for their
participation in the experiment.

References

[1] AIKEN, A., WIMMERS, E. L., AND LAKSHMAN,
T. K. Soft typing with conditional types. In Pro-
ceedings of the ACM Sigplan Conference on Prin-
ciples of Programming Languages (1994), pp. 163—
173.

[2] BoUuRDONCLE, F. Abstract debugging of higher-
order imperative languages. In Proceedings of the
ACM SIGPLAN ’93 Conference on Programming
Language Design and Implementation (June 1993),
pp- 46-55.

[3] CLINGER, W., AND REEs, J. (EDs.). The rev-
ised? report on the algorithmic language scheme.

ACM Lisp Pointers 4, 3 (July 1991).

[4] CoorER, K. D., HarL, M. W. Hoob,
R., Kenneny, K., MCKinLEY, K., MELLOR-
CRUMMEY, J., TorczoN, L., AND WARREN, S.
The Parascope parallel programming environment.

Proceedings of the IEEE (February 1993), 244-263.

[5] CousoT, P., AND CousoT, R. Abstract interpre-
tation: A unified lattice model for static analyses
of programs by construction or approximation of
fixpoints. In Proceedings of the ACM Sigplan Con-
ference on Principles of Programming Languages

(1977), pp. 238-252.

[6] FLaNAGAN, C., AND FELLEISEN, M. Set-based
analysis for full Scheme and its use in soft-typing.
Rice University Computer Science TR95-253.

[7] FLaNnaGAN, C., AND FELLEISEN, M. The seman-
tics of future and its use in program optimiza-
tions. In Proceedings of the ACM Sigplan Con-
ference on Principles of Programming Languages

(1995), pp. 209-220.

[8] FLaTT, M. MrEd: An engine for portable graphi-

cal user interfaces. Rice University Computer Sci-
ence TR-96-258, Rice University.



[9] GEcsEa, F., AND STEINBY, M. Tree Automata.
Akadémiai Kiadd, Budapest, 1984.

[10] HEINTZE, N. Set based analysis of arithmetic.
Tech. Rep. CMU-CS-93-221, Carnegie Mellon Uni-
versity, December 1993.

[11] HEINTZE, N. Set-based analysis of ML programs.
In Proceedings of the ACM Conference on Lisp and
Functional Programming (1994), pp. 306-317.

[12] HENGLEIN, F. Dynamic typing: syntax and proof
theory.  Science of Computer Programming 22
(1994), pp. 197-230.

[13] HiraANANDANI, S., KEnnEDY, K., TseEna, C.-
W., AND WARREN, S. The D editor: A new inter-
active parallel programming tool. In Proceedings of
Supercomputing (1994).

[14] JAGANNATHAN, S., AND WEEKS, S. A uni-
fied treatment of flow analysis in higher-order lan-
guages. In 22nd ACM Symposium on Principles of
Programming Languages (1995), pp. 393-407.

[15] JAGANNATHAN, S., AND WRIGHT, A. K. Ef-
fective flow analysis for avoiding run-time checks.
In Proc. 2nd International Static Analysis Sym-
posium, LNCS 983 (September 1995), Springer-
Verlag, pp. 207-224. Preliminary version ap-
pears as part of Technical Report DAIMI-PB 493,
Aarhus University, May 1995.

[16] KENNEDY, K., MCKINLEY, K., AND TSENG, C.-
W. Interactive parallel programming using the
ParaScope Editor. ITEEFE Transactions on Paral-
lel and Distributed Systems 2, 3 (July 1991).

[17] KERNIGHAN, B. W. anD RiTcHIE, D. M. The
C Programming Language. Prentice-Hall, 1988.

[18] KRISHNAMURTHI, S. Zodiac: A programming en-
vironment builder. Rice University Computer Sci-
ence TR-96-259, Rice University.

[19] MALMKJER, K., HEINTZE, N., AND Danvy, O.
ML partial evaluation using set-based analysis.
Tech. Rep. CMU-CS-94-129, Carnegie Mellon Uni-
versity, 1994.

[20] MILLER, B., Koski, D., LEg, C. P., MAGANTY,
V., MURTHY, P., NATARAJAN, A., AND STEIDL,
J. Fuzz revisited: A re-examination of the reliabil-
ity of unix utilities and services. Computer Science
Department, University of Wisconsin, 1995.

[21] MILNER, R., ToFTE, M., AND HARPER, R. The
Definition of Standard ML. The MIT Press, Cam-
bridge, Massachusetts and London, England, 1990.

[22] ProTKIN, G. D. Call-by-name, call-by-value, and
the A-calculus. Theoretical Comput. Sci. 1 (1975),
125-159.

[23] SHAO, Z., AND APPEL, A. Space-efficient closure
representations. In Proceedings of the ACM Sympo-
sium on Lisp and Functional Programming (1994),
pp. 150-161.

[24]

SHEI, B., AND GANNON, D. Sigmacs: A pro-
grammable programming environment. In Ad-
vances in Languages and Compilers for Parallel
Computing. The MIT Press, August 1990.

SHIVERS, O. Control-flow Analysis of Higher-
Order Languages, or Taming Lambda. PhD thesis,
Carnegie-Mellon University, 1991.

STEFANESCU, D., AND ZHOU, Y. An equational
framework for the flow analysis of higher order
functional programs. In Proceedings of the ACM
Conference on Lisp and Functional Programming

(1994), pp. 318-327.

WoLre, M. J. The Tiny loop restructuring re-
search tool. In Proceedins of the 1991 International
Conference on Parallel Processing (August 1991).

WRIGHT, A., AND CARTWRIGHT, R. A practical
soft type system for scheme. In Proceedings of the
ACM Conference on Lisp and Functional Program-
ming (1994), pp. 250-262.



