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Abstract

The definition of type equivalence is one of the most impor-
tant design issues for any typed language. In dependently-
typed languages, because terms appear in types, this defini-
tion must rely on a definition of term equivalence. In that
case, decidability of type checking requires decidability for
the term equivalence relation.

Almost all dependently-typed languages require this rela-
tion to be decidable. Some, such as Coq, Epigram or Agda, do
so by employing analyses to force all programs to terminate.
Conversely, others, such as DML, ATS, Qmega, or Haskell,
allow nonterminating computation, but do not allow those
terms to appear in types. Instead, they identify a terminating
index language and use singleton types to connect indices to
computation. In both cases, decidable type checking comes
at a cost, in terms of complexity and expressiveness.

Conversely, the benefits to be gained by decidable type
checking are modest. Termination analyses allow depen-
dently typed programs to verify total correctness proper-
ties. However, decidable type checking is not a prerequi-
site for type safety. Furthermore, decidability does not imply
tractability. A decidable approximation of program equiva-
lence may not be useful in practice.

Therefore, we take a different approach: instead of a fixed
notion for term equivalence, we parameterize our type sys-
tem with an abstract relation that is not necessarily decid-
able. We then design a novel set of typing rules that re-
quire only weak properties of this abstract relation in the
proof of the preservation and progress lemmas. This design
provides flexibility: we compare valid instantiations of term
equivalence which range from beta-equivalence, to contex-
tual equivalence, to some exotic equivalences.

Categories and Subject Descriptors D.3.1 [Programming
Languages]: Formal Definitions and Theory
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1. Introduction

Dependent type systems promise the smooth integration of
lightweight invariant checking with full program verifica-
tion. In languages with dependent types, the types of a pro-
gram may express rich, statically-checkable properties about
its behavior.

Central in the design of a dependently-typed language is
the notion of type equivalence. Because types include pro-
grams, type checking requires a definition of term equiva-
lence. Therefore, decidable type checking requires that the
term equivalence relation be decidable.

Previous work has almost uniformly insisted on decidable
type checking, and hence decidable term equivalence. Some
languages, such as Coq [Coq Development Team|2009], Epi-
gram [McBride and McKinna|2004] or Agda [Norell|2007],
do so by employing analysis that force all programs to ter-
minate. This strong requirement has the benefit that type
checking implies total correctness. If a function has type
7 — Sy:7'. Py then one can be assured that it will terminate
and produce a value satisfying property P.

Other languages, such as Dependent ML [Xi and Pfenning
1999]], ATS [Xi2004], mega [Sheard|2006|] and Haskell (with
GADTs [Peyton Jones et al.[2006]), allow diverging compu-
tation and sacrifice total correctness. They retain decidable
type checking by not allowing terms to appear in types. In-
stead, they identify a terminating index language (such as
the type language in the case of Haskell) and use singleton
types to connect indices to computation.

In each of these cases, decidable type checking comes at a
cost, in terms of both complexity and expressiveness. Requir-
ing all programs to terminate severely limits the generality
of a programming language. Furthermore, the complexity of
the termination analysis can make it difficult for program-
mers to understand why their code does not type check. In
phase-sensitive languages, singleton types lead to code du-
plication, as programs must often be written twice, once in
the computation language and again in the index language.
More troublesome, there is no restriction that the semantics
of the index language match that of the computation lan-
guage: only their first-order values are required to agree.

At the same time, the benefits to be gained by decidable
type checking are modest. Although termination analyses
provide stronger correctness guarantees, they do not need to
be integrated into the type system. Partial correctness guar-
antees that are implied by type safety could be extended to
total correctness where necessary by an external termination
analysis. Furthermore, decidability does not imply practical-
ity. Why rule out undecidable specifications a priori, when
they could behave well in practice?

Therefore, we design a full-spectrum, dependently-typed
language \~, pronounced “lambda-eek”, that does not pre-
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suppose decidable program equivalence. This language is
both simple and expressive: not only does it include general
recursive function definitions and dependent products, but
it also supports indexed datatypes with elimination forms to
both terms (case expressions) and types (large eliminations).

Dependent type systems with undecidable type checking
are compatible with type safety [Cardelli [1986], and have
been explored before [Augustsson|1998||. We extend this line
of work by making key design decisions that permit a simple
proof of type saftey. Our straightforward proof of type safety
is based on standard preservation and progress lemmas and
has been formalized in the Coq proof assistant.

An important aspect of A~ is that it is actually a family of
languages because its type system is parameterized by an ab-
stract relation that specifies program equivalence. This three-
place relation, written isEq (A, e1, ez ), asserts when terms
e; and ey are equivalent in some context A of assumptions
about the equivalence of terms. This specification of program
equivalence is isolated from typing, and the type safety proof
depends on properties of program equivalence that make no
reference to the type system. This separation simplifies the
type safety proof.

For generality, we would like weak requirements for
isEq. In particular, we would like to admit call-by-value re-
specting equivalences, since the operational semantics of A~
is call-by-value. Surprisingly, we revised our design several
times before we found one that would admit such relations.

Although it is impossible to claim that we have the weak-
est possible set of requirements, our design permits many
different equivalence relations: from standard S-equivalence,
to contextual equivalence, to some exotic equivalences. The
finest equivalence makes our system admit no more terms
than the simply-typed lambda calculus. More surprisingly,
equivalences based on call-by-name evaluation are also
valid, as well as some exotic equivalences that identify cer-
tain terminating and nonterminating expressions. We also
have Coq proofs that show that all of these equivalences sat-
isfy the required properties.

We also found that the requirements of the preservation
proof force all valid instantiations of isEq to be undecidable.
However, preservation is not a necessary requirement for
type safety. Any language that type checks strictly fewer pro-
grams than a type-safe language is itself type safe. Therefore,
any decidable approximation of a particular notion of program
equivalence also defines a type-safe language. Consequently,
A~ can be used as a template for languages with both decid-
able and undecidable definitions of program equivalence.

The organization of this paper is as follows. In Section
we introduce the syntax and operational semantics of A~. We
then describe its type system, parameterized by the predi-
cate isEq in Section [} Working through a standard proof of
preservation and progress leads to requirements on isEq—
we describe those properties in Section [} In Section [5| we
give several definitions of isEq that satisfy our requirements.
Variations of our type system lead to stronger requirements
on isEq, which we discuss in Section [f] We discuss exten-
sions to this system and other issues in Section [7] Finally, in
Sections[8land Blwe discuss related work and conclude.

The Coq developmenﬂ for this paper is available online
at http://www.seas.upenn.edu/~plclub/
lambda-eek/lambda-eek.tgzl

1 Because we are dealing with potentially undecidable relations, our
developments use Coq's classical logic library.

Terms e, u ::= =z | unit | funf(z) = e | e1e2

| (e, e) | el | e.2 _

| Ce | caseecof {Cizi = ¢ }
Values v ::= wunit | funf(z) = e | (v, ) | Cv

Figure 1. Syntax

(funf(z) = e1) v — e{v/zH{funf(z) = e /f}
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P — e{v/z}

Figure 2. Operational semantics (excerpt)

2. A call-by-value language

Figure [1| presents the syntax of terms and values of A\~. Im-
portantly, terms do not contain typing annotations in order
to isolate the specification of isEq from the type system of
A¥. A worry is that isEq might distinguish between terms
with syntactically different but semantically equivalent type
annotations. To trivially rule this out, terms do not contain
types, and A~ uses a Curry-style type system.

The term language includes only standard features of pro-
gramming languages: variables, unit, (recursive) functions,
applications, binary products, projections, data constructors
and case analysis. We use the metavariables e and u to de-
note terms and v to denote values. In a recursive function
fun f(z) = e, the variables f and « are bound in the body e.
If f does not appear in the body of the function, then we write

it as Az.e. In a case expression case eof { C; z; = ¢; }, the
variables z; are bound within each of the branches e;. We use
the notation e{e’/z} for the capture-avoiding substitution of
e’ for z in e.

For simplicity, every data constructor must be of arity one
and must always be applied to its argument. This limitation
does not affect expressiveness—nullary and multiargument
data constructors can be encoded. Throughout the paper, we
assume a standard Peano encoding of natural numbers, with,
for example, 0 represented as C.er, unit and 1 represented
by Csuce (Crero unit). The boolean values true and false
can be similarly encoded.

The key rules for the small-step, call-by-value operational
semantics appear in Figure [2| This semantics is completely
standard. Importantly, applications of recursive functions
only step when their arguments are values.

3. A parameterized type system

We now define the type system for A\¥. Figure 3| defines the
necessary additions to the syntax. The judgment forms of the
type system are summarized in Figure{d] The rules of the type
system itself appear in Figures %]an 4!

The types of A= are divided into proper types of kind = that
classify terms directly; and indexed types of kind (z:7) =
that must first be applied to a single term (of type 7).

Proper types include Unit, the type of the unit term,
function types (z:7) — 7’ and product types Lz:7.7'. In the
latter two types, the variable z is bound in 7. The result type
of a function may depend on the argument value, and the
type of the second component of a product may depend on
the first component.
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Kinds ko= | (3:7) = %

Types 7, 0::=Unit | (z:7) = 7" | Se:r.7’ | T
| 7e | casee(Tu)of {Ciz; = 7 }

Signatures ¥ ::=-| U, C:(z:7)— Te
| O, T: (z:7) = =

Contexts T ::i=-|T,z:7 | T,ex¢

Eq ctxs A = | Aexd

Pureterms w ::=gz | unit | funf(z

)= e
| (wi,w2) | w.l]| w.2]| Cw

Figure 3. Types and contexts

Data constructors are typed by datatype constants, T,
which are indexed types. The kinds of datatype constants
and the types of data constructors are recorded by a signature
W. We assume that there is one fixed, well-formed signature
U, for an entire program, so we leave it implicit. We also
assume that all data constructors and datatype constants are
in the domain of ¥y.

For simplicity, we require that all datatype constants be
of kind (z:7) = . Standard data types use the uninfor-
mative index unit. For example, the notation Nat abbrevi-
ates the type Tnq: unit, where the constant Ty, has kind
(2:Unit) = *. We use a similar definition for the type Bool.

Often, however, the index is informative. For example,
suppose the constant 77, is indexed by its length, a natural
number. The data constructor C;; creates a list of type T 0.
When type checking a case analysis where the scrutinee has
type Tris: x, the type checker can assume that z is equal to 0
in the C,;; branch.

The type language also includes a strong elimination
form: case analysis of terms to produce types. In a type pat-

tern match, case e ( Tu)of { C;z; = 7 }, a finite number
of types 7; are indexed by a term e that is expected to be
of type T" u. (We discuss the need for this annotation in Sec-
tion [3.3]) This mechanism provides the technique of “Uni-
verses” in dependently-typed languages. For example, in a
context containing the assumption « : Bool, the term
casez of { true = 1; false = false}

can be assigned the type

case z ( Bool) of { true = Nat; false = Bool}

The type system is defined in terms of a number of as-
sumption lists. Besides signatures W, there are contexts I' and
equivalence contexts A. Contexts are ordered lists of variable
type assumptions and term equivalence assumptions. The
domain of a context is the set of variables for which there
are type assumptions. Equivalence contexts A contain term
equivalence assumptions only. We denote context concate-
nation with T', I'" when the domain of I and I" are disjoint
(likewise A, A"). We use I'* to produce the equivalence con-
text containing the equivalence assumptions in I".

Some places in the specification of the type system require
the definition of pure terms. We use the metavariable w to
range over a simple set of terms that are known to terminate.

3.1 Parameterized equivalence: isEq

As mentioned above, the type system of A~ is parameterized
by the predicate isEq (A, e, ¢'). This predicate holds when
the terms e and e’ are equivalent under the set of equivalence
assumptions in A.

Formation Judgments Equivalence Judgments

F U Signature F A = A’ Equivalence Context
FT Context FIr =1 Context

'k« Kinds A+ 7 =171 Types

't 7 : k Types A F £ = &' Kinds

't e: 7 Terms

Figure 4. Type system judgment forms

We use isEq to define an auxiliary relation used for type
checking. The predicate incon ( A ) determines if there exists
a contradiction in the equivalence assumptions of A. An
equivalence context A is inconsistent when isEq equates two
pure terms headed by different constructors.

DEFINITION 3.1 (Inconsistency).
Define incon ( A) if there exist terms C; w; and C; w; such that
isEq (A, Ciw;, Cjw;)and C; # C;.

Most dependently typed languages use 3-equivalence or
Bn-equivalence to decide term equivalence. In our language,
we leave isEq abstract. However, to ensure that our sys-
tem enjoys standard properties (such as preservation and
progress) isEq must itself satisfy a number of properties, as
we describe in Section 4]

The equivalence assumptions in A are equations between
arbitrary terms. These terms do not need to be well-typed or
even have the same type (though our rules only add such
assumptions to the equivalence context). Furthermore, these
equations do not need to be consistent, though when they are
not, all terms are typeable with all types.

3.2 Typing

The type system of A~ is defined by two main categories of
judgments (see Figure [d). One set determines when syntac-
tic elements are well-formed. The other set determines when
they are equivalent. The formation rules refer to the equiv-
alence rules, but the equivalence rules are independent. We
start our discussion with the formation rules, and return to
the equivalence rules in Section[3.3]

The formation rules appear in Figures [5| and [6} Most
rules are straightforward; we focus on the term typing rules.
One significant departure from standard rules is that we use
equivalence assumptions instead of substitution. For exam-
ple, a standard rule for application substitutes the operand
ez for the variable in the result type:

ke :(zm)—m I'ke:n
I+ €1 €2 : T2{€2/{17}

However, in A%, instead of substituting the operand e
in the result type, rule E_APP checks if 7 is equal to some
7 under an equivalence context that extends I'* with the
equation © 2 ey. Furthermore, to ensure that z is not free
in 7, the rule checks that 7 is well-formed under the context
I". Similarly, the typing rules for dependent pairs, projections
and constructors also extend the context with equivalence
assumptions rather than use explicit substitution.

We use equivalence assumptions instead of substitution
because substituting e into a type leads to stronger require-
ments on the substitution property of isEq. Intuitively, re-
quiring that isEq be closed under substituting an arbitrary e
limits our term equivalence relations to those based on call-
by-name evaluation. However, our system is call-by-value,
leading to an undesirable mismatch. We discuss this issue
further in Section

E_App’
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Figure 5. Context, kind, and type formation rules

The typing rule for pattern-match E_CASE also uses
equivalence assumptions, but for a different purpose. This
rule first uses the premise CtrOf(7") = T; """ to check that
the branch is exhaustive. During execution, if the i*" branch
is taken, the scrutinee must match the pattern C; z;, and the
index u of the scrutinee’s type must match with the index u;
in the signature. Therefore, this rule checks each branch un-
der a context that extends I' with equivalence assumptions
that the indices are the same (u 22 u;) and that the scrutinee
is equal to the pattern (e = C; z;).

The fact that A= uses equivalence assumptions instead
of substitution to represent the information gained via case
analysis is powerful. In particular, A~ can take advantage of
information such as fz = true in a way that languages
such as Coq and Agda cannot. For example, suppose we
have a datatype T indexed by booleans with constructors
Cy : Ttrueand Cs> : T false. Then, in the following context

f:Nat — Bool,z: Nat,h: T (fz) — Bool

there are instantiations of isEq such that the following
term typechecks

case f z of {true = h C1;false = false}

To typecheck h C1, the type checker must show the equiv-
alence of T (fz) and T true in the first branch, when the

FT z:7€l E VAR FT E UNIT
'tz .7 - I' - unit : Unit —
Iz: 2 (z: Fe:
xiTLfi(mm) o ke E Fix
'k funf(z) = e: (zim1) = 7
F'ke :(zm)—m PFe:mn
I s®%eabrnn=7 T'k71:x
E_Aprp

'kee: 7

'Fe:mm TFe: 7
I z2%ebFm=mn Tz bk mn:x

E_SIGMA
F'_<61>62>:Z‘T:T1‘T2 —
'ke: Xzm.m E PrOIL
F"E.l:’rl - J
F'te:Yzm.m2 DF 7%
Iz ~elbmn=r7 5 Prom
T'Fe2:71 - J
C:(z:0) = TueVYy I'ke:o
e =2ekFTu=7 I'F71x E_CTR
'Ce:r -
''e: Tu Ctl’Of(T):aiel..n |
k7% Ci:(xi:ﬂ')ﬂTuiG\IJOlel“"
F;IiiTi,uEui7egCixil_ei:T'LEl..n
~——————i€l.n E_CASE
' caseeof { Cizi = & y o
FT incon(I™) E INCON
I'ke:T -
F'Fe:7 T"Fr=7 TFT:% E_TCoNV

'ke:7

Figure 6. Term formation rules (typing)

~

equation f z = true is available. Systems based on unifica-

tion cannot make this information available via substitution,

so they require the result of f = to be named/]

Note that in rule E_CASE, the order in which the equiva-
lence assumptions are added to the context is important for
maintaining the well-formedness of the context. The type of e
is T u, and the type of C; z; is T u;. For the extended context
to be well-formed, we need to insert the assumption u = u;
before e = C; z;, so that u = w; is available for checking that
e and C; z; have the same type.

The equivalence assumptions in I'" could become incon-
sistent, for example, while checking a false branch in a case
expression where the scrutinee is true. In that case, the as-

~

sumption true = false is added to the context. However,

this branch is inaccessible at runtime, so there is no need to

type check it. Therefore, rule E_INCON assigns an arbitrary
type 7 to e when the equivalence assumptions in I" are con-
tradictory.

2The Agda version of this example typechecks due to some ad hoc
machinery, but small variations do not.
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Figure 7. Kind and type equivalence

The last typing rule is a conversion rule. If e can be as-
signed type 7, then E_TCONV allows e to be given any well-
kinded type that is equivalent to 7.

3.3 Equivalence

Several typing rules require determining when two types are
equivalent. A couple of type formation rules require kind
equivalence. We present these two equivalence judgments
for A¥ in Figure [7] These judgments do not check well-
formedness. Instead, the formation rules only use the equiv-
alence judgments on well-formed constructs. For instance, in
rule E_TCONV, both 7 and 7" must be well-kinded. This de-

sign allows the properties of equivalence to be proven inde-
pendently of those for formation.

Most of the rules are straightforward. Below, we focus on
the type equivalence rules. The type equivalence judgment
has the form A + 71 = m, where A is the equivalence
context under which 7 and 72 are considered.

The first rule, TQ_INCON, states that when A is incon-
sistent, any two types are equivalent. The next few rules are
congruence rules stating that two types are equivalent if the
corresponding sub-terms are equivalent. Rule TQ_APP uses
isEq to check the equivalence of the two embedded terms.
The congruence rule for case types TQ_CASE checks that the
corresponding branches are equivalent with added assump-
tions that the actual index is equal to the stated index of the
constructor and that the scrutinee is equal to pattern for that
branch. This rule must check not only the equivalence of the
scrutinees, but also that the indices in the scrutinees’ types
are equal. Because our equivalence rules do not depend on
well-formedness rules, the only way to find out the type of
the scrutinee is to annotate the case type with (7 u).

The last two rules consider the situation when a case
type could reduce to one of its branches. The rule TQ_RED2
is symmetric to TQ_REDI. The first premise of TQ_REDI1
checks if the scrutinee e is equal to some pure term Cj; w,
where C; heads one of the patterns. The rule also checks that
the index u in e’s type is equal to u;, which is the index of
C; x;’s type. If the j*" branch 7; is equivalent to a type T
(which does not contain z;), then we can conclude that the
case type is equivalent to 7.

Like E_CASE, TQ_RED1 extends A with the equation
w = z;. Additionally, when checking if 7; is equal to 7, both
w = z; and e = (} z; are in the context. Although the latter
assumption is semantically redundant, not including this as-
sumption leads to stronger requirements for isEq. Another
design choice is why we require a pure term C; w in the first
premise, instead of C; v or C;j e. We address this decision in
Section[6.1]

Our type equivalence rules are defined to be easily in-
vertible. For example, by examining the rules, we can con-
clude that there does not exist a derivation for A - Te =
(z:11) — 2 when A is consistent, an important property for
the progress and preservation lemmas.

4. Properties of the type system

The type system of A~ depends on the relation
isEq (A, e, e2). Consequently, the type safety property
of ¥ depends on properties of this relation. In this Section,
we investigate the properties shown in Figure that we use
in the proof of the progress and preservation lemmas. Al-
though these proofs are straightforward, we include details
here to motivate each of the properties listed in Figure
Note that these properties are independent of the type
system. We make no requirements that the arguments to
isEq have the same type, or even have a type, or that the as-
sumptions in the equivalence context are well-formed in any
way. Thus our parameterization is simple and well-defined.

4.1 Basic lemmas

We start with four basic properties (weakening, substitution,
cut, and context conversion) that should hold for every judg-
ment. Because our judgments include isEq as a hypothesis,
these properties are also required for isEq (see the first four
properties in Figure [8).



PROPERTY 4.1 (IsEq Weakening).

IfisEq((A, A"), e, e2),

thenisEq ((A, A", A") e, e2).

PROPERTY 4.2 (IsEq Substitution). IfisEq (A, e, ez ), then
isBq(A{w/z}, er{w/z}, e2{w/z}).

PROPERTY 4.3 (IsEq Cut).

IfisEq ((A, w1 2 up, A"), e1, e2),andisEq (A, w1, uz),
then isEq ((A, A"), e, e2).

PROPERTY 4.4 (IsEq Context Conversion).

IfisEq (A, e1, e2),andt A = A, then isEq (A, e, e2).

PROPERTY 4.5 (IsEq Reflexivity). isEq (A, e, e).

PROPERTY 4.6 (IsEq Symmetry). If isEq (A, e1, e2), then
isEq (A, ez, e1).

PROPERTY 4.7 (IsEq Transitivity). If isEq (A, e1, e2), and
isEq (A, ez, e3), thenisEq (A, e1, e3).

PROPERTY 4.8 (IsEq Injectivity).
IfisEq (A, Cwy, Cwy), thenisEq (A, wi, ws).

PROPERTY 4.9 (IsEq Beta). If e — ¢/, thenisEq (-, e, €’).

PROPERTY 4.10 (IsEq Empty).
IfC’l 75 Cj, then ‘!iSEq(' 5 Ci w; s C]' wj )

Figure 8. The isEq Properties

Weakening states that if a judgment holds under context
I (or A), then it also holds under a larger context.

LEMMA 4.1 (Weakening).
1.IfA1,A3FJ,thenAl,Ag,AgFJ.
Z.Ifrl,l_‘g}_J,Ill’ld}_F1,F2,F3,thEnF1,F2,F3}_J.

The Substitution Lemma states that equivalence judg-
ments are closed under the substitution of pure terms and
that the formation judgments are closed under the substitu-
tion of values.

LEMMA 4.2 (Substitution).

1. IfA F Jthen A{w/z} + J{w/z}.

2IfT,z:m,I"F JandT + v : 7y
thenT, T'{v/z} + J{v/z}.

Because our language has a call-by-value semantics, we do
not need substitution to be true for arbitrary terms, only pure
terms and values respectively. As a result, isEq need only be
closed over the substitution of pure terms. Property s a
particularly weak requirement, as we discuss in Section [6]

The Cut Lemma removes redundant equivalence assump-
tions from the context.

LEMMA 4.3 (Cut).

LIfFA,ex e, A'F JandisEq(A, e, €')
then A, A" - J.

22IfT, e e, I"F JandisEq(T*, e, e')
thenT , TV + J.

Finally, both the equivalence judgments and the forma-
tion judgments are closed under equivalent contexts. To state
this lemma, we first define when both sorts of contexts are
equivalent. Although these definitions are asymmetric (they
always use their left argument to compare each pair) the de-

fined relations are symmetric because of IsEq Context Con-
version (Prop [£.4).

DEFINITION 4.1 (A-Equivalence).

=
iSEq(Avel7€{) iSEq(A,€27€£)

— ’ / /
FA,el%’eng,elgeg

FA=A

DEFINITION 4.2 (Context equivalence).
CQ_EMPTY

[
FT =0 T"kFr=7
Flz:r=1"2:7
FT =T isEq(T*, e, e1) isEq(T*, e2, €5)
F(T,e1 2 e) = (I, el &es)

CQ_TERM

CQ_EQ

We then show that all formation judgments are stable under
context equivalence, and that all equivalence judgments are
stable under A-equivalence.

LEMMA 4.4 (Context Conversion).
LIFAF Jandt A = A then A’ + J.
22T - Jand+=T =T and b TV then TV + J.

4.2 Properties of type equivalence

The type equivalence rules shown in Figure [7] do not con-
tain rules for reflexivity, symmetry, or transitivity, permitting
simple inversion. Instead, we prove the following lemmas
about the equivalence judgments to show that these rules are

admissible. Again, to show these properties, they also must
be true of isEq (see Properties n Figure|[S).

LEMMA 4.5 (Refl). A F 7= 7.

LEMMA 4.6 (Symm). IfA + 7= 7'then A + 7' = 7.
LEMMA 4.7 (Transitivity). fA - 7= 7and A + 7' = 7"
then A b 7 = 71"

The proofs of reflexivity and symmetry are straightfor-
ward, but transitivity is less so, so we show one case of
the proof below. This proof requires one more property of
isEq—that data constructors are injective for pure terms
(Prop. . To show transitivity, we must first generalize the
statement of the lemma so that the contexts of the two type
equivalence derivations are not the same, but are equivalent.

LEMMA 4.8 (Transitivity’). IfA - 7 = 7and A’ + 7/ =
" and- A = Athen A+ 7 = 7"

The proof is by a double induction on the structure of
the pair of assumed judgments; call the first one D and the
second one £. Consider the case where the last rule used in D
is TQ_RED2 and the last rule of £ is TQ_RED1. Then, these
derivations are of the form:

G e Gj : (zj:05) — Tu; € Yo

isEq(A, e, CGGw) iSEq((A,w = 2), u, u)
Ayw=g,e=Cn ko=

At o=casee(Tu)of {Ciz; = niel”n}

and

—~ 1€l..n
Cnm € G Crn t (Tm:
iSEq ( Al , €, Om w, ) iSEq ( ( )
Aw 2z, e Cntm b =0

A" & casee{Tu)of{Ciz = niel""} =0



We need to show that A - ¢ = o¢’'. To use the induc-
tion hypothesis, we need to know that both £ and D reduce
using the same branch. In other words, j = m. We know
that isEq (A, e, Cjw) and isEq(A’, e, Cn w'). By the
Symmetry, Transitivity, and Context Conversion Properties
of isEq, we conclude that isEq (A, C; w, Cy w'"). To con-
tinue the proof, we must conclude either that C; = C,, or
that A is inconsistent, hence our definition of incon ( A ).

Now suppose that j = m. To apply the induction hypoth-
esis, we must show
(A, w=g,e=Ca)= (A, w0 2g,e= ()

Wehave - A = A’ by assumption, so for these two con-
texts to be equivalent, we need only show isEq (A, w, w’).
We also have isEq (A, C; w, C; w"), so the Injectivity Prop-
erty of isEq sulffices.

By applying the induction hypothesis, we have A, w =
zj,e & Cjz; - o = o'. By substituting w for z;, we
conclude that A, w 2 w,e & Cjw F o = o' (because
z; is not free in A, e, 0 and ¢’). To conclude A + o = o/,
we need only remove w = w and e = C; w from the context.
We already know these facts via reflexivity and assumption,
so we use the Cut Lemma , finishing the case.

In this proof we must substitute a pure term w into the
judgment, not a value v. For that reason, our Substitution
Lemma on equivalence must hold for pure terms.

4.3 Type safety

We prove type safety for our language via standard progress
and preservation Lemmas [Wright and Felleisen|1994].
LEMMA 4.9 (Preservation). IfT' - e : Tand e — ¢, then
ke :r.

The proof is by induction on the reduction relation. In
some of the cases, the typing of ¢’ depends on a subtermin e’
that takes a step. Those cases make yet another requirement
on isEq, the IsEq Beta Property (4.9). We use the case when
e = e1e; and e2 — e as an example. By assumption we
know that

ke :(zm)—m T'Fe:mn

Iz 2ebmnn=71 IF71:x E_App

F|—e16237'

By the induction hypothesis, we know I' + €5 : 71. We
need to show that T*, z = e, + 7 = 7. Because Prop-
ertyrequires isEq to identify e; and ey, we know that the
context I'* |, z & e is equivalent to the context I'*, z 2 ep.
Therefore, by using context conversion (Lemma , we can
concludeT™, z 2 el F o = 7.

To show progress, we must first prove a canonical forms
lemma.

LEMMA 4.10 (Canonical Forms). Suppose —incon (I').

1. IfT' = v : Unit then v is unit.

22IfT F v : (i) —» e thenvisfun f(z) = e.

3BT F v : Xxm.mothenvis (vi, v2).

4. fT +wv: Tethenvis Cv' and C : (z:0) — T u € U,

To prove the above, we show that the type system does
not equate types with different top level forms when the
assumptions in the equivalence context are consistent.

DEFINITION 4.3 (Value types). A type 7 is a value type if it is
of the top level form Unit, Xz:01. 02, (z:01) — o2, 0r T e.

LEMMA 4.11 (Value Type Consistency). If —incon (A) and
A F 11 = T, where Ty and T2 are value types, then Ty and T2
have the same top-level structure.

LEMMA 4.12 (Progress). If - - e : 7, then3e'. e — €’ ore
is a value.

In the proof of this lemma we need —incon (-), so the
Canonical Forms Lemma is available. Because incon (A ) is
defined in terms of isEq, we have one last requirement on
isEq (Prop .10). The empty context must be consistent, i.e.
if C; ;é Cj then —\isEq(~, Ci w; , C]’ W )

A straightforward application of preservation and
progress gives us the final result: Well-typed A programs
do not get stuck.

THEOREM 4.1 (Type Safety). If - = e : 7, then either there
exists a v such that e —™ v or e diverges.

5. Instantiations

Having identified a set of properties of isEq that are strong
enough to prove type safety, we now examine definitions of
term equivalence that satisfy those properties.

It is not hard to see that any instantiation is undecidable:
let isEqX be some instantiation and consider the predicate
¢(e) = isEqX(-, e, C1 unit). The properties require ¢ to be
nontrivial (since ¢(Ci unit) but —¢(C> unit)) and respect
B-convertibility, so by a lambda calculus variant of Rice’s
theorem ([Barendregt|1981] p.144) ¢ is undecidable.

However, we could have a decidable predicate that does
not satisfy the isEq properties but still allows type safety to
hold for A=. Suppose we have an instantiation isEqX, and
consider a predicate iSEqX’ which is dominated by isEqX,
that is if isEqX' returns true then so does isEqX. Then any
program that typechecks using isEqX’ will also typecheck
using isEqX, and type safety for isEqX tells us that the
program will never reach a stuck state.

What we are seeing here is the distinction between type
safety and preservation/progress. Any predicate that is
dominated by one that satisfies the properties is sufficiently
weak to ensure type safety, so it is safe to use it in a pro-
gramming language implementation. Such a predicate will
not necessarily be strong enough to typecheck all the inter-
mediate states of a computation.

5.1 Beta-equivalence

Many dependently-typed languages use [-equivalence as
the underlying equivalence of the type system. In this sec-
tion, we show that S-equivalence is indeed a valid instantia-
tion that satisfies the properties in Figure [}

Call-by-value evaluation Some dependently typed lan-
guages test term equivalence by reducing both inputs to a
normal form and then comparing, so one expects this algo-
rithm to be a valid instantiation. Indeed it is, although we
must adjust the definition slightly: because of nontermina-
tion we cannot reduce to normal form, so instead we say that
two terms are isEq if they reduce to some common term (not
necessarily normal). As a result, the predicate is only semide-
cidable because we do not know how long to evaluate. Thus
we define our first instantiation, called isEq__,.

DEFINITION 5.1. Define isEq__ (A, e, e') when there exists u
such that e —* wand e’ —* wu.

LEMMA 5.1. isEq__, satisfies the isEq properties.



Note that isEq__, is the finest equivalence satisfying the
properties. Because we require that isEq be an equivalence
relation which includes —, any valid instantiation must
identify at least as many terms as isEq__,.

LEMMA 5.2. Let isEqQX be a predicate which satisfies the isEq
properties. Then isEq__, (A, e, ') implies isEqX (A, e, €’).

Generalized reduction relations The verification that
isEq__, satisfies the properties does not use many specific
facts about —. Therefore, we can state a more general result
about an arbitrary reduction relation ~-.

DEFINITION 5.2. If ~» is a binary relation between expressions,
then define isEq_, (A, e1,e2) when there exists a w such that
e1 ~" wand ex ~" u.

LEMMA 5.3. For a given relation on expressions ~-, if
o ——Cn,
o ¢ ~ ¢ implies e{w/z} ~ e'{w/z},
o Cey ~ ¢ implies that ¢’ = C eyand ey ~~ e, and
o " is confluent,
then isEq_, satisfies the isEq properties.

The added generality of the above lemma shows that
type safety is insensitive to the evaluation order used by the
type checker. In particular, we can use a parallel reduction
relation for ~», where terms are nondeterministically reduced
throughout, including underneath function definitions and
inside case branches. In fact, there are many valid variants of
parallel reduction, based on differences in the 3 rules.

We identify three variants of parallel reduction below.

e = ¢’ Require values in active positions
e = € Require pure terms in active positions
e =, ¢ Allow arbitrary reductions

Surprisingly, all three of these relations are sound, includ-
ing the last variant which permits 3-reductions for arbitrary
expressions. This relation allows the type checker to iden-
tify (Az.y)Q and y where Q is a diverging term—a rather
strange fact since these terms are not contextually equivalent
under call-by-value evaluation.

However, note that deterministic call-by-name evaluation
—n, which never evaluates the argument of an application,
isnot a valid instantiation. This relation does not contain call-
by-value evaluation, so isEq__, ~does not satisfy the Beta
property . Nevertheless, isEq_ __.,, is strictly dominated
by isEq_, , which is a valid instantiation. This means that
even though our language is CBYV, it is safe to use CBN
evaluation in the type checker.

Expressivity The isEq_, instantiations formally satisfy the
properties and highlight the similarities between our system
and other dependently-typed languages, but they are of min-
imal use: our type system relies on introducing equations
into the context, but isEq_, does not even look at them! This
is only possible because the properties do not force isEq to
make use of the context; in particular we do not require the
following property:

PROPERTY 5.1 (Assumption).
Ifeir 2 ex € AthenisEq (A, e, e2).

This property is not necessary for type safety, so we do not
require it. However, it is interesting when we consider the
expressivity of our type system. In fact, the equivalence as-
sumptions provide all the “dependent” features of our type

system: if the isEq instantiation ignores them, we can type
no more terms than in the simply typed lambda calculus.

DEFINITION 5.3. Define a type erasure function (-)°, mapping
types T to simple types, as follows:
(Unit)? = Unit
(1" =T
(re)” = (7)
(casee (Tu)of {Cizi = 7 })"
_ (TZ) l,fISEq('7 6, Clw)
~ | Unit otherwise

((z:m1) — 12)°
(Bzm.712)°

5
2

-
.3‘

e

o

We write I'° to denote the pointwise lifting of the erase operation
applied to T with all of its equivalence assumptions removed.

LEMMA 5.4 (Erasure). Suppose that isEq (A, e1, ez ) implies
isEq(-, e1, e2). ThenT' + e : 7 implies I'° Fsrrc e : 7°,
where Fsrrc is the type system for the simply-typed lambda
calculus with unit, products and datatypes.

5.2 Beta-equivalence with assumptions

To extend isEq__, to a relation satisfying the Assumption
Property we can give a direct inductive definition and in-
clude enough rules to satisfy the properties:

DEFINITION 5.4 (isEqFiat).
Define the relation isEqFiat (A, e1, ex) as the least relation
satisfying the following rules:
e1 = e € A
isEqFiat (A, e1, e2)

e — €2

isEqFiat (A, e, e2)

isEqFiat (A, Cw;, Cwy)
isEqFiat (A, wi, w2)

isEqFiat (A, e1, e2)
isEqFiat (A, e2, e1)

isEqFiat (A, e, e)

isEqFiat (A, e1, e2) isEqFiat (A, ez, e3)
isEqFiat (A, e1, e3)

LEMMA 5.5. isEqFiat satisfies the isEq properties.
Properties hold for isEqFiat by its definition.

The properties about substitution and context operations are
proved by easy inductions on isEqFiat (A, e, ¢'). Finally
we get the Empty property for free since when A is empty
isEqFiat coincides with isEq__,

JustlikeisEq__,, we can vary the evaluation relation used
in the second rule—any relation that works for isEq_, also
works for isEqFiat. We use the notation isEqFiat_, for
alternate versions of this relation.

LikeisEq__,, isEqFiat__ is semidecidable. However, its
definition does not suggest a particular algorithm to search
for derivations.

5.3 Contextual equivalence with assumptions

In the previous subsections we showed that various (-
equivalences are valid instantiations. Our ultimate goal,
however, is to find the strongest equivalence we can; then an
implementation can use anything weaker than it and be as-
sured of type safety. The natural instantiation to aim for then
is contextual equivalence. If we can show that contextual
equivalence satisfies the properties, then an implementation
will be free to use any known technique in its equivalence-
checking algorithm.



Therefore we must state what it means for two terms to
be contextually equivalent in the presence of equivalence
assumptions. We take as our starting point the notion of CIU-
equivalence, which is one of many equivalent definitions
of contextual equivalence [Mason and Talcott|1991]. It says
that two terms are equivalent if all Closed Instantiations
(substitutions of values for free variables) of them have the
same termination behavior when Used (placed in a closed
evaluation context).

The one subtlety here is what evaluation relation we
should consider the termination behavior for. Recall that the
type-equivalence rule for case will reduce with an open scru-
tinee C' w, while the operational semantics will only reduce
when the scrutinee is a closed value C v. The isEq pred-
icate is part of typechecking, so it is the former behavior
that is relevant; for instance we must not identify the stuck
terms C1 ((Az.z).1) and C2 ((Az.z).1) even though they
are contextually equivalent under CBV reduction.

Therefore, we define a “CBW” variant of the evaluation
relation, which we write —,. This relation is exactly the
same as — except that it replaces all vs with terminal ws.
For example, the (3 rule reads:

w2 7L>w
(funf(z) = e1)we —w er{wz/z}H{funf(z) = e /f}

In the definition of contextual equivalence, we use the —,
relation and let the substitutions range over ws.

Note that this subtlety is only for stuck terms. For well-
typed terms, it does not matter whether we use — or —,,
the same terms will be equated. Therefore, we are justified in
considering this a “CBV” contextual equivalence.

DEFINITION 5.5. Define e | if there exists u such that e —-,
wand not u —, u' forany u'.

Now define evaluation contexts in the standard manner.
DEFINITION 5.6 (Evaluation contexts).

E = O] FEel|vE|(E,e)]|(v,E)| E.1
| E.2| CE | caseEof {Ciz; = ¢ '}

DEFINITION 5.7 (CBV Contextual Equivalence). Define
isEqC (e1, e2) iff VE, V6 such that § maps variables to ws, if
E[bei)and E[dey] are closed then E [de1 | | iff E[dex] |

As one might expect, isEqC satisfies the isEq properties.
However, it does not make any use of the equivalence con-
text. The key idea to generalize the definition is to restrict
what substitutions should be considered, i.e. if the context
contains the equivalence e; = ez, we should only consider
substitutions that make e; and ez equal. We thus introduce a

new judgment A |- § (pronounced “¢ respects A”) as follows.

DEFINITION 5.8 (Equivalence respecting substitution).

AF§ isEqC (der, dez)
l_(g A,61g62'_6

We define two expressions to be equivalent under an
equivalence context A if they have the same behavior for all
substitutions that respect the context.

DEFINITION 5.9 (CBV Contextual Equiv. with Assumptions).

Define isEQCA (A, e, e2) iff VE, VY6 such that § maps vari-
ables to ws, if E[de1]| and E [dez] are closed and A & § then
Efder] 4 iff E[dea] .

Exotic Instantiations Exotic Instantiations

— —
iSEQCA(x=Q,x, Q') isEqFiat—,, (x=y, (Azx) Q, y)
\
isEqFiat_y (x=zy,x, y)
isEqC(.,Q, Q) - Y Y isSEq—p (., (AxX) Q,Q)

isEq_y (., (Axx)1,1)

Figure 9. Inclusions between the instantiations

Note that under this definition, if €2 is some nonterminat-
ing expression then the equivalence context z = (2 is incon-
sistent. No ¢ can reconcile z and €2, so isEqCA will equate
all terms compared under this context. Yet this behavior is
appropriate for a call-by-value language. We can use it to
give arbitrary types to expressions such as (Az.3)Q or C'Q
or (2, false). 2, but all of these expressions will diverge.

LEMMA 5.6. The relation isEqCA satisfies the isEq properties.

It is straightforward to show that isEqQCA is an equiva-
lence relation. It also satisfies the Beta Property because —,
includes —. The proofs for the rest of the properties rely on
two techniques: the proofs of the Weakening, Cut, Substitu-
tion and Context Conversion properties follow from proofs
of the analogous properties for A + §; the proofs of the
Injectivity and Empty properties follow from carefully con-
structed evaluation contexts.

Finally, we prove the following lemma to show that
isEqCA does make use of the assumptions in the A context.

LEMMA 5.7. If e1 = e3 € A, then isEqQCA (A, e1, e2).

5.4 Exotic Instantiations

The relation isEqCA is a strong instantiation, strictly coarser
than isEqFiat. But it is not the limit—we have already seen
thatisEq__, = can safely identify terms that are not contextu-
ally equivalent. In fact, the isEq properties place very weak
restrictions on what terms may be identified, the only nega-
tive statements are Empty and Injectivity, and they only ap-
ply when both terms are of the form C w.

Therefore, given a valid isEq instantiation, we can cre-
ate another coarser one by merging two of its equivalence
classes, as long as the two classes do not contain pure terms
headed by different constructors. For instance, contextual
equivalence considers all diverging terms to be equal and
certainly no diverging expression is a constructor value, so
we can create a coarser instantiation by also saying that any
nonterminating term is equal to the integer constant 3 (and
all additional equivalences forced by transitivity). Of course,
we could also make it equal to 4—but we had better not do
both, since then transitivity would make 3 and 4 equal.

This example shows that while there is a weakest valid
instantiation, isEq__,, there is no strongest one. Figure E]
summarizes the ordering of the various instantiations we
have discussed as a Hasse diagram.

6. Variations

Different versions of our typing rules lead to different re-
quirements for isEq, which in turn affects what instantia-
tions of isEq are valid. In this section, we present variations
to A¥’s type system, show how they lead to stronger proper-
ties for isEq, and discuss how that affects instantiations.



6.1 Values, pure terms or terms

A few rules have flexibility about whether some component
must be a value, a pure term, or an unrestricted term. Al-
though the last is the most permissive, we have chosen in
some cases to restrict to pure terms to weaken the substitu-
tion requirement for isEq.

For example, consider the type equivalence rule
TQ_RED1 in Figure []] The first precondition requires the
scrutinee to be equal to a constructor applied to a pure term.
Possible alternatives allow the argument to the constructor
to be an arbitrary expression, or require it to be a value.

If we had used an arbitrary expression, then the proof of
transitivity in Section [£.2)would require the stronger proper-
ties shown below:

PROPERTY 6.1 (Impure Substitution). IfisEq (A, e1, e2),
then isEq (A{e/z}, ex{e/z}, ea{e/z}).

PROPERTY 6.2 (Impure Empty). If C; # Cj,
then —isEq (-, Cie;, Cj¢;).

Unfortunately, instantiations of isEq that are based on
CBW-evaluation, such as isEqBeta__, or isEqCA do not
satisfy these properties because they are not closed un-
der substitution of arbitrary terms. For example, if 2 is
a diverging term, then (Az.z)y is equivalent to z under
isEgqBeta__, and isEqCA, but (Az.z ) is not. Further,
although isEqBeta_. trivially satisfies Impure Empty,
isEqQCA does not; all contexts identify C; Q and C; .

Alternatively, if we require the scrutinee to be equivalent
to some constructor value, i. e. C; v, then we would limit the
expressiveness of the type system. For example, the case type

case C y (T u) of {C1 z1 = Nat | C> z» = Bool }

cannot be shown equivalent to Nat.

Finally, the syntactic categorization of pure terms in A~
can be viewed as a very weak and conservative termination
analysis. However, unlike Coq or Agda, a complex termi-
nation analysis only slightly increases the expressiveness of
A¥’s term language, and only in terms of type convertibil-
ity. For instance, if A~ were to use Coq’s termination checker
in the above example where y is replaced by (factorial n), the
type would still be equivalent to Nat.

6.2 Substitution versus equivalence assumptions

As we discussed in Section some of our typing rules
diverge from standard practice in that, instead of substitu-
tion, they add equivalence assumptions to the context. We
have designed our rules in this manner for two reasons. One
reason is that we can make the E_CASE rule more expres-
sive by using equations. A second reason is that stating rules
with substitution requires a stronger substitution propert
for isEq. With the the alternate E_APP’ rule in Section
isEq would need to be closed under the substitution of re-
lated expressions inside related expressions.

PROPERTY 6.3 (Equivalent substitution).
IfisEq (A, e1, e2 ), and isEq (A, e, '),
then isEq (A{e/z}, ei{e/z}, ea{€’/z}).

The reason for this property is the need to show a stronger
substitution property for type equivalence A F 7{e2/z} =
7{ey/x} in the case of the preservation lemma when e is
an application e1 e; and e; — e3. Our previous proof
required a weaker lemma that substituted the same pure
term throughout the judgment.

We could modify the definitions of isEqFiat to satisfy the
Equivalent Substitution Property. However, Pro ertyim-
plies Impure Substitution Property (Property ; therefore,
neither isEq__, nor isEqCA satisfies it.

These two examples show two different axes: whether
CBW-respecting relations are allowed and whether the
equivalence must be stronger than reflexivity for binders, e.g.
is Az.e equivalent to Az.e’ when e reduces to ¢’. It is possi-
ble to design the type system that interpolates between these
two requirements, requiring a “pure equivalent substitution”
property, by maintaining the invariant that only ws are ever
substituted in terms. Then isEq__, | satisfies the pure equiv-
alent substitution, but isEq__, does not since it does not re-
duce under the binder. However, we prefer the simplicity of
the current system.

7. Extensions

We have simplified the design of A in a few ways so that
we can focus on its novel features. Here, we discuss exten-
sions that would make it more practical as a programming
language.

Polymorphism For simplicity, A\~ is not polymorphic.
Adding Haskell-style higher-order polymorphism [Jones
1995] would require straightforward changes to the
language. Another simple extension is first class-
polymorphism, as in Curry-style System F [Girard||1972].
(Note that type checking for Curry-style System F is also un-
decidable [Wells|[1999]].) In both cases, type abstraction and
application would be implicit as we do not wish to include
types in the syntax of terms.

Adding abstractions to the type language, such as in F,,
would require more significant changes. In particular, our
definition of type equivalence would have to be extended to
include (-equivalence for these abstractions. A kind-directed
specification, which retains the easy inversions of our current
definition of type equivalence seems possible, but we leave
this extension to future work.

Church-style type system For reasons discussed in Sec-
tion @ A~ does not include typing annotations in expres-
sions. As a result, the type system can assign multiple non-
equivalent types to the same expressions. Given the difficulty
of complete type inference for dependently-typed languages,
a practical source language would include annotations to
guide type inference and eliminate ambiguity.

An extension to A~ with type annotations would take the
form of an external language that elaborates to and is defined
by A~ typing derivations. This external language would be
free to use any type inference technology available for elab-
oration. As long as elaboration produces valid A~ typing
derivations, this external language is type safe. In particu-
lar, ideas from the design of ICC* [Barras and Bernardo|2008]
seem relevant.

Type-directed term equivalence Our design decision that
the properties of isEq should not refer to the type system
means that isEq cannot receive any typing information from
the type checker, such as type annotations embedded in the
terms, or the types of the two terms, or a typing context.
Therefore, certain type-directed equivalence algorithms [Co-
quand| (1991} [Stone and Harper||2000], which use type infor-
mation to provide stronger extensionality properties, cannot
be used for isEq. However, in a call-by-value language with
nontermination, 7-equivalences are restricted: Az.e z is not



equivalent to e because e could diverge. Instead, this equiv-
alence only holds for pure terms. Therefore, it is not clear
how to extend type-directed equivalences to this setting.

Termination analysis Because we do not enforce termi-
nation, every type in A¥ is inhabited. Therefore interpret-
ing types as logical formulas gives an inconsistent logic—
diverging terms are bogus proofs.

Nevertheless, in a CBV language, type safety alone im-
plies useful properties. For example, if a program has type
Yz:Nat.lessThanz 5 then type safety tells us that if the
program terminates the result will be less than 5, because
a bogus proof in the second component of the pair would
cause the program to diverge. Thus the type serves as a
“partial correctness” assertion, although not in the standard
sense.

However, this style of reasoning only works for proper-
ties that can be witnessed by a first-order data type. If the
type contains an implication, e.g. ¥z:Nat. (lessThan23 —
lessThan z 5 ), we cannot conclude much since the “proof”
may be a function that diverges when applied. Adding a
termination analysis (as a separate analysis) would remove
these limitations.

Furthermore, a termination analysis would provide a sig-
nificant source of program optimizations. In a dependently-
typed program, many terms are the encodings of proofs that
are needed for the program to type check, but otherwise
do not affect the actual result of computation. Some lan-
guages [Coq Development Team|2009, Barras and Bernardo
2008, Mishra-Linger and Sheard|2008] distinguish between
computational and proof terms, allowing the latter to be
erased prior to execution. This erasure leads to significant
gains in performance.

However, such optimization must not change the termi-
nation behavior of the program. In a call-by-value language,
computationally irrelevant code can be erased only if it ter-
minates. For example, even if z is not free in ez, letz =
e1 in ey is only equivalent to e if e; is known to terminate.
An infinite loop that prevents the program state from reach-
ing a stuck computation should not be removed.

8. Related work

The past decade has seen much research in the design
of dependently-typed programming languages, including
Cayenne [Augustsson|[1998], Epigram [McBride and McK-
inna|2004], Qmega [Sheard|2006], PIE [Vytiniotis and Weirich
2007, DML [Xi and Pfenning|[1999], ATS [Xil[2004], DML re-
formulated [Licata and Harper|2005], GURU [Stump et al.
2009], ConCogqtion [Fogarty et al.|[2007], Delphin [Poswol-
sky and Schiirmann!2008], and Ynot [Nanevski et al.[2008].
A number of proof assistants, such as Agda [Norell|[2007]
and Coq [Coq Development Team! 2009], have also suc-
cessfully been used as dependently-typed languages [Leroy
2006, |Oury and Swierstra|2008|]. We do not attempt to survey
this vast field here. Instead, we only describe aspects of the
most related systems.

Parameterized equivalence Like, \~, Dependent ML
(DML) [Xi and Pfenning||1999] is a family of dependently-
typed languages. Types in DML depend not on terms, but
on elements of some index language £, a parameter to the
system. This constraint language must include booleans and
a binary function =, which must return a boolean for ev-
ery sort of the language. The constraint relation ¢; P = P,
which states when proposition P about £ is derivable from

assumptions, is likewise a parameter to the system. This re-
lation must satisfy a number of regularity rules, somewhat
analogous to the isEq properties in Figure [8| Xi points out
that this constraint relation may be undecidable, but discour-
ages undecidable instances of it.

However, because DML is phase-sensitive, the index lan-
guage L is not the computation language, and is not compu-
tationally relevant. Therefore, there is no analogue of Prop-
erty IsEqBeta for the constraint relation as the index language
isnever evaluated. To program in DML, singleton types must
be used to make a connection between the index language
and computations, leading to redundancy.

Ou et al.[[2004] also axiomatize an equivalence judgment
on terms in the context of a dependent type system that
include general recursion and mutable reference. To ensure
decidability of type checking, they restrict the terms in types
to only pure terms—predefined constants and applications
involving pure terms. Therefore, their types may not depend
on user-defined functions and their axioms do not include
Property IsEq Beta.

Pattern matching with dependent types Languages that
support dependently-typed pattern matching, such as Epi-
gram, Coq and Agda, typically specify the rules for pattern
matching using some variant of unification to represent the
static information gained during case analysis.

Of these languages, Agda’s specification of pattern match-
ing is the most sophisticated [Norell|2007]. Agda uses unifi-
cation to match the index of the scrutinee’s type and the in-
dex of the pattern’s type. The unification algorithm will sim-
ply give up when the unification is hard; for instance, uni-
fying a function application with a term. As a result, Agda’s
type checking algorithm is not substitutive; unification be-
tween a variable y and an arbitrary term always succeeds,
however after substituting f z for y, the unification algo-
rithm might fail. In our system, instead of solving a unifi-
cation problem, we add the assumption that the indices are
equivalent in the context. Consequently, A~ is substitutive.

There are some languages that use equivalence assump-
tions to specify dependently-typed case analysis. A notable
example is Altenkirch and Oury’s core dependently-typed
language IIY [Altenkirch and Oury| 2008]. Like A\¥, type
checking in ITX is undecidable. However, ITX differs from A=
in that its type system uses $-equivalence as the term equiv-
alence relation.

Likewise, some specifications of generalized algebraic
datatypes (GADTs, aka guarded recursive datatypes) use
equivalence assumptions [Xi et al.[2003} |Pottier and Régis-
Gianas|2006]. GADTs add index equivalences (but not scruti-
nee/pattern equivalences) to the context when type checking
pattern matching. In these settings, the index language is re-
stricted so that there is an effective algorithm for using these
assumptions during type checking. As a result of this restric-
tion, this specification is no more expressive than one that
uses unification.

Nontermination in types Few dependently typed lan-
guages allow general recursive functions to appear in types.
Cayenne and II¥ do, but as far as we know no results, such
as type safety, have been proven about them.

Cardelli’s Type:Type language [Cardelli|1986|] allows non-
termination and has a type safety proof based on denota-
tional semantics. However, the proof does not handle case-
expressions and dependent elimination. The type system
bakes in #n-equivalence as the term equivalence relation.



9. Conclusion

In this paper, we have explored the trade-off between de-
cidable type checking and the complexity of the design of
A%, an expressive, dependently-typed language. Because we
have not insisted in the former, we are able to give a simple
specification to A~, despite its advanced features, that per-
mits straightforward, modular proof of type safety. We view
this simplicity as a contribution of our approach.

The second contribution of our work is the uniformity of
semantics. Although many different instantiations of isEq
are valid, we have worked hard to ensure that isEqCA is
one of them. Therefore, the same semantics can be used to
reason about the program both statically and dynamically.

The final contribution of our design is its generality. We
can view A~ with iSEqCA as an ideal goal for the design of
a dependently-typed language, much as System F is an ideal
model of a polymorphic functional language. Of course, we
can never implement a complete type checker for A\~ with
isEqCA; the problem is undecidable. We can however, spec-
ify and implement complete type checkers for decidable sub-
languages, as any equivalence dominated by isEqCA de-
fines a type safe language.
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