
Contracts Made Manifest

Michael Greenberg
University of Pennsylvania

Philadelphia, PA

Benjamin C. Pierce
University of Pennsylvania

Philadelphia, PA

Stephanie Weirich
University of Pennsylvania

Philadelphia, PA

Abstract
Since Findler and Felleisen [2002] introduced higher-order con-
tracts, many variants have been proposed. Broadly, these fall into
two groups: some follow Findler and Felleisen in using latent con-
tracts, purely dynamic checks that are transparent to the type sys-
tem; others use manifest contracts, where refinement types record
the most recent check that has been applied to each value. These
two approaches are commonly assumed to be equivalent—different
ways of implementing the same idea, one retaining a simple type
system, and the other providing more static information. Our goal
is to formalize and clarify this folklore understanding.

Our work extends that of Gronski and Flanagan [2007], who
defined a latent calculus λC and a manifest calculus λH, gave a
translation φ from λC to λH, and proved that, if a λC term reduces
to a constant, then so does its φ-image. We enrich their account with
a translation ψ from λH to λC and prove an analogous theorem.

We then generalize the whole framework to dependent con-
tracts, whose predicates can mention free variables. This extension
is both pragmatically crucial, supporting a much more interesting
range of contracts, and theoretically challenging. We define depen-
dent versions of λH and two dialects (“lax” and “picky”) of λC,
establish type soundness—a substantial result in itself, for λH—
and extend φ and ψ accordingly. Surprisingly, the intuition that the
latent and manifest systems are equivalent now breaks down: the
extended translations preserve behavior in one direction but, in the
other, sometimes yield terms that blame more.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics

; D.2.4 [Software Engineering]: Software/Program Verification—
Programming by contract

General Terms Languages, Theory

Keywords Contract, refinement type, dynamic checking, blame,
precondition, postcondition, translation

1. Introduction
The idea of contracts—arbitrary program predicates acting as dy-
namic pre- and post-conditions—was popularized by Eiffel [Meyer
1992]. More recently, Findler and Felleisen [2002] introduced a λ-
calculus with higher-order contracts. This calculus includes terms
like 〈{x :Int | pos x}〉l,l

′
1, in which a boolean predicate, pos, is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’10, January 17–23, 2010, Madrid, Spain.
Copyright c© 2010 ACM 978-1-60558-479-9/10/01. . . $10.00

applied to a run-time value, 1. This term evaluates to 1, since pos 1

returns true. On the other hand, the term 〈{x :Int | pos x}〉l,l
′
0

evaluates to blame, written ⇑l , signaling that a contract with label
l has been violated. The other label on the contract, l ′, comes into
play with function contracts, c1 7→ c2. For example, the term

〈{x :Int | nonzero x} 7→ {x :Int | pos x}〉l,l
′
(λx :Int. pred x)

“wraps” the function λx :Int. pred x in a pair of checks: when-
ever the wrapped function is called, the argument is checked to see
whether it is nonzero; if not, the blame term ⇑l ′ is produced, signal-
ing that the context of the contracted term violated the expectations
of the contract. If the argument check succeeds, then the function
is run and its result is checked against the contract pos x , raising ⇑l
if this fails (e.g., if the wrapped function is applied to 1).

Findler and Felleisen’s work sparked a resurgence of interest
in contracts, and in the intervening years a bewildering variety
of related systems have been studied. Broadly, these come in two
different sorts. In systems with latent contracts, types and contracts
are orthogonal features. Examples of this style include Findler
and Felleisen’s original system, Hinze et al. [2006], Blume and
McAllester [2006], Chitil and Huch [2007], Guha et al. [2007],
and Tobin-Hochstadt and Felleisen [2008]. By contrast, manifest
contracts are integrated into the type system, which tracks, for each
value, the most recently checked contract. Hybrid types [Flanagan
2006] are a well-known example in this style; others include the
work of Ou et al. [2004], Wadler and Findler [2009], and Gronski
et al. [2006].

The key feature of manifest systems is that descriptions like
{x :Int | nonzero x} are incorporated into the type system as
refinement types. Values of refinement type are introduced via casts
like 〈{x :Int | true} ⇒ {x :Int | nonzero x}〉l n, which has static
type {x :Int | nonzero x} and checks, dynamically, that n really is
nonzero, raising ⇑l otherwise. Similarly, 〈{x :Int | nonzero x} ⇒
{x :Int | pos x}〉l n casts an integer that is statically known to be
nonzero to one that is statically known to be positive.

The manifest analogue of function contracts is casts between
function types. For example, consider:

f = 〈I → I ⇒ P → P〉l (λx :I . pred x),

where I = {x :Int | true} and P = {x :Int | pos x}. The
sequence of events when f is applied to some argument n (of type
P) is similar to what we saw before: first, n is cast from P to I
(it happens that in this case the cast cannot fail, since the target
predicate is just true, but if it did, it would raise ⇑l); then the
function body is evaluated; and finally its result is cast from I to
P , raising ⇑l if this fails.

One point to note here is that casts have just one label, while
contract checks in the latent system have two. This difference is not
fundamental, but rather a question of the pragmatics of assigning
responsibility: both latent and manifest systems can be given more
or less rich algebras of blame. Informally, a function contract check

〈c1 7→ c2〉l,l
′
f divides responsibility for f ’s behavior between its

body and its environment: the programmer is saying “If f is ever
applied to an argument that doesn’t pass c1, I refuse responsibility
(⇑l ′), whereas if f ’s result for good arguments doesn’t satisfy c2, I
accept responsibility (⇑l).” In a manifest system, the programmer
who writes 〈R1 → R2 ⇒ S1 → S2〉l f is saying “Although all
I know statically about f is that its results satisfy R2 when it is
applied to arguments satisfying R1, I assert that it’s OK to use
it on arguments satisfying S1 [because I believe that S1 implies
R1] and that its results will always satisfy S2 [because R2 implies
S2].” In the latter case, the programmer is taking responsibility
for both assertions (so ⇑l makes sense in both cases), while the
additional responsibility for checking that arguments satisfy S1 will
be discharged elsewhere (by another cast, with a different label).

While contract checks in latent systems seem intuitively to be
much the same thing as typecasts in manifest systems, the formal
correspondence is not immediate. This has led to some confusion
in the community about the nature of contracts. Indeed, as we will
see, matters become yet murkier in richer languages with features
such as dependency.

Gronski and Flanagan [2007] initiated a formal investigation
of the connection between the latent and manifest worlds. They
defined a core calculus, λC, capturing the essence of latent contracts
in a simply typed lambda-calculus, and an analogous manifest
calculus λH. To compare these systems, they introduced a type-
preserving translation φ from λC to λH. What makes φ interesting
is that it is intuitively a homomorphism: contracts over base types
are mapped to casts at base type, and function contracts are mapped
to function casts. The main result is that φ preserves behavior, in the
sense that if a term t in λC evaluates to a final result k , then so does
its translation φ(t).

Our work extends theirs in two directions. First, we strengthen
their main result by introducing a new homomorphic translation ψ
from λH to λC and proving a similar correspondence theorem for
ψ. (We also give a new, more detailed, proof of the correspondence
theorem for φ.) This shows that the manifest and latent approaches
are effectively equivalent in the nondependent case.

Second, and more significantly, we extend the whole story to
allow dependent function contracts in λC and dependent arrow
types in λH. Dependency is extremely handy in contracts, as it
allows for precise specifications of how the results of functions
depend on their arguments. For example, here is a contract that we
might use with an implementation of vector concatenation:

z1:Vec 7→ z2:Vec 7→ {z3:Vec | vlen z3 = vlen z1 + vlen z2}

Adding dependent contracts to λC is easy: the dependency is all
in the contracts and the types stay simple. We have just one signif-
icant design choice: should domain contracts be rechecked when
the bound variable appears the codomain contract? This leads to
two dialects of λC, one which does recheck (picky λC) and one
which does not (lax λC). The choice is not clear—dependent con-
tract systems have typically used the lax rule, while the picky one
is arguably more correct—so we consider both. In λH, on the other
hand, dependency significantly complicates the metatheory, requir-
ing the addition of a denotational semantics for types and kinds
to break a potential circularity in the definitions, plus an intricate
sequence of technical lemmas involving parallel reduction to es-
tablish type soundness. (Although Gronski and Flanagan worked
only with nondependent λC and λH, Knowles and Flanagan [2009]
showed soundness for a variant of dependent λH in which order of
evaluation is nondeterministic and failed casts get stuck instead of
raising blame. See Section 7.)

Surprisingly, the tight correspondence between λC and λH
breaks down in the dependent case: the natural generalization of
the translations does not preserve blame exactly. Indeed, we can

Exact translations

lax λC λH picky λC

ψ

φ ψ

φ

Inexact translations, more blame in target language

Figure 1. The axis of blame

place λH between the two variants of λC on an “axis of blame”
(Figure 1), where behavior is preserved exactly when moving left
on the axis (from picky λC to λH to lax λC), but translated terms
can blame more than their pre-images when moving right.1 The
discrepancy arises in the case of “abusive” contracts, such as

f :(N 7→ I) 7→ {z :Int | f 0 = 0},
where I = {x :Int | true} and N = {x :Int | nonzero x}. This
rather strange contract has the form f :c1 7→ c2, where c2 uses
f in a way that violates c1! In particular, if we apply it (in lax
λC) to λf :Int → Int. 0 and then apply the result to λx :Int. x
and 5, the final result will be 5, since λx :Int. x does satisfy the
contract {x :Int | nonzero x} 7→ {y :Int | true} and 5 satisfies the
contract {z :Int | (λx :Int. x) 0 = 0}. However, the translation of
f into λH inserts an extra check, wrapping the occurrence of f in
the codomain contract with a cast from N → I to I → I , which
fails when the wrapped function is applied to 0. We discuss this
phenomenon in greater detail in Section 4.

In summary, our main contributions are (a) the translation ψ
and a symmetric version of Gronski and Flanagan’s behavioral
correspondence theorem, (b) the basic metatheory of (CBV, blame-
sensitive) dependent λH, (c) dependent versions of φ and ψ and
their properties with regard to λH and both dialects of λC, and (d) a
weaker behavioral correspondence in the dependent case.

A long version of the paper with definitions and proofs in full
can be found at http://www.cis.upenn.edu/~mgree/papers/
contracts_tr.pdf.

2. The nondependent languages
We begin in this section by defining the nondependent versions of
λC and λH and continue in Section 3 with the translations between
them. The dependent languages, dependent translations, and their
properties are developed in Sections 4, 5, and 6. Throughout the
paper, rules prefixed with an E or a F are operational rules for λC
and λH, respectively. An initial T is used for λC typing rules; typing
rules beginning with an S belong to λH.

The language λC

The language λC is the simply typed lambda calculus straightfor-
wardly augmented with contracts. The most interesting feature is
the contract term 〈c〉l,l

′
, which, when applied to a term t , dy-

namically ensures that t and its surrounding context satisfy c. If
t doesn’t satisfy c, then the positive label l will be blamed and
the whole term will reduce to ⇑ l ; on the other hand, if the context
doesn’t treat 〈c〉l,l

′
t as c demands, then the negative label l ′ will

be blamed and the term will reduce to ⇑ l ′. Contracts come in two
forms: base contracts {x :B | t} over a base type B and higher-

1 There might, in principle, be some other way of defining φ and ψ that
(a) preserves types, (b) maps base contracts to refinement-type casts and
function contracts to arrow-type casts (and vice versa), and (c) induces an
exact behavioral equivalence. After considering a number of alternatives,
we conjecture that no such φ and ψ exist.

B ::= Bool | . . .
k ::= true | false | . . .

Figure 2. Base types and constants for λC and λH

Types and contracts
T ::= B | T1 → T2

c ::= {x :B | t} | c1 7→ c2

Terms, values, results, and evaluation contexts
t ::= x | k | λx :T1. t2 | t1 t2 |

⇑ l | 〈c〉l,l
′
| 〈{x :B | t1}, t2, k〉l

v ::= k | λx :T1. t2 | 〈c〉l,l
′
| 〈c1 7→ c2〉l,l

′
v

r ::= v | ⇑ l

E ::= [] t | v [] | 〈{x :B | t}, [] , k〉l

Figure 3. Syntax for λC

k v −→c [[k]](v)
E CONST

(λx :T1. t2) v −→c t2{x := v} E BETA

〈{x :B | t}〉l,l
′
k −→c 〈{x :B | t}, t{x := k}, k〉l

E CCHECK

〈{x :B | t}, true, k〉l −→c k
E OK

〈{x :B | t}, false, k〉l −→c ⇑ l
E FAIL

(〈c1 7→ c2〉l,l
′
v) v ′ −→c 〈c2〉l,l

′
(v (〈c1〉l

′,l v ′))
E CDECOMP

t1 −→c t2

E [t1] −→c E [t2]
E COMPAT

E [⇑ l] −→c ⇑ l
E BLAME

Figure 4. Operational semantics for λC

order contracts c1 7→ c2, which check the arguments and results of
functions.

The syntax of λC appears in Figure 3, with some common def-
initions (shared with λH) in Figure 2. Besides the contract term
〈c〉l,l

′
, λC includes first-order constants k , blame, and active checks

〈{x :B | t1}, t2, k〉l . Active checks do not appear in source pro-
grams; they are a technical artifact of the small-step operational
semantics, as we explain below. Also, note that we only allow con-
tracts over base types B : we have function contracts, like {x :Int |
pos x} 7→ {x :Int | nonzero x}, but not contracts over functions,
like {f :Bool → Bool | f true = f false}. We discuss this further
in Section 8.

Values v include abstractions, contracts, function contracts ap-
plied to values, and constants; a result r is either a value or ⇑ l
for some l . We define constants using three constructions: the set
KB , which contains constants of base type B ; the type-assignment
function tyc, which maps constants to first-order types of the form
B1 → B2 → . . .→ Bn (and which is assumed to agree withKB);
and the denotation function [[−]] which maps constants to functions

Γ ` t : T x :T ∈ Γ

Γ ` x : T
T VAR

Γ ` k : tyc(k)
T CONST

Γ, x :T1 ` t2 : T2

Γ ` λx :T1. t2 : T1 → T2
T LAM

Γ ` t1 : T1 → T2 Γ ` t2 : T1

Γ ` t1 t2 : T2
T APP

`c c : T

Γ ` 〈c〉l,l
′

: T → T
T CONTRACT

Γ ` ⇑ l : T
T BLAME

∅ ` k : B ∅ ` t2 : Bool
`c {x :B | t1} : B ` t2 ⊃ t1{x := k}

∅ ` 〈{x :B | t1}, t2, k〉l : B
T CHECKING

`c c : T x :B ` t : Bool

`c {x :B | t} : B
T BASEC

`c c1 : T1 `c c2 : T2

`c c1 7→ c2 : T1 → T2
T FUNC

` t2 ⊃ t1

t1 −→∗c true implies t2 −→∗c true

` t1 ⊃ t2
T IMP

Figure 5. Typing rules for λC

from constants to constants (or blame, to allow for partiality). De-
notations must agree with tyc. We assume that Bool is among the
base types, with KBool = {true, false}.

The operational semantics is given in Figure 4. It includes six
rules for basic (small-step, call-by-value) reductions, plus two rules
that involve evaluation contexts E (Figure 3). The evaluation con-
texts implement left-to-right evaluation for function application. If
⇑ l appears in the active position of an evaluation context, it is prop-
agated to the top level. As usual, values (and results) do not step.

The first two basic rules are standard, implementing primitive
reductions and β-reductions for abstractions. In these rules, argu-
ments must be values v . Since constants are first-order, we know
that when E CONST applies to a well-typed application, the argu-
ment is not just a value, but a constant.

The rules E CCHECK, E OK, E FAIL and E CDECOMP, de-
scribe the semantics of contracts. In E CCHECK, base-type con-
tracts applied to constants step to an active check. Active checks
include the original contract, the current state of the check, the con-
stant being checked, and a label to blame if necessary. If the check
evaluates to true, then E OK returns the initial constant. If false,
the check has failed and a contract has been violated, so E FAIL
steps the term to ⇑ l . Higher-order contracts on a value v wait to
be applied to an additional argument. When that argument has also
been reduced to a value v ′, E CDECOMP decomposes the function
cast: the argument value is checked with the argument part of the
contract (switching positive and negative blame, since the context

Types
S ::= {x :B | s1} | S1 → S2

Terms, values, results, and evaluation contexts
s ::= x | k | λx :S1. s2 | s1 s2 |

⇑ l | 〈S1 ⇒ S2〉l | 〈{x :B | s1}, s2, k〉l

w ::= k | λx :S1. s2 | 〈S1 ⇒ S2〉l |
〈S11 → S12 ⇒ S21 → S22〉l w

q ::= w | ⇑ l

F ::= [] s | w [] | 〈{x :B | s}, [] , k〉l

Figure 6. Syntax for λH

is responsible for the argument), and the result of the application is
checked with the result contract.

The typing rules for λC (Figure 5) are mostly standard. We
give types to constants using the type-assignment function tyc.
Blame expressions have all types. Contracts are checked for well-
formedness using the judgment `c c : T , comprising the rules
T BASEC, which requires that the checking term in a base contract
return a boolean value when supplied with a term of the right type,
and T FUNC. Note that the predicate t in a contract {x :B | t} can
contain at most x free, since we are considering only nondependent
contracts for now. Contract application, like function application, is
checked using T APP.

The T CHECKING rule only applies in the empty context (ac-
tive checks are only created at the top level during evaluation). The
rule ensures that the contract {x :B | t1} has the right base type
for the constant k , that the check expression t2 has a boolean type,
and that the check is actually checking the right contract. The latter
condition is formalized by the T IMP rule: ` t2 ⊃ t1{x := k} as-
serts that if t2 evaluates to true, then the original check t1{x := k}
must also evaluate to true. This requirement is needed for two rea-
sons: first, nonsensical terms like 〈{x :Int | pos x}, true, 0〉l should
not be well typed; and second, we use this property in showing that
the translations are type preserving (see Section 5). This rule ob-
viously makes typechecking for the full “internal language” with
checks undecidable, but excluding checks recovers decidability.

The language λH

Our second core calculus, nondependent λH, extends the simply
typed lambda-calculus with refinement types and cast expressions.
The syntax appears in Figure 6. Unlike λC, which separates con-
tracts from types, λH combines them into refined base types {x :B |
s1} and function types S1 → S2. As for λC, we do not allow re-
finement types over functions, nor do we allow refinements of re-
finements. Unrefined base types B are not valid types; they must
be wrapped in a trivial refinement, as the raw type {x :B | true}.
The terms of the language are mostly standard, including variables,
the same first-order constants as λC, blame, abstractions, and appli-
cations. The cast expression 〈S1 ⇒ S2〉l dynamically checks that
a term of type S1 can be given type S2. Like λC, active checks are
used to give a small-step semantics to cast expressions.

The values of λH include constants, abstractions, casts, and
function casts applied to values. Results are either values or blame.
We give meaning to constants as we did in λC, reusing [[−]]. Type
assignment is via tyh, which we assume produces well-formed
types. To keep the languages in sync, we require that tyh and
tyc agree on “type skeletons”: if tyc(k) = B1 → B2, then
tyh(k) = {x :B1 | s1} → {x :B2 | s2}.

The small-step, call-by-value semantics in Figure 7 comprises
six basic rules and two rules involving evaluation contexts F . Each
rule corresponds closely to its counterpart in λC.

k w −→h [[k]](w)
F CONST

(λx :S1. s2) w2 −→h s2{x := w2}
F BETA

〈{x :B | s1} ⇒ {x :B | s2}〉l k −→h 〈{x :B | s2}, s2{x := k}, k〉l
F CCHECK

〈{x :B | s}, true, k〉l −→h k
F OK

〈{x :B | s}, false, k〉l −→h ⇑ l
F FAIL

(〈S11 → S12 ⇒ S21 → S22〉l w) w ′ −→h

〈S12 ⇒ S22〉l (w (〈S21 ⇒ S11〉l w ′))

F CDECOMP

s1 −→h s2

F [s1] −→h F [s2]
F COMPAT

F [⇑ l] −→h ⇑ l
F BLAME

Figure 7. Operational semantics for λH

Notice how the decomposition rules compare. In λC, the term
(〈c1 7→ c2〉l,l

′
v) v ′ decomposes into two contract checks: c1

checks the argument v ′ and c2 checks the result of the application.
In λH the term (〈S11 → S12 ⇒ S21 → S22〉l w) w ′ decomposes
into two casts, but the behavior is a bit more subtle. The contravari-
ant check 〈S21 ⇒ S11〉l w ′ makes w ′ a suitable input for w , while
〈S12 ⇒ S22〉l checks the result from w applied to (the cast) w ′.
Suppose S21 = {x :Int | pos x} and S11 = {x :B | nonzero x}.
Then the check on the argument ensures that nonzero x −→∗h
true—not, as one might expect, that posw ′ −→∗h true. While
it is easy to read off from a λC contract exactly which checks will
occur at runtime, a λH cast must be dissected carefully to see ex-
actly which checks will take place. On the other hand, which label
will be blamed is clearer with casts.

The typing rules for λH (Figure 8) are also similar to those of
λC. Just as the λC rule T CONTRACT checks to make sure that the
contract has the right form, the λH rule S CAST ensures that the
two types in a cast are well-formed and have the same simple-type
skeleton, defined as b−c : S → T (pronounced “erase S”):

b{x :B | s}c = B

bS1 → S2c = bS1c → bS2c
We define a similar operator, d−e : S → S (pronounced “raw” S),
which trivializes all refinements:

d{x :B | s}e = {x :B | true}
dS1 → S2e = dS1e → dS2e

These operations apply to λC contracts and types in the natural way.
Type well-formedness is similar to contract well-formedness in λC,
though the SWF RAW case needs to be added to get things off the
ground.

The active check rule S CHECKING plays a role analogous to
the T CHECKING rule in λC, using the operational S IMP rule to
guarantee that we only have sensible terms in the predicate position.

An important difference is that λH has subtyping. The S SUB
rule allows an expression to be promoted to any well-formed su-
pertype. Refinement types are supertypes if, for all constants of

∆ ` s : S
x :S ∈ ∆

∆ ` x : S
S VAR

∆ ` k : tyh(k)
S CONST

` S1 ∆, x :S1 ` s2 : S2

∆ ` λx :S1. s2 : S1 → S2
S LAM

∆ ` s1 : S1 → S2 ∆ ` s2 : S1

∆ ` s1 s2 : S2
S APP

` S1 ` S2 bS1c = bS2c
∆ ` 〈S1 ⇒ S2〉l : S1 → S2

S CAST

` S

∆ ` ⇑ l : S
S BLAME

∆ ` s : S1 ` S2 ` S1<: S2

∆ ` s : S2
S SUB

∅ ` k : {x :B | true} ∅ ` s2 : {x :Bool | true}
` {x :B | s1} ` s2 ⊃ s1{x := k}
∅ ` 〈{x :B | s1}, s2, k〉l : {x :B | s1}

S CHECKING

` S1<: S2

∀k ∈ KB . ` s1{x := k} ⊃ s2{x := k}
` {x :B | s1}<: {x :B | s2}

SSUB REFINE

` S21<: S11 ` S12<: S22

` S11 → S12<: S21 → S22
SSUB FUN

` s1 ⊃ s2

s1 −→∗h true implies s2 −→∗h true

` s1 ⊃ s2
S IMP

` S

` {x :B | true} SWF RAW

x :{x :B | true} ` s : {x :Bool | true}
` {x :B | s} SWF REFINE

` S1 ` S2

` S1 → S2
SWF FUN

Figure 8. Typing rules for λH

the base type, their condition evaluates to true whenever the sub-
type’s condition evaluates to true. For function types, we use the
standard contravariant subtyping rule. We do not consider source
programs with subtyping, since this makes type checking undecid-
able2; subtyping is just a technical device for ensuring type preser-

2 Flanagan [2006] and Knowles and Flanagan [2009] discuss trade-offs
between static and dynamic checking that allow for decidable type systems
and subtyping.

vation. Consider the following reduction:

〈{x :Int | true} ⇒ {x :Int | pos x}〉l 1 −→∗h 1

The source term is well-typed at {x :Int | pos x}. Since it evaluates
to 1, we would like to have ∆ ` 1 : {x :Int | pos x}. To have
type preservation in general, though, tyh(1) must be a subtype of
{x :Int | s} whenever s{x := 1} −→∗h true. That is, constants of
base type must have “most-specific” types. One way to satisfy this
requirement is to set tyh(k) = {x :B | x = k} for k ∈ KB ; then if
s{x := k} −→∗h true, we have ` tyh(k)<: {x :B | s}.

Standard progress and preservation theorems hold for λH. We
can also obtain a semantic type soundness theorem as a restriction
of the one for dependent λH (Theorem 4.2).

3. The nondependent translations
The latent and manifest calculi differ in a few respects. Obviously,
λC uses contract application and λH uses casts. Second, λC con-
tracts have two labels—positive and negative—where λH contracts
have a single label. Finally, λH has a much richer type system than
λC. Our ψ from λH to λC and Gronski and Flanagan’s φ from λC to
λH must account for these differences.

The interesting parts of the translations deal with contracts and
casts. Everything else is translated homomorphically, though the
type annotation on lambdas must be chosen carefully.

For ψ, translating from λH’s rich types to λC’s simple types
is easy: we just erase the types to their simple skeletons. The
interesting case is translating the cast 〈S1 ⇒ S2〉l to a contract by
translating the pair of types together, 〈ψ(S1,S2)〉l,l . Soψ translates
λH terms to λC terms and pairs of λH types to λC contracts:

ψ({x :B | s1}, {x :B | s2}) = {x :B | ψ(s2)}
ψ(S11 → S12,S21 → S22) = ψ(S21,S11) 7→ ψ(S12,S22)

We use the single label on the cast in both the positive and nega-
tive positions of the resulting contract. When we translate a pair of
refinement types, we produce a contract that will check the predi-
cate of the target type (like F CCHECK); when translating a pair
of function types, we translate the domain contravariantly (like
F CDECOMP). For example,

〈{x :Int | nonzero x} → dInte ⇒ dInte → {y :Int | pos y}〉l

translates to 〈{x :Int | nonzero x} 7→ {y :Int | pos y}〉l,l .
Translating from λC to λH, we are moving from a simple type

system to a rich one. The translation φ (essentially the same as
Gronski and Flanagan’s) generates terms in λH with raw types—λH
types with trivial refinements, corresponding to λC’s simple types.

Whereas the difficulty with ψ is ensuring that the checks match
up, the difficulty with φ is ensuring that the terms in λC and λH will
blame the same labels. We deal with this problem by translating
a single contract with two blame labels into two separate casts.
Intuitively, the cast carrying the negative blame label will run all
of the checks in negative positions in the contract, while the cast
with the positive blame label will run the positive checks. We let

φ(〈c〉l,l
′
) = λx :dce. 〈φ(c)⇒ dce〉l

′
(〈dce ⇒ φ(c)〉l x),

where the translation of contracts to refined types is:

φ({x :B | t}) = {x :B | φ(t)}
φ(c1 7→ c2) = φ(c1)→ φ(c2)

The operation of casting into and out of raw types is a kind of
“bulletproofing.” Bulletproofing maintains the raw-type invariant:
the positive cast takes x out of dce and the negative cast returns it
there. For example,

〈{x :Int | nonzero x} 7→ {y :Int | pos y}〉l,l
′

translates to the λH term

λf :dInt→ Inte.
〈{x :Int | nonzero x} → {y :Int | pos y} ⇒ dInt→ Inte〉l

′

(〈dInt→ Inte ⇒ {x :Int | nonzero x} → {y :Int | pos y}〉l f).

The domain of the negative cast checks that f ’s argument is nonzero
with 〈dInte ⇒ {x :Int | nonzero x}〉l

′
. The domain of the positive

cast does nothing, since 〈{x :Int | nonzero x} ⇒ dInte〉l has no
effect. Similarly, the codomain of the negative cast does nothing
while the codomain of the positive cast checks that the result is
positive. Separating the checks allows λH to keep track of blame
labels, mimicking λC. This embodies the idea of contracts as pairs
of projections [Findler 2006]. Note that bulletproofing is “overkill”
at base type: for example, 〈{x :Int | nonzero x}〉l,l

′
translates to

λx:dInte.
〈{x :Int | nonzero x} ⇒ dInte〉l

′

(〈dInte ⇒ {x :Int | nonzero x}〉l x).

Only the positive cast does anything—the negative cast into dInte
always succeeds. This asymmetry is consistent with λC, where
base-type contracts also ignore the negative label.

Both φ andψ preserve behavior in a strong sense: if Γ ` t : B ,
then either t and φ(t) both evaluate to the same constant k or they
both raise ⇑ l for the same l ; and conversely for ψ. (Proofs are
given in the long version of the paper.) Interestingly, we need to
set up this behavioral correspondence before we can prove that the
translations preserve well-typedness, because of the T CHECKING
and S CHECKING rules.

4. The dependent languages
We now extend λC to dependent function contracts and λH to de-
pendent functions. The changes are summarized in Figure 9 (for
λC) and Figures 10 and 11 (for λH). Very little needs to be changed
in λC, since contracts and types barely interact; the changes to
E CDECOMP and T FUNC are the important ones. Adding depen-
dency to λH is more involved. In particular, adding contexts to the
subtyping judgment entails adding contexts to S IMP. To avoid a
dangerous circularity, we define closing substitutions in terms of a
separate type semantics. Additionally, the new F CDECOMP rule
has a slightly tricky (but necessary) asymmetry, explained below.

Dependent λC

Dependent λC has been studied since Findler and Felleisen [2002];
it received a very thorough treatment (with an untyped host lan-
guage) in Blume and McAllester [2006], was ported to Haskell by
Hinze et al. [2006] and Chitil and Huch [2007], and was used as
a specification language in Xu et al. [2009]. Type soundness is not
particularly difficult, since types and contracts are kept separate.
Our formulation follows Findler and Felleisen [2002], with a few
technical changes to make the proofs for φ easier.

The new T REFINEC, T FUNC, and E CDECOMP rules in Fig-
ure 9 suffice to add dependency to λC. To help us work with the
translations, we also make some small changes to the bindings
in contexts, tracking the labels on a contract check throughout
the contract well-formedness judgment. Note that T FUNC adds
x :c1

l′,l to the context when checking the codomain of a func-
tion contract, swapping blame labels. We add a new variable rule,
T VARC, that treats x :cl,l′ as if it were its skeleton, x :bcc. While
unnecessary for λC, this new binding form helps φ preserve types.
(See Section 6.1).

Two different variants of the E CDECOMP rule can be found
in the literature: we call them lax and picky. The original rule
in Findler and Felleisen [2002] is lax (like most other contract

Contracts and contexts

c ::= {x :B | t} | x :c1 7→ c2

Γ ::= ∅ | Γ, x :T | Γ, x :cl,l′

Operational Semantics

(〈x :c1 7→ c2〉l,l
′
v) v ′ −→c 〈c2{x := v ′}〉l,l

′
(v (〈c1〉l

′,l v ′))
E CDECOMPLAX

(〈x :c1 7→ c2〉l,l
′
v) v ′ −→c

〈c2{x := 〈c1〉l
′,l v ′}〉l,l

′
(v (〈c1〉l

′,l v ′))

E CDECOMPPICKY

Typing rules
x :T ∈ Γ

Γ ` x : T
T VART

x :cl,l′ ∈ Γ

Γ ` x : bcc T VARC

Γ `l,l′
c c : T

Γ ` 〈c〉l,l
′

: T → T
T CONTRACT

Γ, x :B ` t : Bool

Γ `l,l′
c {x :B | t} : B

T REFINEC

Γ `l′,l
c c1 : T1 Γ, x :c1

l′,l `l,l′
c c2 : T2

Γ `l,l′
c x :c1 7→ c2 : T1 → T2

T FUNC

Figure 9. Changes for dependent λC

calculi): it does not recheck c1 when substituting v ′ into c2. Hinze
et al. [2006] choose instead to be picky, substituting 〈c1〉l

′,l v ′

into c2 because it makes their conjunction contract idempotent.
We can show (straightforwardly) that both enjoy standard progress
and preservation properties. Below, we consider translations to and
from both dialects of λC: picky λC using only E CDECOMPPICKY
in Sections 5.1 and 6.2, and lax λC using only E CDECOMPLAX
in Sections 5.2 and 6.1.

Dependent λH

Now we come to the challenging part: dependent λH and its proof of
type soundness.3 These results require the most complex metathe-
ory in the paper, because we need some strong properties about
call-by-value evaluation. (The benefit of a CBV semantics is a bet-
ter treatment of blame. By contrast, Knowles and Flanagan [2009]
cannot treat failed casts as exceptions because that would destroy
confluence. They treat them as stuck terms.) The needed extensions
are detailed in Figures 10 and 11.4

3 The proof of type soundness for this system is significantly different
from the soundness proof in Knowles and Flanagan [2009], where the
operational semantics of λH is full, nondeterministic β-reduction. At first
glance, it might seem that our theorems follow directly from the results
for Knowles and Flanagan’s language, since CBV is a restriction of full β-
reduction. However, the reduction relation is used in the type system (in
rule S IMP), so the type systems for the two languages are not the same.
For example, suppose the term bad contains a cast that fails. In our system
{y:B | true} is not a subtype of {y:B | (λx :S . true) bad} because
the contract evaluates to blame. However, the subtyping does hold in the
Knowles and Flanagan system because the predicate reduces to true.
4 The semantics in these figures is the same as that of Knowles and Flanagan
[2009] except for the evaluation relation, the treatment of blame, and a
change to the type semantics that we discuss below.

Types

S ::= {x :B | s} | x :S1 → S2

Operational semantics

(〈x :S11 → S12 ⇒ x :S21 → S22〉l w) w ′ −→h

〈S12{x := 〈S21 ⇒ S11〉l w ′} ⇒ S22{x := w ′}〉l
(w (〈S21 ⇒ S11〉l w ′))

F CDECOMP

Typing rules

∆ ` s1 : (x :S1 → S2) ∆ ` s2 : S1

∆ ` s1 s2 : S2{x := s2}
S APP

∆, x :{x :B | true} ` s : {x :Bool | true}
∆ ` {x :B | s} SWF REFINE

∆ ` S1 ∆, x :S1 ` S2

∆ ` x :S1 → S2
SWF FUN

∆, x :{x :B | true} ` s1 ⊃ s2

∆ ` {x :B | s1} <: {x :B | s2}
SSUB REFINE

∆ ` S21 <: S11 ∆, x :S21 ` S12 <: S22

∆ ` x :S11 → S12 <: x :S21 → S22
SSUB FUN

∀σ. (∆ |= σ ∧ σ(s1) −→∗h true) implies σ(s2) −→∗h true

∆ ` s1 ⊃ s2
S IMP

Closing substitutions

∅ |= ∅
SCS EMPTY

s ∈ [[S]] ∆{x := s} |= σ

x :S ,∆ |= σ{x := s} SCS EXT

Figure 10. Changes for dependent λH

First, we enrich the type system with dependent function types,
x :S1 → S2, where x may appear in S2. A new application rule,
S APP, substitutes the argument into the result type of the applica-
tion. We generalize SWF REFINE to allow refinement-type predi-
cates that use variables from the enclosing context. SWF FUN adds
the bound variable to the context when checking the codomain of
function types. In SSUB FUN, subtyping for dependent function
types remains contravariant, but we also add the argument variable
to the context with the smaller type.

We need to be careful when implementing higher-order depen-
dent casts in the rule F CDECOMP. As the cast decomposes, the
variables in the codomain types of such a cast must be replaced.
However, this substitution is asymmetric; on one side, we cast the
argument and on the other we do not. This behavior is required
for type soundness. For suppose we have ∆ ` x :S11 → S12 and
∆ ` x :S21 → S22 with equal skeletons, and values ∆ ` w :
(x :S11 → S12) and ∆ ` w ′ : S21. Then ∆ ` (〈x :S11 →
S12 ⇒ x :S21 → S22〉l w) w ′ : S22{x := w ′}. When we decom-
pose the cast, we must make some substitution into S12 and S22,
but which? It is clear that we must substitute w ′ into S22, since the
original application has type S22{x := w ′}. Decomposing the cast
will produce the inner application ∆ ` w (〈S21 ⇒ S11〉l w ′) :
S12{x := 〈S21 ⇒ S11〉l w ′}. In order to apply the codomain cast,
we must substitute 〈S21 ⇒ S11〉l w ′ into S12. This calculation de-
termines the form of F CDECOMP.

Denotations of types and kinds
s ∈ [[{x :B | s0}]] ⇐⇒ s −→∗h ⇑l

∨ (∃k ∈ KB . s −→∗h k
∧ s0{x := k} −→∗h true)

s ∈ [[x :S1 → S2]] ⇐⇒ ∀q ∈ [[S1]]. s q ∈ [[S2{x := q}]]

{x :B | s} ∈ [[?]] ⇐⇒ ∀k ∈ KB .
s{x := k} ∈ [[{x :Bool | true}]]

x :S1 → S2 ∈ [[?]] ⇐⇒ S1 ∈ [[?]]
∧ ∀q ∈ [[S1]]. S2{x := q} ∈ [[?]]

Semantic judgments
∀σ s.t. ∆ |= σ :

∆ |= S1 <: S2 ⇐⇒ [[σ(S1)]] ⊆ [[σ(S2)]]
∆ |= s : S ⇐⇒ σ(s) ∈ [[σ(S)]]

∆ |= S ⇐⇒ σ(S) ∈ [[?]]

Figure 11. Type and kind semantics for dependent λH

The final change generalizes S IMP to open terms. We must
close these terms before we can compare their behavior, using
closing substitutions σ and reading ∆ |= σ as “σ satisfies ∆”.

Care is needed here to prevent the typing rules from becoming
circular: the typing rule S SUB references the subtyping judgment,
the subtyping rule SSUB REFINE references the implication judg-
ment, and the single implication rule S IMP has ∆ |= σ in a neg-
ative position. To avoid circularity, ∆ |= σ must not refer back to
the other judgments.

We can achieve this by building the syntactic rules on top of a
denotational semantics for λH’s types.5 The idea is that the seman-
tics of a type is a set of closed terms that is defined independently of
the syntactic typing relation, but that turns out to contain all closed
well-typed terms of that type. Thus, in the definition of ∆ |= σ,
we quantify over a somewhat larger set than strictly necessary—not
just the syntactically well-typed terms of appropriate type (which
are all the ones that will ever appear in programs), but all semanti-
cally well-typed ones.

The type semantics appears in Figure 11. It is defined by in-
duction on type skeletons. For refinement types, terms must either
go to blame or produce a constant that satisfies (all instances of)
the given predicate. For function types, well-typed arguments must
go to well-typed results. By construction, these sets include only
terminating terms that do not get stuck.

4.1 Lemma [Strong normalization]: If s ∈ [[S]], then there exists
a q such that s −→∗h q—i.e., either s −→∗h w or s −→∗h ⇑l .

The main things we want to know about the type semantics
is semantic type soundness: if ∅ ` s : S , then s ∈ [[S]].
However, to prove this, we must generalize it. In the bottom of
Figure 11, we define three semantic judgements that correspond
to each of the three typing judgments. (Note that the third one
requires the definition of a kind semantics that picks out well-
behaved types—those whose embedded terms belong to the type
semantics.) We then show that the typing judgments imply their
semantic counterparts.

5 Knowles and Flanagan [2009] also introduce a type semantics, but it
differs from ours in two ways. First, because they cannot treat blame as an
exception (because their semantics is nondeterministic) they must restrict
the terms in the semantics to be those that only get stuck at failed casts. They
do so by requiring the terms to be well-typed in the simply typed lambda
calculus after all casts have been erased. Secondly, their type semantics
does not require strong normalization. However, it is not clear whether their
language actually admits nontermination—they include a fix constant, but
their semantic type soundness proof appears to break down in that case.

Result correspondence

k ≈ k : B ⇐⇒ k ∈ KB

v ≈ w : T1 → T2 ⇐⇒ ∀t ∼ s : T1. v t ∼ w s : T2

⇑l ≈ ⇑l : T

Term correspondence

t ∼ s : T ⇐⇒ t −→∗c r ∧ s −→∗h q ∧ r ≈ q : T

Figure 12. A blame-exact result/term correspondence

4.2 Theorem [Semantic type soundness]:

1. If ∆ ` S1 <: S2 then ∆ |= S1 <: S2.
2. If ∆ ` s : S then ∆ |= s : S .
3. If ∆ ` S then ∆ |= S .

The first part follows by induction on the subtyping judgment.
However, we run into some complications with the second and third
parts (which must be proven together). The crux of the difficulty
lies with the S APP rule. Suppose the application s1 s2 was well
typed and s1 ∈ [[x :S1 → S2]] and s2 ∈ [[S1]]. According to S APP,
the application’s type is S2{x := s2}. By the type semantics
defined in Figure 11, if s1 ∈ [[x :S1 → S2]], then s1 q ∈ [[S2{x :=
q}]] for any q ∈ [[S1]]. Sadly, s2 isn’t necessarily a result! We
do know, however, that s2 ∈ [[S1]], so s2 −→∗h q2 by strong
normalization (Lemma 4.1). We need to ask, then, how the type
semantics of S2{x := s2} and S2{x := q2} relate.

We can show that the two type semantics are in fact equal
using a parallel reduction technique. We define a parallel reduction
relation V on terms and types that allows redices in different parts
of a term (or type) to be reduced in the same step, and we prove
that types that parallel-reduce to each other—like S2{x := s2} and
S2{x := q2}—have the same semantics (see the long version for
details). The definition of parallel reduction is standard, though we
need to be careful to make it respect our call-by-value reduction
order: the β-redex (λx :S1. s1) s2 should not be contracted unless
s2 is a value, since doing so can change the order of effects. (Other
redices within s1 and s2 can safely reduce.) The proof requires
a longish sequence of technical lemmas that essentially show that
V commutes with −→∗h. Since the proofs require fussy symbol
manipulation, we’ve done these proofs in Coq. Our development
is available at http://www.cis.upenn.edu/~mgree/papers/
lambdah_parred.tgz.

An alternative strategy would be to use V in the typing rules
and −→h in the operational semantics. This would simplify some
of our metatheory, but it would complicate the specification of the
language. Using −→h in the typing rules gives a clearer intuition
and keeps the core system small.

Theorem 4.2 gives us type soundness, and it combines with
Lemma 4.1 for an even stronger result: well-typed programs always
evaluate to values of appropriate (semantic) type.

5. Exact translations
Translations moving left on the axis of blame—from picky λC to
λH, and from λH to lax λC—are exact. That is, we can show a tight
behavioral correspondence between terms and their translations
(see Figure 12). We read t ∼ s : T as “t corresponds with s
at type T”. Terms corresponding at B both go to k ∈ KB or to ⇑l .

5.1 Translating picky λC to λH: dependent φ
The full definition of φ is in Figure 14. One point to note is that,
in the dependent case, we need to translate derivations of well-
formedness and well-typing of λC contexts, terms, and contracts

Contract / type correspondence

{x :B | t} ∼l,l′ {x :B | s} : B ⇐⇒
∀k ∈ KB . t{x := k} ∼ s{x := k} : Bool

x :c1 7→ c2 ∼l,l′ x :S1 → S2 : T1 → T2 ⇐⇒
c1 ∼l′,l S1 : T1 ∧
∀t ∼ s : T1.

c2{x := 〈c1〉l
′,l t} ∼l,l′ S2{x := 〈dS1e ⇒ S1〉l

′
s} : T2

Dual closing substitutions

Γ |= δ ⇐⇒

8>>>><>>>>:
∀x :T ∈ Γ. δ1(x) ∼ δ2(x) : T

∀x :cl,l′ ∈ Γ. δ1(x) = 〈δ1(c)〉l,l
′
t

δ2(x) = 〈dce ⇒ δ2(S)〉l s
s.t. S = φ(Γ `l,l′

c c : bcc)
∧ t ∼ s : bcc

Figure 13. Blame-exact correspondence for φ from picky λC

into λH contexts, terms, and types. We translate derivations to en-
sure type preservation, translating T VART and T VARC deriva-
tions differently: we leave variables of simple type alone, but we
cast variables bound to contracts.

To see why we need this distinction, consider the function
contract f :(x :{x :Int | pos x} 7→ {y :Int | true}) 7→ {z :Int |
f 0 = 0}. Note that this contract is well-formed in λC, but
that the codomain “abuses” the bound variable. A naive translation
will not be well-typed in λH: f 0 will not be typeable when f has
type x :{x :Int | pos x} → dInte, since f only accepts positive
arguments. The problem is that SWF FUN can add a (possibly
refined) type to the context when checking the codomain, so we
need to restore the “variables have raw types” invariant. By tracking
which variables were bound by contracts in λC, we can be sure
to cast them to raw types when they’re referenced. We therefore
translate the contract above to f :S → {z :Int | (〈S ⇒ dInt →
Inte〉l

′
f) 0 = 0}, where S = x :{x :Int | pos x} → dInte. This

(partially) motivates the x :cl,l′ binding form in dependent λC.
Constants translate to themselves. One technical point: to main-

tain the raw type invariant, we need λH’s higher-order constants
to have typings that can be seen as raw by the subtyping relation,
i.e., ∆ ` tyh(k) <: dtyc(k)e. This slightly restricts the types
we might assign to our constants, e.g., we cannot say tyh(sqrt) =
x :{x :Float | x ≥ 0} → {y :Float | (y ∗ y) = x}, since it is
not the case that ∆ ` tyh(sqrt) <: dFloat → Floate. Since its
domain cannot be refined, [[sqrt]] must be defined for all k ∈ KFloat,
e.g., [[sqrt]](−1) must be defined. We’ve already required that deno-
tations be total over their simple types in λC, and λH uses the same
denotation function [[−]], so this requirement does not seem too se-
vere. We could instead translate k to 〈tyh(k) ⇒ dtyh(k)e〉l0 k ;
however, in this case the nondependent fragments of the languages
would no longer correspond exactly.

We extend the term correspondence of Figure 12 to contracts
and types, lifting the correspondences to open terms using dual
closing substitutions. For a binding x :cl,l′ ∈ Γ, we use φ to insert
the negative cast (labelled with l ′) and closing substitutions (in
Figure 13) to insert the positive cast (labelled with l). Do not be
confused by the label used for function contract correspondence—
this definition does, in fact, match up with closing substitutions.
A binding x :cl,l′ ∈ Γ must have come from the domain of an
application of T FUNC, so the labels on the binding are already
swapped when φ or Γ |= δ sees them. In the definition of function
contract correspondence, we swap manually—whence the l ′ on the

Terms Contexts
φ(Γ1, x :T , Γ2 ` x : T) = x φ(` ∅) = ∅

φ(Γ1, x :cl,l′ , Γ2 ` x : bcc) = 〈φ(Γ1 `l,l′
c c : bcc)⇒ dce〉l

′
x φ(` Γ, x :T) = φ(` Γ), x :dTe

φ(Γ ` k : T) = k φ(` Γ, x :cl,l′) = φ(` Γ), x :φ(Γ `l,l′
c c : bcc)

φ(Γ ` λx :T1. t2 : T1 → T2) = λx :dT1e. φ(Γ, x :T1 ` t2 : T2)
φ(Γ ` t1 t2 : T2) = φ(Γ ` t1 : T1 → T2)φ(Γ ` t2 : T1)
φ(Γ ` ⇑l : T) = ⇑l

φ(∅ ` 〈c, t , k〉l : B) = 〈φ(∅ `l,l′
c c : B), φ(∅ ` t : Bool), k〉l

φ(Γ ` 〈c〉l,l
′

: T) = λx :dce. 〈φ(Γ `l′,l
c c : T)⇒ dce〉l

′
(〈dce ⇒ φ(Γ `l,l′

c c : T)〉l x) where x is fresh
Types

φ(Γ `l,l′
c {x :B | t} : B) = {x :B | φ(Γ, x :B ` t : Bool)}

φ(Γ `l,l′
c x :c1 7→ c2 : T1 → T2) = x :φ(Γ `l′,l

c c1 : T1)→ φ(Γ, x :c1
l′,l `l,l′

c c2 : T2)

Figure 14. The translation φ from dependent λC to dependent λH

Term translation
ψ(x) = x ψ(k) = k
ψ(⇑l) = ⇑l ψ(〈S1 ⇒ S2〉l) = 〈ψl(S1,S2)〉l,l

ψ(λx :S . s) = λx :bSc. ψ(s)
ψ(s1 s2) = ψ(s1)ψ(s2)

ψ(〈{x :B | s1}, s2, k〉l) = 〈{x :B | ψ(s1)}, ψ(s2), k〉l

Type-to-contract translation

ψl({x :B | s1}, {x :B | s2}) = {x :B | ψ(s2)}
ψl(x :S11 → S12, x :S21 → S22) =

x :ψl(S21,S11) 7→ ψl(S12{x := 〈S21 ⇒ S11〉l x},S22)

Figure 15. ψ mapping dependent λH to dependent λC

inserted cast. It helps to think of polarity in terms of position rather
than the presence or absence of a prime.

5.1 Theorem [Behavioral correspondence]: If ` Γ, then:

1. If φ(Γ ` t : T) = s then Γ ` t ∼ s : T .
2. If φ(Γ `l,l′

c c : T) = S then Γ ` c ∼l,l′ S : T .

We can now prove that φ preserves types, using Theorem 5.1 to
show that φ preserves the implication judgment.

5.2 Theorem [Type preservation]: If φ(` Γ) = ∆, then:

1. `∆.
2. If φ(Γ ` t : T) = s then ∆ ` s : dTe.
3. If φ(Γ `l,l′

c c : T) = S then ∆ ` S .

5.2 Translating λH to lax λC: dependent ψ
In this section, we formally define ψ for the dependent versions
of lax λC and λH. We sketch proofs that ψ is type preserving and
induces behavioral correspondence.

The full definition ofψ is in Figure 15. Most terms are translated
homomorphically. In abstractions, the annotation is translated by
erasing the refined λH type to its skeleton. As we mentioned in
Section 3, the trickiest part is the translation of casts between
function types: when generating the codomain contract from a
cast between two function types, we perform the same asymmetric
substitution as F CDECOMP. Since ψ inserts new casts, we need
to pick a blame label: ψ(〈S1 ⇒ S2〉l) passes l as an index to
ψl(S1,S2).

We reuse the term correspondence t ∼ s : T (Figure 12) and
define a new contract/cast correspondence c ∼ S1 ⇒l S2 : T
(Figure 16), relating contracts and pairs of λH types. This corre-
spondence uses the term correspondence in the base type case and

Contract / type correspondence

{x :B | t} ∼ {x :B | s1} ⇒l {x :B | s2} : B ⇐⇒
∀k ∈ KB . t{x := k} ∼ s2{x := k} : Bool

x :c1 7→ c2 ∼ x :S11 → S12 ⇒l S21 → S22 : T1 → T2 ⇐⇒
c1 ∼ S21 ⇒l S11 : T1 ∧

∀t ∼ s : T1.
c2{x := t} ∼ S12{x := 〈S21 ⇒ S11〉l s} ⇒l S22{x := s} : T2

Figure 16. Blame-exact correspondence for ψ into lax λC

follows the pattern of F CDECOMP in the function case. Since it in-
serts a cast in the function case, we index the relation with a label,
just like ψ. We define closing substitutions ignoring the contracts in
the context; we lift the relation to open terms in the standard way.

We first show that s and ψ(s) behaviorally correspond, and
then we can prove that ψ is type preserving, using the behavioral
correspondence to show that ψ preserves implication.

5.3 Theorem [Behavioral correspondence]:

1. If ∆ ` s : S then b∆c ` ψ(s) ∼ s : bSc.
2. If ∆ ` S1 and ∆ ` S2, where bS1c = bS2c = bSc, then
b∆c ` ψl(S1,S2) ∼ S1 ⇒l S2 : bSc (for all l).

5.4 Theorem [Type preservation for ψ]:

1. If ∆ ` s : S then b∆c ` ψ(s) : bSc.
2. If ∆ ` S1, ∆ ` S2, where bS1c = bS2c = T , then
b∆c `l,l′

c ψl(S1,S2) : T .

6. Inexact translations
The same translations φ and ψ can be used to move right on the
axis of blame (Figure 1). However, in this direction the images of
these translations blame strictly more than their pre-images.

6.1 Translating lax λC to λH

Things get more interesting when we consider the translation φ
from lax λC to dependent λH. We can prove that it preserves types
(for terms without active checks), but we can only show a weaker
behavioral correspondence: sometimes lax λC terms terminate with
values when their φ-images go to blame. This weaker property is
a consequence of bulletproofing, the asymmetrically substituting
F CDECOMP rule, and the extra casts inserted for type preservation
(i.e., for T VARC derivations).

We can show the behavioral correspondence using a blame-
inexact logical relation, defined in Figure 17. The behavioral corre-

Value correspondence

k ≈� k : B ⇐⇒ k ∈ KB

v ≈� w : T1 → T2 ⇐⇒ ∀t ∼� s : T1. v t ∼� w s : T2

Term correspondence

t ∼� s : T ⇐⇒
s −→∗h ⇑l ∨ (t −→∗c v ∧ s −→∗h w ∧ v ≈� w : T)

Contract / type correspondence

{x :B | t} ∼� {x :B | s} : B ⇐⇒
∀k ∈ KB . t{x := k} ∼� s{x := k} : Bool

x :c1 7→ c2 ∼� x :S1 → S2 : T1 → T2 ⇐⇒
c1 ∼� S1 : T1 ∧

∀t ∼� s : T1. c2{x := t} ∼� S2{x := s} : T2

Dual closing substitutions

Γ |=� δ ⇐⇒ ∀x ∈ dom(Γ). δ1(x) ∼� δ2(x) : bΓ(x)c

Figure 17. Blame-inexact correspondence for φ from lax λC

spondence here, though weaker than before, is still pretty strong: if
t ∼� s : B (read “t blames no more than s at type B”), then ei-
ther s −→∗h ⇑l or t and s both go to k ∈ KB . This correspondence
differs slightly in construction from the earlier exact one—we de-
fine ≈� as a relation on values, while ≈ is a relation on results.
Doing so simplifies our inexact treatment of blame. We again use
the term correspondence to relate contracts and λH types. We then
lift the correspondences to open terms (Figure 17). Closing substi-
tutions map variables to corresponding terms of appropriate type.
Note that closing substitutions ignore the contract part of x :cl,l′

bindings, treating them as if they were x :bcc.
Since λH terms can go to blame more often than corresponding

lax λC terms, we can add “extra” casts to λH terms. We formalize
this in the following lemma, which captures the asymmetric treat-
ment of blame by the ∼� relation. We use it to show that the cast
substituted in the codomain by F CDECOMP does not affect behav-
ioral correspondence. Note that the statement of the lemma requires
that the types of the cast correspond to some contracts at the same
type T , but we never use the contracts in the proof—they witness
the well-formedness of the λH types.

6.1 Lemma [Extra casts]: If t ∼� s : T and c1 ∼� S1 : T
and c2 ∼� S2 : T , then t ∼� 〈S1 ⇒ S2〉l s : T .

6.2 Theorem [Behavioral correspondence]: If ` Γ, then:

1. If φ(Γ ` t : T) = s then Γ ` t ∼� s : T .
2. If φ(Γ `l,l′

c c : T) = S then Γ ` c ∼� S : T .

We can also show type preservation for terms not containing
active checks. (We don’t know that translated active checks are
well typed, because Theorem 6.2 isn’t strong enough to preserve
the implication judgment. We only expect these checks to occur at
runtime, so this is good enough: φ preserves the types of source
programs.)

6.3 Theorem [Type preservation]: For programs without active
checks, if φ(` Γ) = ∆, then:

1. `∆.
2. ∆ ` φ(Γ ` t : T) : dTe.
3. ∆ ` φ(Γ `l,l′

c c : T).

To see that the φ in Figure 14 does not give us exact blame, let us
look at two examples; in both cases, a lax λC term goes to a value

Contract / type correspondence

{x :B | t} ∼≺ {x :B | s1} ⇒ {x :B | s2} : B ⇐⇒
∀k ∈ KB . t{x := k} ∼≺ s2{x := k} : Bool

x :c1 7→ c2 ∼≺ x :S11 → S12 ⇒ x :S21 → S22 : T1 → T2

⇐⇒
c1 ∼≺ S21 ⇒ S11 : T1 ∧
∀l.∀t ∼≺ s : T1.

c2{x := t} ∼≺ S12{x := 〈S21 ⇒ S11〉l s} ⇒ S22{x := s} : T2

Dual closing substitutions

Γ |= δ ⇐⇒ ∀x ∈ dom(Γ). δ1(x) ∼≺ δ2(x) : bΓ(x)c

Figure 18. Blame-inexact correspondence for ψ into picky λC

while its translation goes to blame. In the first example, blame is
raised in λH due to bulletproofing. In the second, blame is raised
due to the extra cast from the translation of T VARC. For the first,
let

c = f :(x :{x :Int | true} 7→ {y :Int | nonzero y}) 7→
{z :Int | f 0 = 0}

S1 = x :{x :Int | true} → {y :Int | nonzero y}
S = φ(∅ `l,l

c c : (Int→ Int)→ Int)
= f :S1 → {z :Int | (〈S1 ⇒ dS1e〉l f) 0 = 0}.

We find 〈c〉l,l (λf.0) (λx.0) −→∗c 0 but (λx :dce. 〈S ⇒
dSe〉l (〈dSe ⇒ S〉l x)) (λf.0) (λx.0) −→∗h ⇑l . For the second,
let

c′ = f :(x :{x :Int | nonzero x} 7→ {y :Int | true}) 7→
{z :Int | f 0 = 0}

S ′1 = x :{x :Int | nonzero x} → {y :Int | true}
S ′ = φ(∅ `l,l

c c′ : (Int→ Int)→ Int)
= f :S ′1 → {z :Int | (〈S ′1 ⇒ dS ′1e〉l f) 0 = 0}.

We find 〈c′〉l,l (λf.0) (λx.0) −→∗c 0 but (λx :dc′e. 〈S ′ ⇒
dc′e〉l (〈dSe ⇒ dc′e〉l x)) (λf.0) (λx.0) −→∗h ⇑l .

6.2 Translating λH to picky λC

Terms in λH and their ψ-images in lax λC correspond exactly, as
shown Section 5.2. When we change the operational semantics of
λC to be picky, however, ψ(s) blames (strictly) more often than
s . Nevertheless, we can show an inexact correspondence, as we did
for φ and lax λC in Section 6.1. We use a logical relation∼≺ similar
to ∼�, used for φ into lax λC (Figure 17), though we reverse the
asymmetry, allowing picky λC to blame more than λH. The proof
follows the same general pattern: we first show that it is safe to
add extra contract checks, then the correspondence for well-typed
terms. We can also show type preservation for source programs
(excluding active checks).

6.4 Lemma [Extra contracts]: If t ∼≺ s : T and c ∼≺ S1 ⇒
S2 : T then 〈c〉l,l

′
t ∼≺ s : T .

6.5 Theorem [Behavioral correspondence]:

1. If ∆ ` s : S then b∆c ` ψ(s) ∼≺ s : bSc.
2. If ∆ ` S1 and ∆ ` S2, where bS1c = bS2c = bSc, then
b∆c ` ψl(S1,S2) ∼≺ S1 ⇒ S2 : bSc.

6.6 Theorem [Type preservation for ψ]: For programs without
active checks, if `∆, then:

1. If ∆ ` s : S then b∆c ` ψ(s) : bSc.
2. If ∆ ` S1, ∆ ` S2, where bS1c = bS2c = T , then
b∆c `l,l′

c ψl(S1,S2) : T .

Here is an example where a λH term reduces to a value while its
ψ-image in picky λC term reduces to blame:

S1 = f :S11 → S12

= f :(x :dInte → {y :Int | nonzero y})→ dInte
S2 = f :S21 → S22

= f :(x :dInte → dInte)→ {z :Int | f 0 = 0}
c = ψl(S1,S2)

= f :ψl(S21,S11) 7→ ψl(S12{f := 〈S21 ⇒ S11〉l f },S22)
= f :(x :{x :Int | true} 7→ {y :Int | nonzero y}) 7→
{z :Int | f 0 = 0}

Let w = (λf :(x :{x :Int | true} → {y :Int | nonzero y}). 0)
and w ′ = (λx :{x :Int | true}. 0). On the one hand (〈S1 ⇒
S2〉l w) w ′ −→∗h 0, while (〈c〉l,l λf :Int. 0)λx :Int. 0 −→∗c ⇑l .
This means we cannot hope to use ψ as an exact correspondence
between λH and picky λC. (Removing the extra cast ψ inserts into
S12 doesn’t affect our example, since ψ ignores S12 here.)

6.3 Restricted calculi
While φ from lax λC and ψ to picky λC don’t induce exact behav-
ioral correspondences in the dependent case, some useful restric-
tions of the languages are equivalent.

Gronski and Flanagan [2007] have already shown that φ induces
an exact correspondence on the nondependent restriction. Since the
lax/picky distinction requires dependency, exact equivalence in the
nondependent case is a restriction of the results of Section 5.

Moreover, the first-order dependent restrictions of λC and λH
also correspond exactly. The intuition here is that rechecking a
first-order contract in a new context can’t change the result of
checking—first-order contracts can’t be abusive. We can show this
for φ using our existing parallel reduction for λH. We can show it
for ψ, as well, using a similar parallel reduction for λC. For this
second proof we assume (but do not prove) that evaluation and
reduction in λC commute as they do in λH.

7. Related work
Conferences in recent years have seen a profusion of papers on
higher-order contracts and related features. This is all to the good,
but for newcomers to the area it can be a bit overwhelming, es-
pecially given the great variety of technical approaches. To help
reduce the level of confusion, in Figure 19 we summarize the im-
portant points of comparison between a number of systems that are
closely related to ours.

The largest difference is between latent and manifest treat-
ments of contracts—i.e., whether contract checking (under what-
ever name) is a completely dynamic matter or whether it leaves a
“trace” that the type system can track.

Another major distinction (labeled “dep” in the figure) is the
presence of dependent contracts or, in manifest systems, dependent
function types. Latent systems with dependent contracts also vary
in whether their semantics is lax or picky.

Next, most contract calculi use a standard call-by-value order of
evaluation (“eval order” in the figure). Notable exceptions include
those of Hinze et al. [2006], which is embedded in Haskell, Flana-
gan [2006], which uses a variant of call-by-name, and Knowles and
Flanagan [2009], which uses full β-reduction (more on this below).

Another point of variation (“blame” in the figure) is how con-
tract violations or cast failures are reported—by raising an excep-
tion or by getting stuck. We also return to this below.

The next two rows in the table (“checking” and “typing”) con-
cern more technical points in the papers most closely related to

ours. In both Gronski and Flanagan [2007] and Flanagan [2006],
the operational semantics checks casts “all in one go”:

s2{x := k} −→∗h true

〈{x :B | s1} ⇒ {x :B | s2}〉l k −→h k

Such rules are formally awkward, and in any case they violate the
spirit of a small-step semantics. Also, the formal definitions of λH
in both Gronski and Flanagan [2007] and Flanagan [2006] involve
a circularity between the typing, subtyping, and implication rela-
tions. Knowles and Flanagan [2009] improve the technical presen-
tation of λH in both respects. In particular, they avoid circularity
(as we do) by introducing a denotational interpretation of types and
maintain small-step evaluation by using a new syntactic form of
“partially evaluated casts” (like most of the other systems).

The main contributions of the present paper are (1) the depen-
dent translations φ and ψ and their properties, and (2) the formula-
tion and metatheory of dependent λH. (Dependent λC is not a con-
tribution on its own: many similar systems have been studied, and
in any case its properties are simple.) The nondependent part of our
φ translation essentially coincides with the one studied by Gronski
and Flanagan [2007], and our behavioral correspondence theorem
is essentially the same as theirs. Our ψ translation completes their
story for the nondependent case, establishing a tight connection be-
tween the systems. The full dependent forms of φ and ψ studied
here are novel, as is the observation that the correspondence be-
tween the latent and manifest worlds is more problematic in this
setting.

Our formulation of λH is most comparable to that of Knowles
and Flanagan [2009], but there are some significant differences.
First, our cast-checking constructs are equipped with labels, and
failed casts go to explicit blame—i.e., they raise labeled exceptions.
In the λH of Knowles and Flanagan (though not the earlier one of
Gronski and Flanagan), failed casts are simply stuck terms—their
progress theorem says “If a well-typed term cannot step, then either
it is a value or it contains a stuck cast.” Second, their operational se-
mantics uses full, non-deterministic β-reduction, rather than speci-
fying a particular order of reduction, as we have done. This signifi-
cantly simplifies parts of the metatheory by allowing them to avoid
introducing parallel reduction. We prefer standard call-by-value re-
duction because we consider blame as an exception—a computa-
tional effect—and we want to be able to reason about which blame
will be raised by expressions involving many casts.

The system studied by Ou et al. [2004] is also close in spirit
to our λH. The main difference is that, because their system in-
cludes general recursion, they restrict the terms that can appear in
contracts to just applications involving predefined constants: only
“pure” terms can be substituted into types, and these do not in-
clude lambda-abstractions. Our system (like all of the others in
Figure 19—see the row labeled “any con”) allows arbitrary user-
defined boolean functions to be used as contracts.

Our description of λC is ultimately based on λCON [Findler and
Felleisen 2002], though our presentation is slightly different in its
use of checks. Hinze et al. [2006] adapted Findler and Felleisen-
style contracts to a location-passing implementation in Haskell,
using a picky dependent function contract rule.

Our λH type semantics in Section 4 is effectively a semantics
of contracts. Blume and McAllester [2006] offers a semantics of
contracts that is slightly different—our semantics includes blame
at every type, while theirs explicitly excludes it. Xu et al. [2009] is
also similar, though their “contracts” have no dynamic semantics at
all: they are simply specifications.

We have discussed only a small sample of the many papers on
contracts and related ideas. We refer the reader to Knowles and
Flanagan [2009] for a more comprehensive survey. Another useful

latent systems manifest systems
FF02 HJL06 GF07 λC BM06 our λC GF07 λH F06 KF09 WF09 OTMW04 our λH
(1) (2) (3) (4) (3) (5) (6) (7) (8)

dep (9) X lax X picky × (10) X either × X X × X X
eval order CBV lazy CBV CBV CBV CBV CBN(11) full β CBV CBV CBV
blame (12) ⇑l ⇑l ⇑l ⇑l or ⊥ ⇑l ⇑l stuck stuck ⇑l ⇑ ⇑l
checking (13) if if © active active © © active active if active
typing (14) X X X n/a X × × X X X X
any con (15) X X X X X X X X X × X

(1) Findler and Felleisen [2002]. (2) Hinze et al. [2006]. (3) Gronski and Flanagan [2007]. (4) Blume and McAllester [2006]. (5) Flanagan
[2006]. (6) Knowles and Flanagan [2009]. (7) Wadler and Findler [2009]. (8) Ou et al. [2004]. (9) Does the system include dependent
contracts or function types (X) or not (×) and, for latent systems, is the semantics lax or picky? (10) An “unusual” form of dependency,
where negative blame in the codomain results in nontermination. (11) A nondeterministic variant of CBN. (12) Do failed contracts raise
labeled blame (⇑l), raise blame without a label (⇑), get stuck, or sometimes raise blame and sometimes diverge (⊥)? (13) Is contract or cast
checking performed using an “active check” syntactic form (active), an “if” construct with a refined typing rule (if), or “inlined” by making
the operational semantics refer to its own reflexive and transitive closure (©)? (14) Is the typing relation well defined (i.e., for dependently
typed systems, is it based on a type semantics or, as in WF09, a “tagging” scheme), or is the definition circular? (15) Are arbitrary user-defined
boolean functions allowed as contracts or refinements (X), or only built-in ones (×)?

Figure 19. Comparison of related systems

resource is Wadler and Findler [2007] (technically superceded by
Wadler and Findler [2009], but with a longer related work section),
which surveys work combining contracts with type Dynamic and
related features.

There are also many other systems that employ various kinds
of precise types, but in a completely static manner. One notable
example is the work of Xu et al. [2009], which uses user-defined
boolean predicates to classify values (justifying their use of the
term ’contracts’) but checks statically that these predicates hold.

Sage [Gronski et al. 2006] and Knowles and Flanagan [2009]
both support mixed static and dynamic checking of contracts, us-
ing, e.g., a theorem prover. We have not addressed this aspect of
their work, since we have chosen to work directly with the core
calculus λH, which for them was the target of an elaboration func-
tion.

8. Future work
Our calculi are strongly normalizing; extending our results to sys-
tems that allow recursion is a natural next step. The changes seem
nontrivial: with nontermination, inexact correspondences must al-
low not only more blame, but also more nontermination—each ex-
tra check is another opportunity for divergence.

Most studies of contracts, including ours, only allow refine-
ments of base types; however, Blume and McAllester [2006] and
Xu et al. [2009] also allow refinements of functions. This extension
seems needed if contracts are to be combined with polymorphism,
since in this setting we may want to refine type variables, which
may later be substituted with types involving functions. We conjec-
ture that dependent λH with function refinements is sound, but it is
not clear how the translations will need to be modified.

Acknowledgments
Sewell and Zappa Nardelli’s OTT tool was invaluable for orga-
nizing our definitions. We used Aydemir and Weirich’s LNGen
tool for the Coq development of parallel reduction. Brian Aydemir,
João Belo, Chris Casinghino, Nate Foster, and the POPL review-
ers gave us helpful comments. Our work has been supported by
the National Science Foundation under grants 0702545 A Practical
Dependently-Typed Functional Programming Language, 0910786
TRELLYS, 0534592, Linguistic Foundations for XML View Update
and 0915671, Contracts for Precise Types.

References
Matthias Blume and David A. McAllester. Sound and complete models of

contracts. Journal of Functional Programming, 16(4-5):375–414, 2006.
Olaf Chitil and Frank Huch. Monadic, prompt lazy assertions in haskell. In

APLAS, pages 38–53, 2007.
Robert Bruce Findler. Contracts as pairs of projections. In Symposium on

Logic Programming, pages 226–241, 2006.
Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order

functions. In International Conference on Functional Programming
(ICFP), pages 48–59, 2002.

Cormac Flanagan. Hybrid type checking. In POPL, pages 245–256, 2006.
Jessica Gronski and Cormac Flanagan. Unifying hybrid types and contracts.

In Trends in Functional Programming (TFP), 2007.
Jessica Gronski, Kenneth Knowles, Aaron Tomb, Stephen N. Freund, and

Cormac Flanagan. Sage: Hybrid checking for flexible specifications. In
Scheme and Functional Programming Workshop, pages 93–104, 2006.

Arjun Guha, Jacob Matthews, Robert Bruce Findler, and Shriram Krishna-
murthi. Relationally-parametric polymorphic contracts. In DLS, pages
29–40, 2007.

Ralf Hinze, Johan Jeuring, and Andres Löh. Typed contracts for functional
programming. In Functional and Logic Programming (FLOPS), pages
208–225, 2006.

Kenneth Knowles and Cormac Flanagan. Hybrid type checking. To appear
in TOPLAS., 2009.

Bertrand Meyer. Eiffel: the language. Prentice-Hall, Inc., 1992. ISBN
0-13-247925-7.

Xinming Ou, Gang Tan, Yitzhak Mandelbaum, and David Walker. Dynamic
typing with dependent types. In IFIP TCS, pages 437–450, 2004.

Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementa-
tion of typed scheme. In Principles of Programming Languages (POPL),
pages 395–406, 2008.

Philip Wadler and Robert Bruce Findler. Well-typed programs can’t be
blamed. In Workshop on Scheme and Functional Programming, 2007.

Philip Wadler and Robert Bruce Findler. Well-typed programs can’t be
blamed. In European Symposium on Programming (ESOP), pages 1–16,
2009.

Dana N. Xu, Simon Peyton Jones, and Koen Claessen. Static contract
checking for haskell. In Principles of Programming Languages (POPL),
pages 41–52, 2009.

