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Abstract
Open, type-level functions are a recent innovation in Haskell that
move Haskell towards the expressiveness of dependent types, while
retaining the look and feel of a practical programming language.
This paper shows how to increase expressiveness still further, by
adding closed type functions whose equations may overlap, and
may have non-linear patterns over an open type universe. Although
practically useful and simple to implement, these features go be-
yond conventional dependent type theory in some respects, and
have a subtle metatheory.

Categories and Subject Descriptors F.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs—type structure;
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures; F.4.2 [Mathematical Logic and Formal Languages]: Gram-
mars and Other Rewriting Systems—parallel rewriting systems

General Terms Design, Languages, Theory

Keywords Type families; Type-level computation; Haskell; Sys-
tem FC

1. Introduction
Type families are a relatively recent extension to Haskell that allows
the programmer to express type-level computation (Chakravarty
et al. 2005). For example, one can say

type family Elt (a :: ?) :: ?
type instance Elt ByteString = Word8
type instance Elt [b ] = b

The first line declares the type family Elt and gives its kind; the
second and third are two independent declarations that give two
equations for Elt. Now the types (Elt ByteString) and Word8 are
considered equivalent by the type inference engine, and likewise
(Elt [ Int ]) and Int. Type families have proved to be a popular
feature in Haskell, dovetailing particularly nicely with Haskell’s
type classes. Type families are naturally partial and open. For
example, there is no equation for Elt Char above, so Elt Char
will never be equal to any other type. On the other hand, the author
of a new library is free to add a new instance, such as this one:

type instance Elt (Set b) = b

However, not all type-level functions can be defined by open type
families. An important example is the equality function, which
determines whether two types can be shown equal at compile-
time:1

1 Here we use datatype promotion, allowing data types like Bool , and lists,
to be used as kinds (Yorgey et al. 2012).

type family Equal a b :: Bool
type instance Equal a a = True -- Instance (A)
type instance Equal a b = False -- Instance (B)

The programmer intends these equations to be read top-to-bottom,
like a term-level function definition in Haskell. However, because
GHC’s current type families are open, they must be defined by inde-
pendent, un-ordered type instance equations. The two equations
overlap, so they are rightly rejected lest they be used to deduce
unsound type equalities. For example, we could reduce the type
Equal Int Int to both True and False, since both patterns match.

Yet equality is a well-defined function, and a useful one too, as
we discuss in Section 2. To fix this omission we introduce closed
type families with ordered equations, thus:

type family Equal a b :: Bool where
Equal a a = True
Equal a b = False

Now all the equations for the type family are given together, and
can be read top-to-bottom. However, behind this simple idea lie
a number of complexities. In this paper we describe these pitfalls
and their sometimes non-obvious solutions. We make the following
contributions:

• We introduce closed type families with overlapping equations,
and show how they can readily express programs that were
previously inexpressible or required indirect encodings (Sec-
tion 2).

• Our system supports non-linear left-hand sides, such as that for
Equal above, where the variable a is repeated in the first equa-
tion. It also supports coincident overlap, which allows some
lightweight theorem-proving capability to be incorporated in
the definitional equality of types (Section 3.4).

• We give the subtle rules that govern type family simplifica-
tion, including those that determine when a pattern cannot be
matched by a type (Section 3).

• We describe a typed core language that includes both open and
closed type families (Section 4), and prove that it is type-safe,
assuming that type families terminate (Section 5). We do that
by establishing a consistency property of the type equations
induced by type families.

• We identify the complications for consistency that arise from
non-terminating type families and we expose a subtle oversight
in GHC’s current rules for open type families in Section 6.

• We have implemented closed type families in GHC as well as a
number of case studies, such as the units package, an extensible
framework for dimensional analysis, presented in Appendix A.
Closed type families are available now in GHC 7.8.
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In short, the programmer sees a simple, intuitive language fea-
ture, but the design space (and its metatheory) is subtle. Although
type families resemble the type-level computation and “large elim-
inations” found in full-spectrum dependently-typed languages like
Coq and Agda, there are important semantic and practical differ-
ences. We discuss these in Section 8.

2. Closed type families
Haskell (in its implementation in GHC) has supported type families
for several years. They were introduced to support associated types,
a feature that Garcia et al.’s (2003) comparison between C++,
Haskell, and ML, noted as a C++’s main superiority for generic
programming.

Type families were designed to dovetail smoothly with type
classes. For example, the type function2 Elt above could be used
to specify the element type in a container class:

class Container c where
empty :: c
member :: Elt c ! c ! Bool

instance Container [a ] where ...
instance Container ByteString where ...

New instances for Container can be defined as new types are
introduced, often in different modules, and correspondingly new
equations for Elt must be added too. Hence Elt must be open
(that is, can be extended in modules that import it), and distributed
(can be scattered over many different modules). This contrasts with
term-level functions where we are required to define the function
all in one place.

The open, distributed nature of type families, typically associ-
ated with classes, requires strong restrictions on overlap to maintain
soundness. Consider

type family F a b :: ?
type instance F Int a = Bool
type instance F a Bool = Char

Now consider the type (F Int Bool). Using the first equation, this
type is equal to Bool , but using the second it is equal to Char . So
if we are not careful, we could pass a Bool to a function expecting
a Char , which would be embarrassing.

GHC therefore brutally insists that the left-hand sides of two
type instance equations must not overlap (unify). (At least, unless
the right-hand sides would then coincide; see Section 3.4.)

2.1 Closed families: the basic idea
As we saw in the Introduction, disallowing overlap means that use-
ful, well-defined type-level functions, such as type level equality,
cannot be expressed. Since openness is the root of the overlap prob-
lem, it can be solved by defining the equations for the type family
all in one place. We call this a closed type family and define it using
a where clause on the function’s original declaration. The equa-
tions may overlap, and are matched top-to-bottom. For example:

type family And (a :: Bool) (b :: Bool) :: Bool where
And True True = True
And a b = False

Since the domain of And is closed and finite, it is natural to write
all its equations in one place. Doing so directly expresses the fact
that no further equations are expected.

Although we have used overlap in this example, one can always
write functions over finite domains without overlap:

2 We use “type family” and “type function” interchangeably.

type family And’ (a :: Bool) (b :: Bool) :: Bool where
And’ True True = True
And’ False True = False
And’ True False = False
And’ False False = False

Nevertheless, overlap is convenient for the programmer, mirrors
what happens at the term level, avoids a polynomial blowup in
program size, and is more efficient (for the type checker) to execute.
Furthermore, when defined over an open kind, such as ?, closed
type families allow a programmer to express relationships (such
as inequality of types—see Section 2.4) that are otherwise out of
reach.

2.2 Non-linear patterns
Let us return to our equality function, which can now be defined
thus:

type family Equal (a :: ?) (b :: ?) :: Bool where
Equal a a = True
Equal a b = False

This declaration introduces the type function Equal , gives its kind
and, in the where clause, specifies all its equations. The first equa-
tion has a non-linear pattern, in which a is repeated, and it overlaps
with the second equation. If the domain were finite we could avoid
both features by writing out all the equations exhaustively, but new
types can be introduced at any time, so we cannot do that here.
The issue becomes even clearer when we use kind polymorphism
(Yorgey et al. 2012), thus:

type family Equal (a :: ) (b :: ) :: Bool where
Equal a a = True
Equal a b = False

For example, (Equal Maybe List) should evaluate to False. It may
seem unusual to define a function to compute equality even over
types of function kind (? ! ?). After all, there is no construct that
can compare functions at the term level.

At the type level, however, the type checker decides equality
at function kinds all the time! In the world of Haskell types there
exist no anonymous type-level functions, nor can type families
appear partially applied, so this equality test—which checks for
definitional equality, in type theory jargon—is straightforward. All
Equal does is reify the (non-extensional) equality test of the type
checker.

In fact, Haskell programmers are used to this kind of equality
matching on types; for example, even in Haskell 98 one can write

instance Num a ) Num (T a a) where ...

Because the type inference engine already supports decidable
equality, it is very straightforward to implement non-linear pat-
terns for type functions as well as type classes. Non-linear patterns
are convenient for the programmer, expected by Haskell users, and
add useful expressiveness. They do make the metatheory much
harder, as we shall see, but that is a problem that has to be solved
only once.

2.3 Type structure matching
In our experience, most cases where closed type families with over-
lapping equations are useful involve a variation on type equality.
However, sometimes we would like to determine whether a type
matches a specific top-level structure.

For example, we might want to look at a function type of the
form Int ! (Bool ! Char) ! Int ! Bool and determine that
this is a function of three arguments.
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data Nat = Zero | Succ Nat
type family CountArgs (f :: ?) :: Nat where

CountArgs (a ! b) = Succ (CountArgs b)
CountArgs result = Zero

Because the equations are tried in order, any function type will
trigger the first equation and any ground non-function type (that
is, a type that is not a type variable or an arrow type) will trigger
the second. Thus, the type family effectively counts the number of
parameters a function requires.

When might this be useful? We have used this type family to
write a variable-arity zipWith function that infers the correct ar-
ity, assuming that the result type is not a function type. Other
approaches that we are aware of (Fridlender and Indrika 2000;
McBride 2002; Weirich and Casinghino 2010) require some encod-
ing of the desired arity to be passed explicitly. A full presentation of
the variable-arity zipWith is presented in Appendix B. To achieve
the same functionality in a typical dependently typed language like
Agda or Coq, we must pattern-match over some inductive universe
of codes that can be interpreted into types.

2.4 Observing inequality
Type families such as Equal allow programmers to observe when
types do not match. In other words, Equal Int Bool automatically
reduces to False, via the second equation. With open type families,
we could only add a finite number of reductions of un-equal types
to False.

However, the ability to observe inequality is extremely use-
ful for expressing failure in compile-time search algorithms. This
search could be a simple linear search, such as finding an element
in a list. Such search underlies the HList library and its encod-
ing of heterogeneous lists and extensible records (Kiselyov et al.
2004). It also supports Swierstra’s solution to the expression prob-
lem via extensible datatypes (Swierstra 2008). Both of these pro-
posals use the extension -XOverlappingInstances to implement
a compile-time equality function.3

Type families can directly encode more sophisticated search al-
gorithms than linear list searching, including those requiring back-
tracking, simply by writing a functional program. For example, the
following closed type family determines whether a given element
is present in a tree.

data Tree a = Leaf a | Branch (Tree a) (Tree a)
type family TMember (e :: ) (set :: Tree ) :: Bool where

TMember e (Leaf x) = Equal e x
TMember e (Branch left right) =

Or (TMember e left) (TMember e right)

Implementing this search using overlapping type classes, which
do not support backtracking, requires an intricate encoding with
explicit stack manipulation.

2.5 Summary
Type-level computation is a powerful idea: it allows a programmer
to express application-specific compile-time reasoning in the type
system. Closed type families fill in a missing piece in the design
space, making type families more expressive, convenient, and more
uniform with term-level functional programming.

⌧,� Types
⇢ Type patterns (no type families)
F Type families
⌦ Substitutions from type variables to types

Figure 1. Grammar of Haskell metavariables

3. Simplifying closed family applications
We have shown in the previous sections how type family reduc-
tion can be used to equate types. For example, a function requir-
ing an argument of type T True can take an argument of type
T (And True True), because the latter reduces to the former.

Because the definition of type equality is determined by type
family reduction, the static semantics must precisely define what
reductions are allowed to occur. That definition turns out to be
quite subtle, so this section develops an increasingly refined notion
of type family reduction, motivated by a series of examples. The
presentation gives a number of definitions, using the vocabulary
of Figure 1, but we eschew full formality until Section 4. We use
the term “target” to designate the type-function application that
we are trying to simplify. We say that a type ⌧1 “simplifies” or
“reduces” to another type ⌧2 if we can rewrite the ⌧1 to ⌧2 using a
(potentially empty) sequence of left-to-right applications of type
family equations. We also use the notation ⌧1  ⌧2 to denote
exactly one application of a type family equation and ⌧1  ⇤ ⌧2 to
denote an arbitrary number of reductions. Type equality is defined
to be roughly the reflexive, symmetric, transitive, congruent closure
of type reduction; details are in Section 4.3.

We frequently refer to the example in the introduction, repeated
below, with the variables renamed to aid in understanding:

type family Equal (a :: ) (b :: ) :: Bool where
Equal a a = True -- Eqn (A)
Equal b c = False -- Eqn (B)

3.1 No functions on the LHS
If we wish to simplify Equal Int Int, equation (A) of the definition
matches, so we can safely “fire” the equation (A) to simplify the
application to True.

Even here we must take a little care. What happens if try this?

type family F (a :: Bool) where
F False = False
F True = True
F (Equal x y) = True

Then F (Equal Int Bool) superficially appears to match only the
third equation. But of course, if we simplify the argument of F
in the target, it would become F False, which matches the first
equation.

The solution here is quite standard: in type family definitions
(both open and closed) we do not allow functions in the argument
types on the LHS. In terms of Figure 1, the LHS of a function
axiom must be a pattern ⇢. This is directly analogous to allowing
only constructor patterns in term-level function definitions, and is
already required for Haskell’s existing open type families.

We then propose the following first attempt at a reduction strat-
egy:

3 This extension allows class instances, but not type family instances, to
overlap. If the type inference engine chooses the wrong class instance, a
program may have incoherent behavior, but it is believed that type safety is
not compromised. See Morris and Jones (2010) for relevant discussion.
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Candidate Rule 1 (Closed type family simplification). An equa-
tion for a closed type family F can be used to simplify a target
(F ⌧) if (a) the target matches the LHS of the equation, and (b) no
LHS of an earlier equation for F matches the target.

The formal definition of matching follows:

Definition 1 (Matching). A pattern ⇢ matches a type ⌧ , written
match(⇢, ⌧), when there is a well-kinded substitution ⌦ such that
⌦(⇢) = ⌧ . The domain of ⌦ must be a subset of the set of free
variables of the pattern ⇢.

3.2 Avoiding premature matches with apartness
Suppose we want to simplify Equal Bool d . Equation (A) above
fails to match, but (B) matches with a substitution ⌦ = [b 7!
Bool , c 7! d ]. But it would be a mistake to simplify Equal Bool d
to False. Consider the following code:

type family FunIf (b :: Bool) :: ? where
FunIf True = Int ! Int
FunIf False = ()

bad :: d ! FunIf (Equal Bool d)
bad = ()

segFault :: Int
segFault = bad True 5

If we do simplify the type Equal Bool d to False then we can
show that bad is well typed, since FunIf False is (). But then
segFault calls bad with d instantiated to Bool . So segFault ex-
pects bad True to return a result of type FunIf (Equal Bool Bool),
which reduces to Int ! Int, so the call in segFault type-checks
too. Result: we apply () as a function to 5, and crash.

The error, of course, is that we wrongly simplified the type
(Equal Bool d) to False; wrongly because the choice of which
equation to match depends on how d is instantiated. While the
target (Equal Bool d) does not match the earlier equation, there
is a substitution for d that causes it to match the earlier equation.
Our Candidate Rule 1 is insufficient to ensure type soundness. We
need a stronger notion of apartness between a (target) type and a
pattern, which we write as apart(⇢, ⌧) in what follows.

Candidate Rule 2 (Closed type family simplification). An equa-
tion for a closed type family F can be used to simplify a target
(F ⌧) if (a) the target matches the LHS of the equation, and (b)
every LHS ⇢ of an earlier equation for F is apart from the target;
that is, apart(⇢, ⌧).

As a notational convention, apart(⇢, ⌧) considers the lists ⇢ and
⌧ as tuples of types; the apartness check does not go element-
by-element. We similarly treat uses of match and unify (defined
shortly) when applied to lists.

To rule out our counterexample to type soundness, apartness
must at the very least satisfy the following property:

Property 2 (Apartness through substitution). If apart(⇢, ⌧) then
there exists no ⌦ such that match(⇢,⌦(⌧)).

An appealing implementation of apart(⇢, ⌧) that satisfies Prop-
erty 2 is to check that the target ⌧ and the pattern ⇢ are not unifiable,
under the following definition:

Definition 3 (Unification). A type ⌧1 unifies with a type ⌧2 when
there is a well-kinded substitution ⌦ such that ⌦(⌧1) = ⌦(⌧2).
We write unify(⌧1, ⌧2) = ⌦ for the most general such unifier if it
exists.4

4 For instance, the implementation of unify can be the standard first-order
unification algorithm of Robinson.

However this test is not sufficient for type soundness. Consider
the type Equal Int (G Bool), where G is a type family. This type
does not match equation (A), nor does it unify with (A), but it does
match (B). So according to our rule, we can use (B) to simplify
Equal Int (G Bool) to False. But, if G were a type function with
equation

type instance G Bool = Int

then we could use this equation to rewrite the type to Equal Int Int,
which patently does match (A) and simplifies to True!

In our check of previous equations of a closed family, we wish
to ensure that no previous equation can ever apply to a given ap-
plication. Simply checking for unification of a previous pattern and
the target is not enough. To rule out this counterexample we need
yet another property from the apart(⇢, ⌧) check, which ensures that
the target cannot match a pattern of an earlier equation through ar-
bitrary reduction too.

Property 4 (Apartness through reduction). If apart(⇢, ⌧), then for
any ⌧ 0 such that ⌧  ⇤ ⌧ 0: ¬match(⇢, ⌧ 0).

3.3 A definition of apartness
We have so far sketched necessary properties that the apartness
check must satisfy—otherwise, our type system surely is not sound.
We have also described why a simple unification-based test does
not meet these conditions, but we have not yet given a concrete
definition of this check.

Note that we cannot use Property 4 to define apart(⇢, ⌧) be-
cause it would not be well founded. We need apart(⇢, ⌧) to de-
fine how type families should reduce, but Property 4 itself refers to
type family reduction. Furthermore, even if this were acceptable,
it seems hard to implement. We have to ensure that, for any sub-
stitution, no reducts of a target can possibly match a pattern; there
can be exponentially many reducts in the size of the type and the
substitution.

Hence we seek a conservative but cheap test. Let us consider
again why unification is not sufficient. In the example from the
previous section, we showed that type Equal Int (G Bool) does
not match equation (A), nor does it unify with (A). However,
Equal Int (G Bool) can simplify to Equal Int Int and now
equation (A) does match the reduct.

To take the behavior of type families into account, we first
flatten any type family applications in the arguments of the target
(i.e., the types ⌧ in a target F ⌧ ) to fresh variables. Only then do
we check that the new target is not unifiable with the pattern. This
captures the notion that a type family can potentially reduce to any
type—anything more refined would require advance knowledge of
all type families, impossible in a modular system. In our example,
we must check apart((a, a), (Int,G Bool)) when trying to use the
second equation of Equal to simplify Equal Int (G Bool). We
first flatten (Int,G Bool) into (Int, x) (for some fresh variable x).
Then we check whether (a, a) cannot be unified with (Int, x). We
quickly discover that these types can be unified. Thus, (a, a) and
(Int,G Bool) are not apart and simplifying Equal Int (G Bool)
to False is prohibited.

What if two type family applications in the target type are
syntactically identical? Consider the type family F below:

type family F a b where
F Int Bool = Char
F a a = Bool

Should the type F (G Int) (G Int) be apart from the left-hand-
side F Int Bool? If we flatten to two distinct type variables then
it is not apart; if we flatten using a common type variable then it
becomes apart. How can we choose if flattening should preserve
sharing or not? Let us consider the type F b b, which matches
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the second equation. It is definitely apart from F Int Bool and
can indeed be simplified by the second equation. What happens,
though, if we substitute G Int for b in F b b? If flattening did not
take sharing into account, (G Int,G Int) would not be apart from
(Int,Bool), and F (G Int) (G Int) wouldn’t reduce. Hence, the
ability to simplify would not be stable under substitution. This, in
turn, threatens the preservation theorem.

Thus, we must identify repeated type family applications and
flatten these to the same variable. In this way, F (G Int) (G Int)
is flattened to F x x (never F x y ), will be apart from the first
equation, and will be able to simplify to Bool , as desired.

With these considerations in mind, we can now give our imple-
mentation of the apartness check:

Definition 5 (Flattening). To flatten a type ⌧ into ⌧ 0, written ⌧ 0 =
flatten(⌧), process the type ⌧ in a top-down fashion, replacing
every type family application with a type variable. Two or more
syntactically identical type family applications are flattened to the
same variable; distinct type family applications are flattened to
distinct fresh variables.

Definition 6 (Apartness). To test for apart(⇢, ⌧), let ⌧ 0 = flatten(⌧)
and check unify(⇢, ⌧ 0). If this unification fails, then ⇢ and ⌧ are
apart. More succinctly: apart(⇢, ⌧) = ¬unify(⇢, flatten(⌧)).

We can show that this definition does indeed satisfy the identi-
fied necessary properties from Section 3.2. In Section 5.1 we will
also identify the sufficient conditions for type soundness for any
possible type-safe implementation of apartness, show that these
conditions imply the properties identified in the previous section
(a useful sanity check!) and prove that the definition of apartness
that we just proposed meets these sufficient conditions.

3.4 Allowing more reductions with compatibility
Checking for apartness in previous equations might be unneces-
sarily restrictive. Consider this code, which uses the function And
from Section 2.1:

f :: T a ! T b ! T (And a b)
tt :: T True

g :: T a ! T a
g x = f x tt

Will the definition of g type-check? Alas no: the call (f x tt)
returns a result of type T (And a True), and that matches neither
of the equations for And . Perhaps we can fix this by adding an
equation to the definition of And , thus:

type family And (a :: Bool) (b :: Bool) :: Bool where
And True True = True -- (1)
And a True = a -- (2)
And a b = False -- (3)

But that does not work either: the target (And a True) matches (2)
but is not apart from (1), so (2) cannot fire. And yet we would like
to be able to simplify (And a True) to a, as Eqn (2) suggests. Why
should this be sound? Because anything that matches both (1) and
(2) will reduce to True using either equation. We say that the two
equations coincide on these arguments. When such a coincidence
happens, the apartness check is not needed.

We can easily formalize this intuition. Let us say that two
equations are compatible when any type that matches both left-
hand sides would be rewritten by both equations to the same result,
eliminating non-convergent critical pairs in the induced rewriting
system:

Definition 7 (Compatibility). Two type-family equations p and
q are compatible iff ⌦1(lhsp) = ⌦2(lhsq) implies ⌦1(rhsp) =
⌦2(rhsq).

For example, (1) and (2) are compatible because a type, such as
And True True, would be rewritten by both to the same type,
namely True. It is easy to test for compatibility:

Definition 8 (Compatibility implementation). The test for compat-
ibility, written compat(p, q), checks that unify(lhsp , lhsq) = ⌦ im-
plies ⌦(rhsp) = ⌦(rhsq). If unify(lhsp , lhsq) fails, compat(p, q)
holds vacuously.

The proof that compat(p, q) implies that p and q are compatible
appears in Appendix G and is straightforward. We can now state
our final simplification rule for closed type families:

Rule 9 (Closed type family simplification). An equation q of a
closed type family can be used to simplify a target application F ⌧
if the following conditions hold:

1. The target ⌧ matches the type pattern lhsq .
2. For each earlier equation p, either compat(p, q) or

apart(lhsp , ⌧).

For example, we can fire equation (2) on a target that is not apart
from (1), because (1) and (2) are compatible. We show that Rule 9
is sufficient for establishing type soundness in Section 5.

Through this use of compatibility, we allow for a limited form
of theorem proving within a closed type family definition. The fact
that equation (2) is compatible with (1) essentially means that the
rewrite rule for (2) is admissible given that for (1). By being able
to write such equations in the closed type family definition, we can
expand Haskell’s definitional equality to relate more types.

3.5 Optimized matching
In our original Candidate Rule 2 above, when simplifying a target
F ⌧ with an equation q, we are obliged to check apart(lhsp, ⌧),
for every earlier equation p. But much of this checking is wasted
duplication. For example, consider

type family F a where
F Int = Char -- (1)
F Bool = Bool -- (2)
F x = Int -- (3)

If a target matches (2) there is really no point in checking its
apartness from (1), because anything that matches (2) will be apart
from (1). We need only check that the target is apart from any
preceding equations that could possibly match the same target.

Happily, this intuition is already embodied in our new simplifi-
cation Rule 9. This rule checks compat(p, q) _ apart(lhsp, ⌧) for
each preceding equation p. But we can precompute compat(p, q)
(since it is independent of the target), and in the simplification rule
we need check apartness only for the pre-computed list of earlier
incompatible equations. In our example, equations (1) and (2) are
vacuously compatible, since their left-hand sides do not unify, and
hence no type can match both. Thus, there is no need to check for
apartness from (1) of a target matching (2).

3.6 Compatibility for open families
As discussed in the introduction, type instance declarations for
open type families must not overlap. With our definition of com-
patibility, however, we can treat open and closed families more
uniformly by insisting that any two instances of the same open type
family are compatible:

Definition 10 (Open type family overlap check). Every pair
of equations p and q for an open type family F must satisfy
compat(p, q).

Notice that this definition also allows for coincident right-hand
sides (as in the case for closed type families, Section 3.4). For
example, these declarations are legal:
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type family Coincide a b
type instance Coincide Int b = Int
type instance Coincide a Bool = a

These equations overlap, but in the region of overlap they always
produce the same result, and so they should be allowed. (GHC
already allowed this prior to our extensions.)

3.7 Type inference for closed type families
Given the difficulty of type inference for open type families (Chak-
ravarty et al. 2005; Schrijvers et al. 2008), how do we deal with
closed ones? Thankfully, this turns out to be remarkably easy: we
simply use Rule 9 to simplify closed families in exactly the same
stage of type inference that we would simplify an open one. The
implementation in GHC is accordingly quite straightforward.

Despite the ease of implementation, there are perhaps complex
new possibilities opened by the use of closed families—these are
explored in Section 7.6.

4. System µFC: formalizing the problem
Thus far we have argued informally. In this section we formalize
our design and show that it satisfies the usual desirable properties
of type preservation and progress, assuming termination of type
family reduction. It is too hard to formulate these proofs for all
of Haskell, so instead we formalize µFC, a small, explicitly-typed
lambda calculus. This is more than a theoretical exercise: GHC
really does elaborate all of Haskell into System FC (Sulzmann et al.
2007a; Weirich et al. 2013), of which µFC is a large subset that
omits some details of FC—such as kind polymorphism (Yorgey
et al. 2012)—that are irrelevant here.

4.1 System µFC
System µFC is an extension of System F, including kinds and
explicit equality coercions. Its syntax is presented in Figure 2. This
syntax is very similar to recent treatments of System FC (Weirich
et al. 2013). We omit from the presentation the choice of ground
types and their constructors and destructors, as they are irrelevant
for our purposes.

There are a few points to note about type families, all visible in
Figure 2. A type family has a particular arity, and always appears
saturated in types. That explains the first-order notation F ():0 in
ground contexts ⌃, and F (⌧) in types.

A closed type family appears in µFC as a kind signature
F ():0, and a single axiom C : , both in the top-level ground
context ⌃. The “type”  of the axiom is a list of equations, each
of form [↵:]. F (⌧) ⇠ �, just as we have seen before except that
the quantification is explicit. For example, the axiom for Equal
(restricted for simplicity to kind ?) looks like this:

axiomEq : [↵:?].(Equal ↵↵) ⇠ True ;
[↵:?,�:?].(Equal ↵�) ⇠ False

Although our notation for lists does not make it apparent, we
restrict the form of the equations to require that F refers to only
one type family—that is, there are no independent Fi . We use
subscripts on metavariables to denote which equation they refer to,
and we refer to the types ⇢i as the type patterns of the i’th equation.
We assume that the variables ↵ bound in each equation are distinct
from the variables bound in other equations.

An open type family appears as a kind signature and zero or
more separate axioms, each with one equation.

4.2 Static semantics
Typing in µFC is given by the judgments in Figure 3. Most of the
rules are uninteresting and are thus presented in Appendix C. The
typing rules for expressions are entirely straightforward. The only

Expressions:

e ::= x | �x :⌧.e | e1 e2 | ⇤↵:.e | e ⌧
| e . � Cast
| . . . Constructors and destruc-

tors of datatypes
Types:

⌧,�, ::= ↵ | ⌧1 ! ⌧2 | 8↵:.⌧
 , � | ⌧1 ⌧2 Application

| F (⌧) Saturated type family
| H Datatype, such as Int

⇢ denotes a type pattern (with no type families)
 ::= ? | 1 ! 2 Kinds
Propositions:

� ::= ⌧1 ⇠ ⌧2 Equality propositions
� ::= [↵:]. F (⇢) ⇠ � Axiom equations
 ::= � List of axiom eqns. (axiom types)
Coercions:

�, ⌘ ::= �1 ! �2 | 8↵:.� | �1 �2 | F (�)
| h⌧i Reflexivity
| sym � Symmetry
| �1 # �2 Transitivity
| left � Left decomposition
| right � Right decomposition
| C [i ] ⌧ Axiom application

Contexts:

Ground: ⌃ ::= · | ⌃,H :! ? | ⌃,F ():0 | ⌃,C : 
Variables: � ::= · | �, x :⌧ | �,↵:
Combined: � ::= ⌃;�

Substitutions: ⌦ ::= [↵ 7! ⌧ ]

Figure 2. The grammar of System µFC

�
t̀m

e : ⌧ Expression typing
�

t̀y

⌧ :  Type kinding
�

c̀o

� : � Coercion typing
g̀nd

⌃ Ground context validity
⌃

v̀ar

� Variables context validity
c̀tx

� Context validity

Figure 3. Typing judgments for System µFC

noteworthy rule is the one for casting, which gives the raison d’être
for coercions:

�
c̀o

� : ⌧1 ⇠ ⌧2 �
t̀m

e : ⌧1
�

t̀m

e . � : ⌧2
TM CAST

Here, we see that a cast by a coercion changes the type of an ex-
pression. This is what we mean by saying that a coercion witnesses
the equality of two types—if there is a coercion between ⌧1 and ⌧2,
then any expression of type ⌧1 can be cast into one of type ⌧2.

The rules for deriving the kind of a type are straightforward and
are omitted from this presentation.

4.3 Coercions and axiom application
Coercions are less familiar, so we present the coercion typing rules
in full, in Figure 4. The first four rules say that equality is congru-
ent—that is, types can be considered equal when they are formed of
components that are considered equal. The following three rules as-
sert that coercibility is a proper equivalence relation. The CO LEFT
and CO RIGHT rules assert that we can decompose complex equal-
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�
c̀o

� : � Coercion typing

�
c̀o

�1 : ⌧1 ⇠ ⌧ 01 �
c̀o

�2 : ⌧2 ⇠ ⌧ 02
�

t̀y

⌧1 ! ⌧2 : ?

�
c̀o

�1 ! �2 : (⌧1 ! ⌧2) ⇠ (⌧ 01 ! ⌧ 02)
CO ARROW

�,↵:
c̀o

� : ⌧1 ⇠ ⌧2 �
t̀y

8↵:.⌧1 : ?

�
c̀o

8↵:.� : (8↵:.⌧1) ⇠ (8↵:.⌧2)
CO FORALL

�
c̀o

�1 : ⌧1 ⇠ �1 �
c̀o

�2 : ⌧2 ⇠ �2

�
t̀y

⌧1 ⌧2 : 

�
c̀o

�1 �2 : (⌧1 ⌧2) ⇠ (�1 �2)
CO APP

�
c̀o

� : ⌧1 ⇠ ⌧2
�

t̀y

F (⌧1) : 

�
c̀o

F (�) : F (⌧1) ⇠ F (⌧2)
CO TYFAM

�
t̀y

⌧ : 

�
c̀o

h⌧i : ⌧ ⇠ ⌧
CO REFL

�
c̀o

� : ⌧1 ⇠ ⌧2
�

c̀o

sym � : ⌧2 ⇠ ⌧1
CO SYM

�
c̀o

�1 : ⌧1 ⇠ ⌧2 �
c̀o

�2 : ⌧2 ⇠ ⌧3
�

c̀o

�1 # �2 : ⌧1 ⇠ ⌧3
CO TRANS

�
c̀o

� : ⌧1 ⌧2 ⇠ �1 �2

�
t̀y

⌧1 :  �
t̀y

�1 : 

�
c̀o

left � : ⌧1 ⇠ �1
CO LEFT

�
c̀o

� : ⌧1 ⌧2 ⇠ �1 �2

�
t̀y

⌧2 :  �
t̀y

�2 : 

�
c̀o

right � : ⌧2 ⇠ �2
CO RIGHT

C : 2 ⌃  = [↵:]. F (⇢) ⇠ �
⌃;�

t̀y

⌧ : i c̀tx

⌃;�
8 j < i , no conflict( , i , ⌧ , j )

⌃;�
c̀o

C [i ] ⌧ : F (⇢i [⌧/↵i ]) ⇠ �i [⌧/↵i ]
CO AXIOM

no conflict( , i, ⌧ , j) Check for equation conflicts

 = [↵:]. F (⇢) ⇠ � apart(⇢j , ⇢i [⌧/↵i ])

no conflict( , i , ⌧ , j )
NC APART

compat( [i ], [j ])

no conflict( , i , ⌧ , j )
NC COMPATIBLE

compat(�1,�2) Equation compatibility

�1 = [↵1:1]. F (⇢1) ⇠ �1
�2 = [↵2:2]. F (⇢2) ⇠ �2
unify(⇢1, ⇢2) = ⌦
⌦(�1) = ⌦(�2)

compat(�1,�2)
COMPAT COINCIDENT

�1 = [↵1:1]. F (⇢1) ⇠ �1
�2 = [↵2:2]. F (⇢2) ⇠ �2
unify(⇢1, ⇢2) fails

compat(�1,�2)
COMPAT DISTINCT

Figure 4. Coercion formation rules

ities to simpler ones. These formation rules are incomplete with
respect to some unspecified notion of semantic equality—that is,
we can imagine writing down two types that we “know” are equal,
but for which no coercion is derivable. For example, there is no
way to use induction over a data structure to prove equality. How-
ever, recall that these coercions must all be inferred from a source
program, and it is unclear how we would reliably infer inductive
coercions.

The last rule of coercion formation, CO AXIOM, is the one
that we are most interested in. The coercion C [i ] ⌧ witnesses the
equality obtained by instantiating the i’th equation of axiom C with
the types ⌧ . For example,

axiomEq[0] Int : Equal Int Int ⇠ True

This says that if we pick the first equation of axiomEq (we in-
dex from 0), and instantiate it at Int, we have a witness for
Equal Int Int ⇠ True.

Notice that the coercion C [i ] ⌧ specifies exactly which equation
is picked (the i’th one); µFC is a fully-explicit language. However,
the typing rules for µFC must reject unsound coercions like

axiomEq[1] Int Int : Equal Int Int ⇠ False

and that is expressed by rule CO AXIOM. The premises of the rule
check to ensure that ⌃;� is a valid context and that all the types ⌧
are of appropriate kinds to be applied in the i’th equation. The last
premise implements Rule 9 (Section 3.4), by checking no conflict
for each preceding equation j. The no conflict judgment simply
checks that either (NC COMPATIBLE) the i’th and j’th equation
for C are compatible, or (NC APART) that the target is apart from
the LHS of the j’th equation, just as in Rule 9.

In NC COMPATIBLE, note that the compat judgment does not
take the types ⌧ : compatibility is a property of equations, and is
independent of the specific arguments at an application site. The
two rules for compat are exactly equivalent to Definition 8.

These judgments refer to algorithms apart and unify. We as-
sume a correct implementation of unify and propose sufficient
properties of apart in Section 5.1. We then show that our chosen
algorithm for apart (Definition 6) satisfies these properties.

As a final note, the rules do not check the closed type family
axioms for exhaustiveness. A type-family application that matches
no axiom simply does not reduce. Adding an exhaustiveness check
based on the kind of the arguments of the type family might be a
useful, but orthogonal, feature.

5. Metatheory
A summary of the structure of the type safety proof, highlighting
the parts that are considered in this paper, is in Figure 5. Our
main goals are to prove (i) the substitution lemma of types into
coercions (Section 5.2), and (ii) a consistency property that ensures
we never equate two types such as Int and Bool (Section 5.3). The
substitution and consistency lemmas lead to the preservation and
progress theorems respectively, which together ensure type safety.
We omit the operational semantics of µFC as well as the other
lemmas in the main proofs of preservation and progress, because
these are all direct adaptations from previous work (Weirich et al.
2011; Sulzmann et al. 2007a).

We stress that, as Figure 5 indicates, we have proved type safety
only for terminating type families. What exactly does that mean?
We formally define the rewrite relation, now written ⌃ ` ·  · to
explicit mention the set of axioms, with the following rule:

C : 2 ⌃  = [↵:]. F (⇢) ⇠ �

g̀nd

⌃ ⌧ = ⇢i [ /↵i ] ⌧ 0 = �i [ /↵i ]
8 j < i , no conflict( , i , , j )

⌃ ` C[F (⌧)] C[⌧ 0] RED
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Type subst. lemma Good ⌃
(§5.4)

Coercion subst. lemma
(§5.2)

Confluence

Term subst. lemma Consistency (§5.3)

Preservation Progress

Type Safety

assume
termination

Figure 5. Structure of type safety proof. The arrows represent
implications. The nodes highlighted in gray are the parts considered
in the present work.

In the conclusion of this rule, C[·] denotes a type context with
exactly one hole. Its use in the rule means that a type family
can simplify anywhere within a type. Note that the no conflict
premise of this rule is identical to that of the CO AXIOM rule.
By “terminating type families” we mean that the ⌃ ` ·  ·
relation cannot have infinite chains. We discuss non-terminating
type families in Section 6.

As a notational convention, we extend the relation to lists of
types by using ⌃ ` ⌧1  ⌧2 to mean that exactly one of the types
in ⌧1 steps to the corresponding type in ⌧2; in all other positions ⌧1
and ⌧2 are identical.

5.1 Preliminaries: properties of unification and apartness
In order to prove properties about no conflict, we must assume the
correctness of the unification algorithm:

Property 11 (unify correct). If there exists a substitution ⌦ such
that ⌦(�) = ⌦(⌧), then unify(�, ⌧) succeeds. If unify(�, ⌧) = ⌦
then ⌦ is a most general unifier of � and ⌧ .

In Section 3.2, we gave some necessary properties of apart,
namely Properties 2 and 4. To prove type soundness we need suf-
ficient properties, such as the following three. Any implementation
of apart that has these three properties would lead to type safety.
We prove (in Appendix F) that the given algorithm for apart (Def-
inition 6) satisfies these properties. Due to flattening in the defini-
tion of apart, this proof is non-trivial. As a sanity check, we also
prove that the sufficient properties imply the necessary ones of Sec-
tion 3.2.

Property 12 (Apartness is stable under type substitution). If
apart(⇢, ⌧), then for all substitutions ⌦, apart(⇢,⌦(⌧)).

Property 13 (No unifiers for apart types). If apart(⇢, ⌧), then there
exists no substitution ⌦ such that ⌦(⇢) = ⌦(⌧).

The final property of the apartness check is the most complex. It
ensures that, if an equation can fire for a given target and that target
steps, then it is possible to simplify the reduct even further so that
the same equation can fire on the final reduct.

Property 14 (Apartness can be regained after reduction). If ⌧ =
⌦(⇢) and ⌃ ` ⌧  ⌧ 0, then there exists a ⌧ 00 such that

1. ⌃ ` ⌧ 0 ⇤ ⌧ 00,
2. ⌧ 00 = ⌦0(⇢) for some ⌦0, and
3. for every ⇢0 such that apart(⇢0, ⌧): apart(⇢0, ⌧ 00).

Here is an example of Property 14 in action. Consider the following
type families F and G :

type family F a where
F (Int,Bool) = Char -- (A)
F (a, a) = Bool -- (B)

type family G x where G Int = Double

Suppose that our target is F (G Int,G Int), and that our partic-
ular implementation of apart allows equation (B) to fire; that is,
apart((Int,Bool), (G Int,G Int)). Now, suppose that instead of
firing (B) we chose to reduce the first G Int argument to Double.
The new target is now F (Double,G Int). Now (B) cannot fire,
because the new target simply does not match (B) any more. Prop-
erty 14 ensures that there exist further reductions on the new target
that make (B) firable again—in this case, stepping the second G Int
to Double does the job. Conditions (2) and (3) of Property 14 for-
malize the notion “make (B) firable again”.

5.2 Type substitution in coercions
System µFC enjoys a standard term substitution lemma. This
lemma is required to prove the preservation theorem. As shown
in Figure 5, the term substitution lemma depends on the substi-
tution lemma for coercions. We consider only the case of interest
here, that of substitution in the rule CO AXIOM.

Lemma 15 (CO AXIOM Substitution). If⌃;�,�:,�0
c̀o

C [i ] ⌧ :

F (⇢i [⌧/↵i ]) ⇠ �i [⌧/↵i ] and⌃;�
t̀y

� : , then⌃;�,�0[�/�]
c̀o

C [i ] ⌧ [�/�] : F (⇢i [⌧/↵i ][�/�]) ⇠ �i [⌧/↵i ][�/�].

The proof of this lemma, presented in Appendix D, proceeds
by case analysis on the no conflict judgment. It requires the use
of the (standard) type substitution lemma and Property 12, but is
otherwise unremarkable.

5.3 Consistency
As discussed at the beginning of this section, to establish progress
we must show consistency. Consistency ensures that we can never
deduce equalities between distinct value types, denoted with ⇠:

⇠ ::= H ⌧ | ⌧1 ! ⌧2 | 8↵:.⌧
For example, Int, Bool , and 8↵:?.↵! ↵ are all value types. A set
of axioms is consistent if we cannot deduce bogus equalities like
Int ⇠ Bool or Int ⇠ 8↵:?.↵! ↵:

Definition 16 (Consistent contexts). A ground context ⌃ is consis-
tent if, for all coercions � such that ⌃; ·

c̀o

� : ⇠1 ⇠ ⇠2:

1. if ⇠1 = H ⌧1, then ⇠2 = H ⌧2,
2. if ⇠1 = ⌧1 ! ⌧ 01, then ⇠2 = ⌧2 ! ⌧ 02, and
3. if ⇠1 = 8↵:.⌧1, then ⇠2 = 8�:.⌧2.

How can we check whether an axiom set is consistent? It is
extremely hard to do so in general, so instead, following previous
work (Weirich et al. 2011), we place syntactic restrictions on the
axioms that conservatively guarantee consistency. A set of axioms
that pass this check are said to be Good. We then prove the
consistency lemma:

Lemma 17 (Consistency). If Good⌃, then ⌃ is consistent.

Following previous proofs, we show that if Good⌃ and
⌃; ·

c̀o

� : �1 ⇠ �2, then �1 and �2 have a common reduct
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�0

�1 �2

�3

⇤ ⇤

⇤ ⇤

�0

�1 �2

�3

⇤ ⇤

�0

�1 �2

�3
0 or 1 0 or 1

(a) Confluence (b) Local confluence (c) Local diamond

Figure 6. Graphical representation of confluence properties. A
solid line is a universally quantified input, and a dashed line is an
existentially quantified output.

in the  relation. Because the simplification relation preserves
type constructors on the heads of types, we may conclude that ⌃ is
consistent.

However, one of the cases in this argument is transitivity: the
joinability relation must be transitive. That is, if ⌧1 and ⌧2 have a
common reduct �1, and if ⌧2 and ⌧3 have a common reduct �2, then
⌧1 and ⌧3 must have a common reduct (they are joinable). To show
transitivity of joinability, we must show confluence of the rewrite
relation, in order to find the common reduct of �1 and �2 (which
share ⌧2 as an ancestor).

Our approach to this problem is to show local confluence (see
Figure 6) and then use Newman’s Lemma (1942) to get full con-
fluence. Newman’s Lemma requires that the rewrite system is
terminating—this is where the assumption of termination is used.

The full, detailed proof appears in Appendix E.

5.4 Good contexts
What sort of checks should be in our syntactic conditions, Good?
We would like Good to be a small set of common-sense conditions
for a type reduction system, such as the following:

Definition 18 (Good contexts). We have Good⌃ whenever the
following four conditions hold:

1. For all C : 2 ⌃:  is of the form [↵:]. F (⇢) ⇠ � where all
of the Fi are the same type family F and all of the type patterns
⇢i do not mention any type families.

2. For all C : 2 ⌃ and equations [↵:]. F (⇢) ⇠ � in  : the
variables ↵ all appear free at least once in ⇢.

3. For all C : 2 ⌃: if  defines an axiom over a type family F
and has multiple equations, then no other axiom C 0: 0 2 ⌃
defines an axiom over F . That is, all type families with ordered
equations are closed.

4. For all C1:�1 2 ⌃ and C2:�2 2 ⌃ (each with only one
equation), compat(�1,�2). That is, among open type families,
the patterns of distinct equations do not overlap.

The clauses of the definition of Good are straightforward
syntactic checks. In fact, these conditions are exactly what GHC
checks for when compiling type family instances. This definition
of Good leads to the proof of Lemma 39, as described above.

6. Non-terminating type families
By default GHC checks every type family for termination, to guar-
antee that the type checker will never loop. Any such check is
necessarily conservative; indeed, GHC rejects the TMember func-
tion of Section 2.4 (Schrijvers et al. 2008). Although GHC’s test
could readily be improved, any conservative check limits expres-
siveness or convenience, so GHC allows the programmer to disable

type instance A = C A
type instance C x = D x (C x)
type instance D x x = Int

(1) A C A D A (C A) D (C A) (C A) Int
(2) A C A ⇤

by (1) C Int

Int and C Int have no common reduct.

Figure 7. Counter-example to confluence

the check. This may make the type checker loop, but it should not
threaten soundness.

However, the soundness result of Section 5 covers only termi-
nating type families. Surprisingly (to us) non-termination really
does lead to a soundness problem (Section 6.1). We propose a so-
lution that (we believe) rules out this problem (Section 6.2), but
explain why the main result of this paper is difficult to generalize
to non-terminating type families, leaving an open problem for fur-
ther work.

6.1 The problem with infinity
Consider this type family, adapted from Huet (1980):

type family D x where
D ([b ], b) = Bool
D (c, c) = Int

We wish to simplify the target D (a, a). The type (a, a) matches
the second pattern (c, c), but is it apart from the first pattern
([b ], b)? Definition 6 asserts that they are apart since they do not
unify: unification fails with an occurs check error. Accordingly,
Rule 9 would simplify D (a, a) to Int. But consider the following
definitions, where type family Loop is a nullary (0-argument) type
family:

type family Loop
type instance Loop = [Loop ]

If we instantiate a with Loop we get (Loop, Loop) which can sim-
plify to ([Loop ], Loop). The latter does match the pattern ([b ], b),
violating Property 4, a necessary condition for soundness.

So, in a non-terminating system our apartness check is unsound.
Concretely, using our apartness implementation from Definition 6,
we can equate types Int and Bool , thus:

Int ⇠ D (Loop, Loop) ⇠ D ([Loop ], Loop) ⇠ Bool

Conclusion: we must not treat (a, a) as apart from the pattern
([b ], b), even though they do not unify. In some ways this is not
so surprising. In our earlier examples, apartness was based on
an explicit contradiction (“a Bool cannot be an Int”), but here
unification fails only because of an occurs check. As the Loop
example shows, allowing non-terminating type-family definitions
amounts to introducing infinite types, and if we were to allow
infinite types, then (a, a) does unify with ([b ], b)!

6.2 Fixing the problem
The problem with the current apartness check is that finite unifica-
tion fails too often. We need to replace the unification test in the
definition of apartness with unification over infinite types:

Definition 19 (Infinite unification). Two types ⌧1, ⌧2 are infinitely
unifiable, written unify1(⌧1, ⌧2), if there exists a substitution !
whose range may include infinite types, such that !(⌧1) = !(⌧2).

For example types (a, a) and ([b ], b) are unifiable with a sub-
stitution ! = [a 7! [ [[ ... ] ]], b 7! [ [[ ... ] ]] ]. Efficient algorithms
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to decide unification over infinite types (and compute most gen-
eral unifiers) have existed for some time and are based on well-
established theory (Huet 1976; Courcelle 1983). See Jaffar (1984)
for such an algorithm, and Knight (1989) for a general survey.

We conjecture that replacing all uses of unify with unify1
in our definitions guarantees soundness, even in the presence of
non-terminating family equations. Alas, this conjecture turns out
to be very hard to prove, and touches on open problems in the
term-rewriting literature. For example, a rewrite system that has
(a) infinite rewrite sequences and (b) non-left-linear patterns, does
not necessarily guarantee confluence, even if its patterns do not
overlap. Figure 7 gives an example, from Klop (1993).

Notice that replacing unify with unify1 may change the reduc-
tion relation. For example, a target which is apart from a pattern
with a unify-based apartness check may no longer be apart from the
same pattern with the more conservative unify1-based apartness
check. Yet, type safety (for terminating axiom sets) is not compro-
mised since Property 11 carries over to unification algorithms over
infinite types (Huet 1976).

6.3 Ramifications for open families
We pause briefly to consider the implications for GHC’s existing
open type families. GHC allows the following definition for an
open type family D’:

type family D’ x y
type instance D’ [b ] b = Bool
type instance D’ c c = Int

As described in Section 2, the type instance equations of an open
type family are required to have non-overlapping left-hand sides,
and GHC 7.6 believes that the two equations do not overlap because
they do not unify. But, using certain flags, GHC also accepts the
definition of Loop, and the target (D’ Loop Loop) demonstrates
that the combination is unsound precisely as described above.5

Happily, if the conjecture of Section 6.2 holds true, we can apply
the same fix for open families as we did for closed families: simply
use unify1 instead of unify when checking for overlap. Indeed, this
is exactly how we have corrected this oversight in GHC 7.8.

7. Discussion and Future Work
The study of closed type families opens up a wide array of related
issues. This section discusses some of the more interesting points
we came across in our work.

7.1 Denotational techniques for consistency
We do not have a proof of consistency for a system with non-
terminating, non-left-linear axioms (even when using unify1 in-
stead of unify). We have seen that confluence is false, and hence
cannot be used as a means to show consistency.

A possible alternative approach to proving consistency—side-
stepping confluence—is via a denotational semantics for types. We
would have to show that if we can build a coercion � such that
� ` � : ⌧ ⇠ �, then J⌧K = J�K, for some interpretation of types
into a semantic domain. The “obvious” domain for such a seman-
tics, in the presence of non-terminating computations, is the domain
that includes ? as well as finite and infinite trees. Typically in de-
notational semantics, recursive type families would be interpreted
as the limit of approximations of continuous functions. However,
the “obvious” interpretation of type families in this simple domain
is not monotone. Consider this type family:

5 Akio Takano has posted an example of how this can cause a program to
fail, at http://ghc.haskell.org/trac/ghc/ticket/8162.

type family F a b where
F x x = Int
F [x ] (Maybe x) = Char

It is the case that (? v [?]) and (? v Maybe ?), but the semantic
interpretation of F , call it f , should satisfy f(?,?) = Int and
f([?],Maybe ?) = Char . Hence, monotonicity breaks. The lack
of monotonicity means that limits of chains of approximations do
not exist, and thus that interpretations of functions, such as f , are
ill-defined.

An alternate definition would give f(?,?) = ?, but then sub-
stitutivity breaks. Indeed, the proof theory can deduce that F x x is
equal to Int for any type x , even those that have denotation ?.

Alternatively to these approaches, one might want to explore
different domains to host the interpretation of types.

7.2 Conservativity of apartness
We note in Section 3.3 that our implementation of apartness is
conservative. This conservativity is unavoidable—it is possible for
open type families to have instances scattered across modules,
and thus the apartness check cannot adequately simplify the types
involved in every case. However, the current check considers none
of the type family axioms available, even if one would inform the
apartness check. For example, consider

type family G a where
G Int = Bool
G [a ] = Char

and we wish to simplify target Equal Double (G b). It is clear
that an application of G can never simplify to Double, so we could
imagine a more refined apartness check that could reduce this target
to False. We leave the details of such a check to future work.

7.3 Conservativity of coincident overlap: partial knowledge
It is worth noting that the compatibility check (Definition 8) is
somewhat conservative. For example, take the type family

type family F a b where
F Bool c = Int
F d e = e

Consider a target F g Int. The target matches the second equation,
but not the first. But, the simplification rule does not allow us to fire
the second equation—the two equations are not compatible, and the
target is not apart from the first equation. Yet it clearly would be
safe to fire the second equation in this case, because even if g turns
out to be Bool , the first equation would give the same result.

It would, however, be easy to modify F to allow the desired
simplification: just add a new second equation F a Int = Int. This
new equation would be compatible with the first one and therefore
would allow the simplification of F g Int.

7.4 Conservativity of coincident overlap: requiring syntactic
equality

The compatibility check is conservative in a different dimension: it
requires syntactic equality of the RHSs after substitution. Consider
this tantalizing example:

type family Plus a b where
Plus Zero a = a -- (A)
Plus (Succ b) c = Succ (Plus b c) -- (B)
Plus d Zero = d -- (C)
Plus e (Succ f ) = Succ (Plus e f ) -- (D)

If this type family worked as one would naively expect, it would
simplify an addition once either argument’s top-level constructor
were known. (In other dependently typed languages, definitions
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like this are not possible and require auxiliary lemmas to reduce
when the second argument’s structure only is known.) Alas, it does
not work as well as we would hope. The problem is that not all
the equations are compatible. Let’s look at (B) and (C). To check
if these are compatible, we unify ((Succ b), c) with (d ,Zero) to
get [c 7! Zero, d 7! Succ b ]. The right-hand sides under this
substitution are Succ (Plus b Zero) and Succ b. However, these
are not syntactically identical, so equations (B) and (C) are not
compatible, and a target such as Plus g Zero is stuck.

Why not just allow reduction in the RHSs before checking for
compatibility? Because doing so is not obviously well-founded!
Reducing the Succ (Plus b Zero) type that occurred during the
compatibility check above requires knowing that equations (B) and
(C) are compatible, which is exactly what we’re trying to establish.
So, we require syntactic equality to support compatibility, and leave
the more general check for future work.

7.5 Lack of inequality evidence
One drawback of closed type families is that they sometimes do
not compose well with generalized algebraic datatypes (GADTs).
Consider the following sensible-looking example:

data X a where
XInt :: X Int
XBool :: X Bool
XChar :: X Char

type family Collapse a where
Collapse Int = Int
Collapse x = Char

collapse :: X a ! X (Collapse a)
collapse XInt = XInt
collapse = XChar

The type function Collapse takes Int to itself and every other type
to Char . Note the type of the term-level function collapse. Its im-
plementation is to match XInt—the only constructor of X param-
eterized by Int—and return XInt; all other constructors become
XChar . The structure of collapse exactly mimics that of Collapse.
Yet, this code does not compile.

The problem is that the type system has no evidence that, in the
second equation for collapse, the type variable a cannot be Int. So,
when type-checking the right-hand side XChar , it is not type-safe
to equate Collapse a with Char . The source of this problem is that
the type system has no notion of inequality. If the case construct
were enhanced to track inequality evidence and axiom application
could consider such evidence, it is conceivable that the example
above could be made to type-check. Such a notion of inequality has
not yet been considered in depth, and we leave it as future work.

7.6 Type inference
The addition of closed type families to Haskell opens up new possi-
bilities in type inference. By definition, the full behavior of a closed
type family is known all at once. This closed-world assumption al-
lows the type inference engine to perform more improvement on
types than would otherwise be possible. Consider the following
type family:

type family Inj a where
Inj Int = Bool
Inj Bool = Char
Inj Char = Double

Type inference can discover in this case that Inj is indeed an
injective type function. When trying to solve a constraint of the
form Inj Int ⇠ Inj q the type inference engine can deduce that
q must be equal to Int for the constraint to have a solution. By

contrast, if Inj were not identified as injective, we would be left
with an unsolved constraint as in principle there could be multiple
other types for q that could satisfy Inj Int ⇠ Inj q.

Along similar lines, we can imagine improving the connection
between Equal and (⇠ ). Currently, if a proof a ⇠ b is available,
type inference will replace all occurrences of a with b, after which
Equal a b will reduce to True. However, the other direction does
not work: if the inference engine knows Equal a b ⇠ True, it will
not deduce a ⇠ b. Given the closed definition of Equal , though,
it seems possible to enhance the inference engine to be able to go
both ways.

These deductions are not currently implemented, but remain as
compelling future work.

8. Related work
8.1 Previous work on System FC
The proof of type soundness presented in this paper depends heav-
ily on previous work for System FC, first presented by Sulzmann
et al. (2007a). That work proves consistency only for terminating
type families, as we do here.

In a non-terminating system, local confluence does not imply
confluence. Therefore, previous work (Weirich et al. 2011) showed
confluence of the rewrite system induced by the (potentially non-
terminating) axiom set by establishing a local diamond property
(see Figure 6). However, the proof took a shortcut: the require-
ments for good contexts effectively limited all axioms to be left-
linear. The local diamond proof relies on the fact that, in a system
with linear patterns, matching is preserved under reduction. For in-
stance, consider these axioms:

type instance F a b = H a
type instance G Int = Bool

The type F (G Int) (G Int) matches the equation for F and can
potentially simplify to F (G Int) Bool or to F Bool (G Int) or
even to F Bool Bool . But, in all cases the reduct also matches
the very same pattern for F , allowing local diamond property to be
true.6

What is necessary to support a local diamond property in a
system with closed type families, still restricted to linear patterns?
We need this property: If F ⌧ can reduce by some equation q, and
⌧  ⌧ 0, then F ⌧ 0 can reduce by that same equation q. With only
open families, this property means that matching must be preserved
by reduction. With closed families, however, both matching and
apartness must be preserved by reduction. Consider the definition
for F’ below (where H is some other type family):

type family F’ a b where
F’ Int Bool = Char
F’ a b = H a

We know that F’ (G Int) (G Int) matches the second equation
and is apart (Definition 6) from the first equation. The reduct
F’ (G Int) Bool also matches the second equation but is not apart
from the first equation. Hence, F’ (G Int) Bool cannot simplify
by either equation for F’ , and the local diamond property does not
hold. Put simply, our apartness implementation is not preserved by
reduction.

In a terminating system, we are able to get away with the weaker
Property 14 for apart (where apartness is not directly preserved
under reduction), which our implementation does satisfy. We have
designed an implementation of apart which is provably stable
under reduction, but it is more conservative and less intuitive for
programmers. Given that this alternative definition of apart brought

6 Actually, under parallel reduction; see (Weirich et al. 2011).
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a proof of type safety only for potentially non-terminating but
linear patterns (prohibiting our canonical example Equal), and
that it often led to stuck targets where a reduction naively seemed
possible, we have dismissed it as being impractical. We thus seek
out a proof of type safety in the presence of non-terminating, non-
left-linear axiom sets.

8.2 Type families vs. functional dependencies
Functional dependencies (Jones 2000) (further formalized by Sulz-
mann et al. (2007b)) allow a programmer to specify a dependency
between two or more parameters of a type class. For example, Kise-
lyov et al. (2004) use this class for their type-level equality func-
tion:7

class HEq x y (b :: Bool) | x y ! b
instance HEq x x True
instance (b ⇠ False) ) HEq x y b

The annotation x y ! b in the class header declares a functional
dependency from x and y to b. In other words, given x and y , we
can always find b.

Functional dependencies have no analogue in GHC’s internal
language, System FC; indeed they predate it. Rather, functional de-
pendencies simply add extra unification constraints that guide type
inference. This can lead to very compact and convenient code, es-
pecially when there are multiple class parameters and bi-directional
functional dependencies. However, functional dependencies do not
generate coercions witnessing the equality between two types.
Hence they interact poorly with GADTs and, more generally, with
local type equalities. For example, consider the following:

class Same a b | a ! b
instance Same Int Int

data T a where
T1 :: T Int
T2 :: T a

data S a where
MkS :: Same a b ) b ! S a

f :: T a ! S a ! Int
f T1 (MkS b) = b
f T2 s = 3

In the T1 branch of f we know that a is Int, and hence (via the
functional dependency and the Same Int Int instance declaration)
the existentially-quantified b must also be Int, and the definition
should type-check. But GHC rejects f , because it cannot produce a
well-typed FC term equivalent to it. Could we fix this, by producing
evidence in System FC for functional dependencies? Yes; indeed,
one can regard functional dependencies as a convenient syntactic
sugar for a program using type families. For example we could
translate the example like this:

class F a ⇠ b ) Same a b where
type F a

instance Same Int Int where
type F Int = Int

Now the (unchanged) definition of f type-checks.
A stylistic difference is that functional dependencies and type

classes encourage logic programming in the type system, whereas
type families encourage functional programming.

7 Available from http://okmij.org/ftp/Haskell/types.html#
HList.

8.3 Controlling overlap
Morris and Jones (2010) introduce instance chains, which obviate
the need for overlapping instances by introducing a syntax for
ordered overlap among instances. Their ideas are quite similar to
the ones we present here, with a careful check to make sure that
one instance is impossible before moving onto the next. However,
the proof burden for their work is lower than ours—a flaw in
instance selection may lead to incoherent behavior (e.g., different
instances selected for the same code in different modules), but
it cannot violate type safety. This is because class instances are
compiled solely into term-level constructs (dictionaries), not type-
level constructs. In particular, no equalities between different types
are created as part of instance compilation.

8.4 Full-spectrum dependently typed languages
Type families resemble the type-level computation supported by
dependently typed languages. Languages such as Coq (Coq devel-
opment team 2004) and Agda (Norell 2007) allow ordinary func-
tions to return types. As in Haskell, type equality in these languages
is defined to include �-reduction of function application and ◆-
reduction of pattern matching.

However, there are several significant differences between these
type-level functions and type families. The first is that Coq and
Agda do not allow the elimination of their equivalents of kind ?.
There is no way to write a Coq/Agda function analogous to the
closed type family below, which returns True for function types
and False otherwise.

type family IsArrow (a :: ?) :: Bool where
IsArrow (a ! b) = True
IsArrow a = False

Instead, pattern matching is only available for inductive datatypes.
The consistency of these languages prohibits the elimination of
non-inductive types such as ? (or Set, Prop, and Type).

Furthermore, pattern matching in Coq and Agda does not sup-
port non-linear patterns. As we discussed above, non-linear patterns
allow computation to observe whether two types are equal. How-
ever, the equational theory of full spectrum languages is much more
expressive than that of Haskell. Because these languages allow un-
saturated functions in types, it must define when two functions are
equal. This comparison is intensional, and allowing computation
to observe intensional equality is somewhat suspicious. However,
in Haskell, where all type functions must always appear saturated,
this issue does not arise.

Due to the lack of non-linear patterns, Coq and Agda program-
mers must define individual functions for every type that supports
decidable equality. (Coq provides a tactic—decide equality—
to automate this definition.) Furthermore, these definitions do not
immediately imply that equality is reflexive; this result must be
proved separately and manually applied. In contrast, the closed type
family Equal a a immediately reduces to True.

Similarly, functions in Coq and Agda do not support coincident
overlap at definition time. Again, these identities can be proven as
lemmas, but must be manually applied.

8.5 Other functional programming languages
Is our work on closed type families translatable to other func-
tional programming languages with rich type-level programming?
We think so. Though the presentation in this paper is tied closely
to Haskell, we believe that the notion of apartness would be quite
similar (if not the same) in another programming language. Ac-
cordingly, the analysis of Section 3 would carry over without much
change. The one caveat is that, as mentioned above, non-linear pat-
tern matching depends on the saturation of all type-level functions.
If this criterion is met, however, we believe that other languages

12 2013/11/15



could adopt the surface syntax and behavior of closed type families
as presented here without much change.

9. Conclusions
Closed type families improve the usability of type-level compu-
tation, and make programming at the type level more reminis-
cent of ordinary term-level programming. At the same time, closed
families allow for the definition of manifestly-reflexive, decidable
equality on types of any kind. They allow automatic reductions of
types with free variables and allow the user to specify multiple, po-
tentially overlapping but coherent reduction strategies (such as the
equations for the And example).

On the theoretical side, the question of consistency for non-
terminating non-left-linear rewrite systems is an interesting re-
search problem in its own right, quite independent of Haskell or
type families, and we offer it as a challenge problem to the reader.
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PhD thesis, Université de Paris VII, 1976.

G. Huet. Confluent reductions: Abstract properties and applications to term
rewriting systems. J. ACM, 27(4):797–821, Oct. 1980. ISSN 0004-5411.
. URL http://doi.acm.org/10.1145/322217.322230.

J. Jaffar. Efficient unification over infinite terms. New Generation Comput-
ing, 2(3):207–219, 1984. ISSN 0288-3635. . URL http://dx.doi.
org/10.1007/BF03037057.

M. P. Jones. Type classes with functional dependencies. In G. Smolka,
editor, ESOP, volume 1782 of Lecture Notes in Computer Science, pages
230–244. Springer, 2000. ISBN 3-540-67262-1.

O. Kiselyov, R. Lämmel, and K. Schupke. Strongly typed heterogeneous
collections. In Proc. 2004 ACM SIGPLAN Workshop on Haskell, Haskell
’04, pages 96–107. ACM, 2004.

J. Klop. Term rewriting systems. In Handbook of logic in computer science
(vol. 2), pages 1–116. Oxford University Press, Inc., 1993.

K. Knight. Unification: a multidisciplinary survey. ACM Comput. Surv., 21
(1):93–124, Mar. 1989. ISSN 0360-0300. . URL http://doi.acm.
org/10.1145/62029.62030.

C. McBride. Faking it: Simulating dependent types in Haskell. J. Funct.
Program., 12(5):375–392, July 2002.

J. G. Morris and M. P. Jones. Instance chains: type class programming with-
out overlapping instances. In Proceedings of the 15th ACM SIGPLAN
international conference on Functional programming, ICFP ’10, pages
375–386, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-794-3.
. URL http://doi.acm.org/10.1145/1863543.1863596.

M. H. A. Newman. On theories with a combinatorial definition of “equiv-
alence”. Annals of Mathematics, 43(2):pp. 223–243, 1942. ISSN
0003486X. URL http://www.jstor.org/stable/1968867.

U. Norell. Towards a practical programming language based on dependent
type theory. PhD thesis, Department of Computer Science and Engineer-
ing, Chalmers University of Technology, SE-412 96 Göteborg, Sweden,
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A. Description of units package
Using closed type families, we have written a library units,8 for
strongly-typed dimensional analysis. For example, we want to write
functions like this:

curPos :: Pos ! Velocity ! Acceleration ! Time ! Pos
curPos x0 v a t = x0 .+ (v .⇤ t) .+ (0.5 ⇤. a .⇤ (t .ˆ pTwo))

The above code works with our library and type-checks. However,
if we were to make an expression that does not respect physical
units (say, by forgetting the t in the v .⇤ t), we get a type error
at compile time. For that particular case, the error says Couldn’t
match type ’Meter’ with ’Second’, rather helpfully.

Importantly, this library is fully extensible. There are no wired-
in units, except for Scalar . This way, users can apply the library to
situations beyond just physics. For example, it might be sensible to

8 cabal install units; you will need GHC 7.8.

13 2013/11/15



have HPixel and VPixel units when writing a drawing program, to
make sure that you don’t ever add a height with a width.

In order to support extensibility, new units are represented by
new datatypes, in kind ?. For example, here are the definitions for
two units:

data Meter = Meters
instance Unit Meter where

type BaseUnit Meter = Canonical

data Foot = Feet
instance Unit Foot where

type BaseUnit Foot = Meter
conversionRatio = 0.3048

type Pos = MkDim Meter

It is the library’s extensibility that requires closed type families.
It needs to reason about type-level structures without being able
to enumerate all the possibilities, and without requiring the user to
be well-versed in type families. There are two independent ways
that closed type families are required in the design of the library:
manipulating dimension specifications as type-level sets (which is
similar to the example in Section 2.4) and managing the hierarchies
of inter-convertible units.

Building a hierarchy of units with a distinguished root In the
definition of Meter and Foot above, we also defined their relation-
ship. The code says that Meter is a canonical unit—that is, it is
not defined in terms of something else. On the other hand, Foot is
defined in terms of Meter , so that we can write code like

height :: Double
height = (1.8 %Meters) # Feet

and height will have the value 5.9055. Of course, we could convert
feet to meters simply by reversing the statement.

Say a library has been written on top of units that defines
several different length measurements, such as Meters , Feet, and
LightYears . Now, a user of that library realizes that she needs to
define Inches . She would like to define inches in terms of Feet,
because she knows that conversion ratio. But, she doesn’t know
which of the existing length units is the canonical one. Part of the
design principle behind the units library is that she does not need
to know—she can define Inches in terms of any of the available
length units.

With this design in hand, we still need a way to compute the
conversion from our internal representation of a length—which
will be in Meters , the canonical unit—to Inches . We can see that
the declared units form a tree, rooted at Meters , and each new
unit refers to its BaseUnit, or parent in the tree. To find the right
conversion ratio, we simply have to walk up the tree from the
desired unit, multiplying all of the conversion ratios together.

But, how to implement this in Haskell? Recall that this tree
is a tree of types, which are erased at runtime. We should use a
class Unit that defines the conversion ratios, and we can have an
associated type BaseUnit the defines a unit’s parent in the tree. We
introduce an empty type Canonical to serve as a canonical unit’s
(i.e., Meter ’s) parent, or BaseUnit. Then, we can (seemingly)
implement the conversion ratio calculation straightforwardly:

class (Unit (BaseUnit u)) ) Unit u where
type BaseUnit u :: ?
conversionRatio :: u ! Double

-- ratio from u to u’s parent
canonicalConvRatio :: u ! Double

-- ratio from u to canonical unit,
-- with default implementation

canonicalConvRatio u

= (conversionRatio u) ⇤
(canonicalConvRatio (? :: BaseUnit u))

(The instance for the Canonical type breaks the recursion in
canonicalConvRatio by overriding the default definition.)

There is a major problem with Unit as defined here—it has
a superclass cycle. The header states that every Unit’s BaseUnit
must also be a Unit, which is clearly ill-founded. Yet, this idea is
sensible, because we need to be able to call canonicalConvRatio
on a BaseUnit. What to do?

The full answer would take up too much space to describe (and
is available if you download the units package), but it boils down
to this:

type family CheckCanonical (unit :: ?) :: Bool where
CheckCanonical Canonical = True
CheckCanonical unit = False

Using CheckCanonical , we can define a conditional constraint,
essentially saying that every non-canonical unit must have a unit as
its parent. This breaks the type-level recursion and brings us back
onto solid footing.

It is never wise to say that an alternate encoding is impossible
in Haskell, but we were unable to find another one that works
smoothly and presents a very easy interface to users.

B. zipWith with inferred arity
Using the CountArgs closed type family from Section 2.3, we can
define a variable-arity zipWith function that infers the correct arity
from its first argument.

We first need a definition of the natural numbers. This definition
will only be used as a promoted datakind.

data Nat = Zero | Succ Nat

In our description, we will abbreviate these unary numbers with
ordinary decimals.

What will the type of our final zipWith be? It will first take a
function and then several lists. The types of these lists is determined
by the type of the function passed in. For example, suppose our
function f has type Int ! Bool ! Double, then the type of
zipWith should be (Int ! Bool ! Double) ! [Int ] !
[Bool ] ! [Double ]. Thus, we wish to take the type of the function
and apply the list type constructor [ ] to each component of it.

Before we write the code for this operation, we pause to note
an ambiguity in this definition. Both of the following are sensible
concrete types for a zipWith over the function f :

zipWith :: (Int ! Bool ! Double)
! [ Int ] ! [Bool ! Double ]

zipWith :: (Int ! Bool ! Double)
! [ Int ] ! [Bool ] ! [Double ]

The first of these is essentially map; the second is the classic
function zipWith that expects two lists. Thus, we must pass in the
desired number of parameters to apply the list type constructor to.
(The inferred arity comes in later.) The function to apply these list
constructors is named Listify :

type family Listify (n :: Nat) arrows where
Listify Zero a = [a ]
Listify (Succ n) (a ! b) = [a ] ! Listify n b

We now need to create some runtime evidence of our choice
for the number of arguments. This will be used to control the
runtime operation of zipWith—after all, our function must have
both the correct behavior and the correct type. We use a GADT
NumArgs that plays two roles: it controls the runtime behavior as
just described, and it also is used as evidence to the type checker
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that the number argument to Listify is appropriate. After all, we
do not want to call Listify 2 (Int ! Bool), as that would
be stuck. By pattern-matching on the NumArgs GADT, we get
enough information to allow Listify to fully reduce.

data NumArgs :: Nat ! ?! ? where
NAZero :: NumArgs Zero a
NASucc :: NumArgs n b ! NumArgs (Succ n) (a ! b)

We now write the runtime workhorse listApply , with the fol-
lowing type:

listApply :: NumArgs n a ! [a ] ! Listify n a

The first argument is the encoding of the number of arguments
to the function. The second argument is a list of functions to
apply to corresponding elements of the lists passed in after the
second argument. Why do we need a list of functions? Consider
evaluating zipWith (+) [1, 2] [3, 4], where we recur not only on
the elements in the list, but on the number of arguments. After
processing the first list, we have to be able to apply different
functions to each of the elements of the second list. To wit, we need
to apply the functions [(1+), (2+)] to corresponding elements in
the list [3, 4]. (Here, we are using Haskell’s “section” notation for
partially-applied operators.)

Here is the definition of listApply :

listApply NAZero fs = fs
listApply (NASucc na) fs =
�args ! listApply na (apply fs args)
where apply :: [a ! b ] ! [a ] ! [b ]

apply (f : fs) (x : xs) = (f x : apply fs xs)
apply = [ ]

It first pattern-matches on its first argument. In the NAZero case,
the list of functions passed in has 0 arguments, so we just return
them. In the NASucc case, we process one more argument (args),
apply the list of functions fs respectively to the elements of args ,
and then recur. Note how the GADT pattern-matching is essential
for this to type-check— the type checker gets just enough informa-
tion for Listify to reduce enough so that the second case can expect
one more argument than the first case.

Inferring arity As explained in Section 2.3, here is the closed
type family that counts the number of arguments in a function type:

type family CountArgs (f :: ?) :: Nat where
CountArgs (a ! b) = Succ (CountArgs b)
CountArgs result = Zero

We still need to connect this type-level function with the term-
level GADT NumArgs . We use Haskell’s method for reflecting
type-level decisions on the term-level, type classes. The following
definition essentially repeats the definition of NumArgs , but be-
cause this is a definition for a class, the instance is inferred rather
than given explicitly:

class CNumArgs (numArgs :: Nat) (arrows :: ?) where
getNA :: NumArgs numArgs arrows

instance CNumArgs Zero a where
getNA = NAZero

instance CNumArgs n b )
CNumArgs (Succ n) (a ! b) where

getNA = NASucc getNA

Note that the instances do not overlap; they are distinguished by
their first parameter.

It is now straightforward to give the final definition of zipWith,
using the extension -XScopedTypeVariables to give the body of
zipWith access to the type variable f :

zipWith :: 8 f . CNumArgs (CountArgs f ) f
) f ! Listify (CountArgs f ) f

zipWith fun
= listApply (getNA :: NumArgs (CountArgs f ) f ) (repeat fun)

The standard Haskell function repeat creates an infinite list of its
one argument.

The following examples show that zipWith indeed infers the
arity:

example1 = zipWith (^) [False,True,False ] [True,True,False ]
example2 = zipWith ((+) :: Int ! Int ! Int) [1, 2, 3] [4, 5, 6]

concat :: Int ! Char ! Double ! String
concat a b c = (show a) ++ (show b) ++ (show c)
example3 = zipWith concat [1, 2, 3] [’a’, ’b’, ’c’ ]

[3.14, 2.1728, 1.01001]

In example2, we must specify the concrete instantiation of (+).
In Haskell, built-in numerical operations are generalized over
a type class Num. In this case, the operator (+) has the type
Num a ) a ! a ! a. Because it is theoretically possible
(but deeply strange!) for a to be instantiated with a function type,
using (+) without an explicit type will not work—there is no way
to infer an unambiguous arity. Specifically, CountArgs gets stuck.
CountArgs (a ! a ! a) simplifies to Succ (Succ (CountArgs a))
but can go no further; CountArgs a will not simplify to Zero, be-
cause a is not apart from b ! c .

C. Typing judgments for System µFC
g̀nd

⌃ Ground context validity

g̀nd

· GND EMPTY

g̀nd

⌃ H #⌃

g̀nd

⌃,H :! ?
GND GROUND

g̀nd

⌃ F #⌃

g̀nd

⌃,F ():0 GND TYFAM

F ():0 2 ⌃

⌃;↵:
t̀y

⇢ :  C #⌃
⌃;↵:

t̀y

� : 0
g̀nd

⌃

g̀nd

⌃,C :[↵:]. F (⇢) ⇠ �
GND AXIOM

⌃
v̀ar

� Variables context validity

g̀nd

⌃

⌃
v̀ar

· VAR EMPTY

⌃;�
t̀y

⌧ :  x #�

⌃
v̀ar

�, x :⌧
VAR TERMVAR

⌃
v̀ar

� ↵#�

⌃
v̀ar

�,↵:
VAR TYPEVAR

c̀tx

� Context validity

⌃
v̀ar

�

c̀tx

⌃;�
CTX VALID

�
t̀m

e : ⌧ Expression typing

x :⌧ 2 �
c̀tx

⌃;�

⌃;�
t̀m

x : ⌧
TM VAR

�, x :⌧1 t̀m

e : ⌧2
�

t̀m

�x :⌧1.e : ⌧1 ! ⌧2
TM ABS
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�
t̀m

e1 : ⌧1 ! ⌧2 �
t̀m

e2 : ⌧1
�

t̀m

e1 e2 : ⌧2
TM APP

�,↵:
t̀m

e : ⌧

�
t̀m

⇤↵:.e : 8↵:.⌧ TM TYABS

�
t̀m

e : 8↵:.⌧2 �
t̀y

⌧1 : 

�
t̀m

e ⌧1 : ⌧2[⌧1/↵]
TM TYAPP

�
c̀o

� : ⌧1 ⇠ ⌧2 �
t̀m

e : ⌧1
�

t̀m

e . � : ⌧2
TM CAST

�
t̀y

⌧ :  Type kinding

↵: 2 �
c̀tx

⌃;�

⌃;�
t̀y

↵ : 
TY VAR

F ():0 2 ⌃
c̀tx

⌃;�
⌃;�

t̀y

⌧ : 

⌃;�
t̀y

F (⌧) : 0 TY TYFAM

H :! ? 2 ⌃
c̀tx

⌃;�

⌃;�
t̀y

H : ! ?
TY GROUND

�
t̀y

⌧1 : ? �
t̀y

⌧2 : ?

�
t̀y

⌧1 ! ⌧2 : ?
TY ARROW

�,↵:
t̀y

⌧ : ?

�
t̀y

8↵:.⌧ : ?
TY FORALL

�
t̀y

⌧1 : 1 ! 2 �
t̀y

⌧2 : 1

�
t̀y

⌧1 ⌧2 : 2
TY APP

D. Proof of substitution lemma
The kinding judgment for types, the proposition validity judgment,
and the context validity judgments are all mutually recursive. They
all support a standard substitution lemma, which we do not prove
here:

Lemma 20 (Type substitution). Assume �
t̀y

� : . Then, the
following are true:

1. If �,↵:,�
t̀y

⌧ : , then �,�[�/↵]
t̀y

⌧ [�/↵] : .
2. If

c̀tx

�,↵:,�, then
c̀tx

�,�[�/↵].
3. If �,↵:,�

p̀rop

� ok, then �,�[�/↵]
p̀rop

�[�/↵] ok.

Lemma (CO AXIOM Substitution [Lemma 15]). If⌃;�,�:,�0
c̀o

C [i ] ⌧ : F (⇢i [⌧/↵i ]) ⇠ �i [⌧/↵i ] and ⌃;�
t̀y

� : ,
then ⌃;�,�0[�/�]

c̀o

C [i ] ⌧ [�/�] : F (⇢i [⌧/↵i ][�/�]) ⇠
�i [⌧/↵i ][�/�].

Proof. We invert ⌃;�,�:,�0
c̀o

C [i ] ⌧ : F (⇢i [⌧/↵i ]) ⇠
�i [⌧/↵i ] to get the following:

• C : 2 ⌃
•  = [↵:]. F (⇢) ⇠ �
• ⌃;�,�:,�0

t̀y

⌧ : i

•
c̀tx

⌃;�,�:,�0

• 8 j < i , no conflict( , i , ⌧ , j )

Lemma 20 gives⌃;�,�0[�/�]
t̀y

⌧ [�/�] : i and
c̀tx

⌃;�,�0[�/�].
Let � = F (⇢) ⇠ �. It now remains only to show that 8 j <
i , no conflict( , i , ⌧ [�/�], j ) and �[⌧/↵i ][�/�] = �[⌧ [�/�]/↵i ],
and then we can use CO AXIOM to get the desired result.

C : 2 ⌃  = [↵:]. F (⇢) ⇠ �

g̀nd

⌃ ⌧ = ⇢i [ /↵i ] ⌧ 0 = �i [ /↵i ]
8 j < i , no conflict( , i , , j )

⌃ ` C[F (⌧)] C[⌧ 0] RED

Figure 8. The type rewriting rule

The second fact above is immediate from the fact that the vari-
able � must not be free in �, invoking the Barendregt variable con-
vention and noting that � is introduced separately from any of the
variables in scope in �.

Thus, we must only show 8 j < i , no conflict( , i , ⌧ [�/�], j ).
Thus, given j < i (and knowing no conflict( , i , ⌧ , j )), we must
show no conflict( , i , ⌧ [�/�], j ). We proceed by case analysis on
no conflict( , i , ⌧ , j ):

Case NC APART: We must show only that apart(⇢j , ⇢i [⌧ [�/�]/↵i ]),
assuming apart(⇢j , ⇢i [⌧/↵i ]). The result is immediate after in-
voking Property 12, with ⌦ = � 7! � and noting that � cannot
be free in ⇢i .

Case NC COMPATIBLE: We note that ⌧ appears nowhere else in
the premises of this rule. Therefore, changing ⌧ has no effect,
and we are done.

E. Proof of consistency
As described in Section 5.3, we use a rewrite relation, defined in
Figure 8, show that it is complete with respect to ⌃;�

c̀o

� :
⌧1 ⇠ ⌧2, and then conclude that ⌃ must be consistent, as rewriting
preserves non-type-family head forms.

Type contexts Throughout this proof, we use a notion of type
contexts, or types with holes. The notation C[·] denotes a type
with exactly one hole in it. Similarly, CJ·K denotes a type with any
number of holes (possibly 0) in it. We generalize these definitions
to lists, saying that CC[·] denotes a list of types with exactly one hole
(in one specific type, not one hole per type) and that CCJ·K denotes
a list of types with any number of holes.

E.1 Rewrite relation
The only form of reduction is type family simplification, using
the same no conflict judgment that appears in the CO AXIOM
rule. The use of C[·] in the conclusion states that a type family
application can reduce anywhere within the structure of a type.
As C[·] denotes a type context with exactly one hole, only one
type family reduction happens in one step. Note that this rule is
nondeterministic.

We use the notation ⌃ ` �1 ⇤ �2 to mean the reflexive,
transitive closure of the relation ⌃ ` ·  ·. We write single-step
joinability of �1 and �2 as ⌃ ` �1 , �2; this fact holds whenever
there exists �3 such that ⌃ ` �1  �3 and ⌃ ` �2  �3, or
⌃ ` �1  �2, or ⌃ ` �2  �1, or �1 = �2. General joinability
is written ⌃ ` �1 ,⇤ �2; this fact holds whenever there exists �3

such that ⌃ ` �1 ⇤ �3 and ⌃ ` �2 ⇤ �3.
We generalize the relation to hold over lists of types, written

⌃ ` ⌧  �, to say that the list � is identical to the list ⌧ except for
one element which takes one step. We also say ⌃ ` ⌧ ⇤ �, which
is identical to ⌃ ` ⌧ ⇤ �.

Definition 21 (Confluence). Our rewrite system is confluent if, for
all �0, �1, and �2 such that ⌃ ` �0 ⇤ �1 and ⌃ ` �0 ⇤ �2,
⌃ ` �1 ,⇤ �2.
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In order to show the completeness of the rewrite relation for
transitivity coercions, we need to show the transitivity of the join-
ability relation—that is, that ⌃ ` �1 ,⇤ �2 and ⌃ ` �2 ,⇤ �3

implies ⌃ ` �1 ,⇤ �3. This fact requires confluence of the rewrite
system.

E.2 Local confluence
Newman’s lemma (Newman 1942) states that a terminating rewrite
system is confluent if it is locally confluent.

Definition 22 (Local confluence). Our rewrite system is locally
confluent if, for all �0, �1, and �2 such that ⌃ ` �0  �1 and
⌃ ` �0  �2, then ⌃ ` �1 ,⇤ �2.

A diagrammatic presentation of different confluence properties
is in Figure 6.

Because we have assumed termination, we need only show local
confluence to show confluence. As usual, we will need a small
menagerie of supporting lemmas before we can get to the main
proof.

Lemma 23 (Stability of choice of substitution of lists). If ⌧ [�/↵] =
⌧ [�0/↵] and all the ↵ are free in ⌧ , then � = �0.

Proof. By induction on the structure of ⌧ :

Case ⌧ = ↵: It must be that ↵ = ↵, a one-element list. Thus, we
know that � = � and �0 = �0. The given equality reduces to
� = �0, so we are done.

Case ⌧ = �1 ! �2: Divide the variables ↵ into three groups:
• �1 are the variables free in �1 but not free in �2,
• �2 are the variables free in �2 but not free in �1, and
• �3 are the variables free in both �1 and �2.

Divide � and �0 accordingly. Then, we can use the induction
hypothesis to get that �1,�3 = �0

1,�
0
3 and that �2,�3 =

�0
2,�

0
3. Thus, we can conclude that � = �0 as desired.

Cases ⌧ = 8↵:.�, ⌧ = �1 �2, and ⌧ = F (�): Similar.
Case ⌧ = H : The list of variables ↵ must be empty, as must be �

and �0, so we are done.

Lemma 24 (Stability of choice of substitution of lists in lists). If
⌧ [�/↵] = ⌧ [�0/↵] and all the ↵ are free in ⌧ , then � = �0.

Proof. By induction on the length of ⌧ , appealing to Lemma 23 and
using logic as above to manage the free variables.

Lemma 25 (One step/one hole context substitution). If ⌃ ` ⌧  
⌧ 0, then ⌃ ` C[⌧ ] C[⌧ 0].

Proof. Straightforward induction on the structure of C[·].

Lemma 26 (One step/many holes context substitution). If ⌃ `
⌧  ⌧ 0, then ⌃ ` CJ⌧K ⇤ CJ⌧ 0K.

Proof. Straightforward induction on the structure of CJ·K.

Lemma 27 (Multistep/many holes context substitution). If ⌃ `
⌧ ⇤ ⌧ 0, then ⌃ ` CJ⌧K ⇤ CJ⌧ 0K.

Proof. Straightforward induction on the length of the reduction
⌃ ` ⌧ ⇤ ⌧ 0, appealing to Lemma 26.

Lemma 28 (One step/one variable substitution). If ⌃ ` ⌧  ⌧ 0,
then ⌃ ` �[⌧/↵] ⇤ �[⌧ 0/↵].

Proof. By Lemma 25.

Lemma 29 (One step/list of variables substitution). If⌃ ` ⌧  ⌧ 0,
then ⌃ ` �[⌧/↵] ⇤ �[⌧ 0/↵].

Proof. Straightforward induction on the list ⌧ , using Lemma 28.

Lemma 30 (Multistep/list of variables substitution). If ⌃ `
⌧ ⇤ ⌧ 0, then ⌃ ` �[⌧/↵] ⇤ �[⌧ 0/↵].

Proof. Straightforward induction on the length of the reduction
⌃ ` ⌧ ⇤ ⌧ 0, appealing to Lemma 29.

Lemma 31 (One step linear type pattern anti-substitution). If ↵ is
the set of free variables in linear pattern ⇢ and ⌃ ` ⇢[�/↵]  
⇢[�0/↵], then ⌃ ` �  �0.

Proof. By induction on the structure of ⇢, where the linearity as-
sumption is needed when dividing up the variables and combining
the results when appealing to multiple induction hypotheses.

Lemma 32 (Multistep linear type pattern anti-substitution). If ↵ is
the set of free variables in linear pattern ⇢ and⌃ ` ⇢[�/↵] ⇤ ⇢[�0/↵],
then ⌃ ` � ⇤ �0.

Proof. By induction on the length of the reduction⌃ ` ⇢[�/↵] ⇤ ⇢[�0/↵],
appealing to Lemma 31 in the inductive case and Lemma 23 in the
base case.

Lemma 33 (Multistep type pattern anti-substitution). If ↵ is the
set of free variables in pattern ⇢ and ⌃ ` ⇢[�/↵] ⇤ ⇢[�0/↵], then
⌃ ` � ⇤ �0.

Proof. Let ⇢0 be the result of replacing all variables in ⇢ with fresh
variables. Thus ⇢0 is a linearized version of ⇢. Let the set of free
variables in ⇢0 be ↵0. We can see that for some list of types  ,
⇢[�/↵] = ⇢0[ /↵0]. (The list of types  is just like � but with some
repetitions to account for the linearization.) Similarly, we have
⇢[�0/↵] = ⇢0[ 0/↵0]. Thus, we know⌃ ` ⇢0[ /↵0] ⇤ ⇢0[ 0/↵0].
We then appeal to Lemma 32 to get ⌃ `   ⇤  0. Recall that
this notation means that ⌃ `   ⇤  0. Thus, we can conclude that
⌃ ` � ⇤ �0 (because each  and  0 has an equal � or �0) and
then ⌃ ` � ⇤ �0.

Lemma 34 (Local confluence). If Good⌃, the rewrite relation
⌃ ` · · is locally confluent.

Proof. We assume ⌃ ` �0  �1 and ⌃ ` �0  �2 and we must
find �3 such that ⌃ ` �1 ⇤ �3 and ⌃ ` �2 ⇤ �3. We proceed
by induction on the structure of �0.

Case �0 = ⌧1 ! ⌧2: Inverting ⌃ ` �0  �1 and ⌃ ` �0  �2

tells us that (⌧1 ! ⌧2) = C1[F1( 1)] and (⌧1 ! ⌧2) =
C2[F2( 2)], with �1 = C1[ 

0
1] and �2 = C2[ 

0
2]. We now do

case analysis on C1[·] and C2[·]:
Case C1[·] = C0

1[·] ! ⌧2, C2[·] = C0
2[·] ! ⌧2: Note that C0

1[F1( 1)] =
⌧1 = C0

2[F2( 2)]. Therefore, using the other conditions
known from inverting the original steps from �0, we know
that ⌃ ` ⌧1  ⌧11 and ⌃ ` ⌧1  ⌧12, where ⌧11 = C0

1[ 
0
1]

and ⌧12 = C0
2[ 

0
2]. Use the induction hypothesis to get ⌧13

such that ⌃ ` ⌧11 ⇤ ⌧13 and ⌃ ` ⌧12 ⇤ ⌧13. Then, by
Lemma 27 to lift this result back to ⌧1 ! ⌧2, we are done,
showing that �3 = ⌧13 ! ⌧2.

Case C[·] = C0
1[·] ! ⌧2, C2[·] = ⌧1 ! C0

2[·]: Let ⌧ 01 = C0
1[ 

0
1]

and ⌧ 02 = C0
2[ 

0
2]. Then, �1 = ⌧ 01 ! ⌧2 and �2 = ⌧1 ! ⌧ 02

with⌃ ` ⌧1  ⌧ 01 and⌃ ` ⌧2  ⌧ 02. We let �3 = ⌧ 01 ! ⌧ 02,
and we are done.
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Other cases: Similar to the cases above.
Case �0 = 8↵:.⌧ : Similar to the case for ⌧1 ! ⌧2.
Case �0 = ⌧1 ⌧2: Similar to the case for ⌧1 ! ⌧2.
Case �0 = F (�): Inverting ⌃ ` �0  �1 and ⌃ ` �0  �2

gives us �0 = C0[F 0(⌧)] and �0 = C00[F 00(⌧ 00)]. If C0[·] 6= ·
and C00[·] 6= ·, then we are in a case similar to the case for
⌧1 ! ⌧2, and we simply use induction. Otherwise, we are left
with three cases:

Case C0[·] = F (CC[·]), C00[·] = ·: In this case, � = CC[F 0(⌧)].
Let ⌧ 0 be the top-level reduct of F 0(⌧). Thus, �1 =
F (CC[⌧ 0]). Let �0 = CC[⌧ 0].
We also know that⌃ ` F (�) �2 by a top level reduction.
Inverting gives us the following:

• C : 2 ⌃
•  = [↵:]. F (⇢) ⇠ �0

• � = ⇢i [ /↵i ]
• �2 = �0

i [ /↵i ]
• 8 j < i , no conflict( , i , , j )

We want to find a common reduct of �2 (which might not
be headed by F ) and F (�0). Thus, we must find a way to
reduce F (�0) at the top level. We now use Property 14 to
get �00 such that ⌃ ` �0 ⇤ �00, �00 = ⌦0(⇢i) for some ⌦0,
and for every ⇢0 such that apart(⇢0, �), apart(⇢0, �00).
Instead of reducing F (�0) directly, we step F (�0) to F (�00)
(getting ⌃ ` F (�0) ⇤ F (�00) from repeated application
of Lemma 27) and then show that F (�00) can reduce at the
top level by the same equation at F (�) reduced to form �2.
Thus, we must prove that �00 = ⇢i [ 0/↵i ] (for some  0)
and that, for all j < i, no conflict( , i , 0, j ).
We know that �00 = ⌦0(⇢i). We also know that, by assump-
tion, the free variables in �00 are distinct from the free vari-
ables in ⇢i . Thus, ⌦0 must map every free variable in ⇢i to
some other type. Thus, we have �00 = ⇢i [ 0/↵i ] for the  0

taken from the range of ⌦0.
We then perform inversion on the known facts that, for all
j < i, no conflict( , i , , j ). We now fix j, and repeat this
argument for all j < i:

Case NC APART: We see that apart(⇢j , ⇢i [ /↵i ]). From
Property 14, we see that apart(⇢j , ⇢i [ 0/↵i ]) as desired.

Case NC COMPATIBLE: The check compat( [i ], [j ])
does not depend on the types  or  0, and thus we are
done.

Thus, F (�00) reduces at the top level to �3 = �0
i [ 0/↵i ].

It remains to show that �2 (which equals �0
i [ /↵i ]), the

initial top-level reduct of F (�) reduces to �3. We know that
⌃ ` ⇢i [ /↵i ] ⇤ ⇢i [ 0/↵i ]. Thus, by repeated application
of Lemma 33 (and appealing to clause 2 of Good to show
that every  2  is considered), we get ⌃ `   ⇤  0. By
Lemma 30, we can conclude ⌃ ` �0

i [ /↵i ] ⇤ �0
i [ 0/↵i ],

as desired.
Case C0[·] = ·, C00[·] = F (CC00[·]): Similar to the case above.
Case C0[·] = ·, C00[·] = ·: We will show a stronger property

than local confluence in this case; we will show that if
⌃ ` F (⌧)  �1 and ⌃ ` F (⌧)  �2, both at the top
level, then �1 = �2.
We invert both reductions to get the following facts, along
with

g̀nd

⌃:

from ⌃ ` F (⌧) �1 from ⌃ ` F (⌧) �2
C1: 1 2 ⌃ C2: 2 2 ⌃

 1 = [↵1:1]. F (⇢1) ⇠ �0
1  2 = [↵2:2]. F (⇢2) ⇠ �0

2

⌧ = ⇢1 i [ 1/↵1 i ] ⌧ = ⇢2 j [ 2/↵2 j ]
�1 = �0

1 i [ 1/↵1 i ] �2 = �0
2 j [ 2/↵2 j ]

8k < i, 8k < j,
no conflict( 1, i , 1, k) no conflict( 2, j , 2, k)

Thus, we must show that �0
1 i [ 1/↵1 i ] = �0

2 j [ 2/↵2 j ].
From clause 3 of Good, we see that either i = j = 0 (open
family) or C1 = C2 (closed family). We will tackle these
cases separately:

Open family: In this case, the axioms C1 and C2 have
one equation each and thus we simply drop the i and j
subscripts. Let �1 and �2 be the the equations of C1 and
C2, respectively.
We know from the inversions that ⇢1[ 1/↵1] = ⇢2[ 2/↵2].
Let ⌦2 = [↵1 7!  1,↵2 7!  2]. We can see that ⌦2 is a
unifier of ⇢1 and ⇢2. Then, clause 4 of Good tells us that
compat(�1,�2). Here, we have two cases:
Case COMPAT COINCIDENT: We know that ⌦ is a most

general unifier of ⇢1 and ⇢2 (appealing to Property 11)
and ⌦(�0

1) = ⌦(�
0
2). Thus, there must be some ⌦0 such

that ⌦2 = ⌦0 � ⌦.
We must show that �0

1[ 1/↵1] = �0
2[ 2/↵2]. This

equation is equivalent to ⌦2(�
0
1) = ⌦2(�

0
2), which in

turn is ⌦0(⌦(�0
1)) = ⌦0(⌦(�0

2)). But, we know that
⌦(�0

1) = ⌦(�
0
2), so we are done.

Case COMPAT DISTINCT: We know that unify(⇢1, ⇢2) fails.
Yet, we have⌦2 as a unifier of these types. Appealing to
Property 40, we have a contradiction, and thus this case
cannot happen.

Closed family: We know C1 = C2 and, by
g̀nd

⌃, there
can be only one axiom of the same name in the context, so
 1 =  2, and thus we can drop the 1 and 2 subscripts,
except on the  , which do not appear in the axiom types.
Thus, we must show �0

i [ 1/↵i ] = �0
j [ 2/↵j ].

Now, we must examine the indices i and j. If i = j,
then we are done by an application of Lemma 24, using
⇢[ 1/↵] = ⇢[ 2/↵] and clause 2 of Good. So, we as-
sume, without loss of generality, that i > j. Inverting
no conflict( , i , 1, j ) leads us to three cases:

Case NC APART: We see here that apart(⇢j , ⇢i [ 1/↵i ]).
Yet, we know from the original inversions that ⇢i [ 1/↵i ] =

⇢j [ 2/↵j ]. The substitution [↵j 7!  2] is then a unifier
of the two types that we know are apart, leading to a
contradiction, appealing to Property 13. Thus, this case
cannot happen.

Case NC COMPATIBLE/COMPAT COINCIDENT: Here,
we know that ⌦ is a most general unifier (appealing to
Property 11) for ⇢i and ⇢j and that ⌦(�0

i) = ⌦(�0
j ).

From the original inversions, we know ⇢i [ 1/↵i ] =

⇢j [ 2/↵j ]. Let ⌦2 = [↵i 7!  1,↵j 7!  2]. We can say
⌦2 = ⌦0 � ⌦ for some ⌦0. We can rewrite our goal as
showing that ⌦0(⌦(�0

i)) = ⌦0(⌦(�0
j )). This is imme-

diate from the fact that ⌦(�0
i) = ⌦(�0

j ), and so we are
done.

Case NC COMPATIBLE/COMPAT DISTINCT: We know
unify1(⇢i , ⇢j ) fails. Yet, we know from the original in-
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versions that ⇢i [ 1/↵i ] = ⇢j [ 2/↵j ]. The substitution
[↵i 7!  1,↵j 7!  2] is then a unifier of ⇢i and ⇢j , lead-
ing to a contradiction, appealing to Property 11.

Lemma 35 (Confluence of terminating systems). If Good⌃ and
⌃ ` · · is a terminating rewrite relation, then it is confluent.

Proof. By appealing to Newman’s lemma (Newman 1942) and
Lemma 34.

E.3 From confluence to consistency
Lemma 36 (Transitivity). If ⌃ ` ·  · is a terminating rewrite
relation, Good⌃, ⌃ ` ⌧1 ,⇤ ⌧2 and ⌃ ` ⌧2 ,⇤ ⌧3, then ⌃ `
⌧1 ,⇤ ⌧3.

Proof. By Lemma 35.

Lemma 37 (Congruence). If⌃ ` ⌧1 ,⇤ ⌧2, then⌃ ` CJ⌧1K,⇤ CJ⌧2K.

Proof. By appealing to Lemma 27.

Lemma 38 (Completeness). If ⌃ ` ·  · is a terminating rewrite
relation, Good⌃ and ⌃;�

c̀o

� : �1 ⇠ �2, then ⌃ ` �1 ,⇤ �2.

Proof. We proceed by induction on ⌃;�
c̀o

� : �1 ⇠ �2:

Cases CO ARROW, CO FORALL, CO APP, and CO TYFAM:
By the induction hypothesis, appealing to Lemma 37 and
Lemma 36.

Cases CO REFL, CO SYM, and CO TRANS: From the fact that
⌃ ` ·,⇤ · is an equivalence relation, appealing to Lemma 36.

Cases CO LEFT and CO RIGHT: The induction hypothesis gives
us that⌃ ` ⌧1 ⌧2 ,⇤ �1 �2. We can see that any reduct of a type
application must also be a type application. Thus, the common
reduct must be �1 �2 (for some �1 and �2) where �1 joins ⌧1
and �1 and �2 joins ⌧2 and �2. Thus, we are done.

Case CO AXIOM: From clause 1 of Good and the CO AXIOM
rule, we know that �1 = F (�i [⇢/↵i ]) and that �2 = �0

i [⇢/↵i ].
We conclude that ⌃ ` �1  �2, as the premises of the rule
RED are all given by the premises of the rule CO AXIOM.

Lemma 39 (Consistency). If ⌃ ` ·  · is a terminating rewrite
relation and Good⌃, then ⌃ is consistent.

Proof. A consistent coercion equates two types with the same
ground head forms. By Lemma 38, these two types must be join-
able under the rewrite relation. Yet, the rewriting rule preserves
all head forms except for type families. As type families are not
ground head forms, we are done.

F. Proof of properties of apart
This appendix includes the proofs that our concrete definition of
apart, as given in Definition 6, satisfies the properties stated in
Section 5.1. Then, we show that these properties, along with the as-
sumption of termination, imply the high-level (sanity-check) prop-
erties from Section 3.2. It is well-founded to use our confluence
result for these later proofs as those properties are not used any-
where in other proofs—they simply serve as a higher-level check
on our formal results.

F.1 Proofs of Properties 12–14
We restate our implementation of apart:

Definition (Apartness [Definition 6]).
apart(⇢, ⌧) = ¬unify1(⇢, flatten(⌧))

Recall that flatten (Definition 5) replaces all type family appli-
cations in a (finite) type with fresh variables, maximally preserving
sharing. That is, flattening the same type family application twice
in the same type (or list of types) converts both applications to the
same fresh variable. In order for flatten to be a well-defined func-
tion, it must refer to a mapping from every possible type headed by
a type family to fresh variables. This mapping is countably infinite,
but we can assume, as usual, a countably infinite set of fresh vari-
ables. Furthermore, we assume that the set of variables in the range
of this mapping is distinct from variables used elsewhere (partic-
ularly, in patterns). If this assumption is violated for some use of
flatten, we simply rename the variables accordingly.

The above definition of flattening with respect to an infinite
mapping of type families to variables, means that flattening com-
mutes with type constructors. For example, flatten(⌧1 ! ⌧2) =
flatten(⌧1) ! flatten(⌧2).

For completeness, we also restate the correctness of unification,
but now for unify1.

Property 40 (unify1 correct). If and only if there exists a substi-
tution ! (whose range may include infinite types) such that !(�) =
!(⌧), then unify1(�, ⌧) succeeds, returning !. Furthermore, ! is
a most general unifier of � and ⌧ .

Before getting to the properties themselves, we must prove
some properties about flatten. First, we extend flatten to apply to
substitutions and define an inverse operation:

Definition 41 (Flattening a substitution). If ⌦ = [↵ 7! ⌧ ], we
say flatten(⌦) for [↵ 7! flatten(⌧)], where sharing is maximally
preserved between the different types ⌧ .

Definition 42 (Inverse flattening). We let flatten�1 denote the
inverse operation to flattening, implemented by doing a reverse
lookup in the map from type family applications to variables.

Note that flatten�1 is a substitution, infinite in extent, but or-
dinary in other respects. In particular, note that the elements in the
range of flatten�1 are finite—that is, flatten�1 could be denoted
by the metavariable ⌦.

Lemma 43 (Flattened substitutions). For all type patterns ⇢ and
substitutions ⌦, flatten(⌦(⇢)) = (flatten(⌦))(⇢).

Proof. The pattern ⇢ contains no type families, so flatten does not
affect the parts of ⇢ unchanged by the application of ⌦. Because
flatten preserves maximal sharing, it must be the case that apply-
ing a flattened substitution yields the same result as flattening an
substituted pattern. This can be shown by straightforward induc-
tion on ⇢.

Lemma 44 (Flattening commutes with substitution). For all
⌦, there exists an ⌦0 such that, for all ⌧ , flatten(⌦(⌧)) =
⌦0(flatten(⌧)).

Proof. We can say that

flatten(⌦(⌧)) = flatten(⌦(flatten�1(flatten(⌧))))

Because flatten�1 is a substitution, and appealing to Lemma 43
(noting that flatten(⌧) is a pattern), we can rewrite this as flatten(⌦�
flatten�1)(flatten(⌧)). Thus, we let⌦0 be the substitution flatten(⌦�
flatten�1) and we are done.
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Lemma 45 (Flattening a list commutes with substitution). For
all ⌦, there exists an ⌦0 such that, for all ⌧ , flatten(⌦(⌧)) =
⌦0(flatten(⌧)).

Proof. By induction on the length of the list, appealing to Lemma 44.

Property (Apartness is stable under type substitution [Prop-
erty 12]). If apart(⇢, ⌧), then for all substitutions⌦, apart(⇢,⌦(⌧)).

Proof. Expanding definitions, we must show that

¬unify1(⇢, flatten(⌧))

implies
¬unify1(⇢, flatten(⌦(⌧))).

We prove the contrapositive, that is, that unify1(⇢, flatten(⌦(⌧)))
implies unify1(⇢, flatten(⌧)). Thus, we have a substitution !
such that !(⇢) = !(flatten(⌦(⌧))) and must find a !0 such that
!0(⇢) = !0(flatten(⌧)).

By Lemma 45, we can say flatten(⌦(⌧)) = ⌦0(flatten(⌧)) for
some ⌦0. Then, choose !0 = ! � ⌦0. We can see that !0(⇢) =
!0(flatten(⌧)) (noting that the variables in ⇢ are fresh from those
in flatten(⌧)) as desired.

Property (No unifiers for apart types [Property 13]). If apart(⇢, ⌧),
then there exists no substitution ⌦ such that ⌦(⇢) = ⌦(⌧).

Proof. Expanding definitions, we must show that ¬unify(⇢, flatten(⌧))
implies ¬unify(⇢, ⌧). We will show the contrapositive. Thus, we
assume ⌦ such that ⌦(⇢) = ⌦(⌧) and we must find ⌦0 such that
⌦0(⇢) = ⌦0(flatten(⌧)).

Choose ⌦0 = ⌦ � flatten�1. Because the free variables in ⇢
are distinct from the variables in the domain of flatten�1, we have
⌦0(⇢) = ⌦(⇢). We also have

⌦0(flatten(⌧)) = ⌦(flatten�1(flatten(⌧))) = ⌦(⌧)

and we are done.

Property (Apartness can be regained after reduction [Property 14]).
If ⌧ = ⌦(⇢) and ⌃ ` ⌧  ⌧ 0, then there exists a ⌧ 00 such that

1. ⌃ ` ⌧ 0 ⇤ ⌧ 00,
2. ⌧ 00 = ⌦0(⇢) for some ⌦0, and
3. for every ⇢0 such that apart(⇢0, ⌧): apart(⇢0, ⌧ 00).

Proof. We know that ⌧ matches some pattern ⇢ and that one el-
ement in ⌧ steps, forming ⌧ 0. Suppose that one element is ⌧k .
Thus, ⌃ ` ⌧k  ⌧ 0k . Inverting this step relation gives us that
⌧k = C[F (�)] and ⌧ 0k = C[�0], where F (�) reduces to �0 at the
top level.

Define CCJ·K to be the list of types ⌧ such that every occurrence
of F (�) is replaced by ·. Thus, CCJF (�)K = ⌧ . We choose ⌧ 00
(from the statement of the property) to be CCJ�0K. We must show
the following:

• ⌃ ` ⌧ 0 ⇤ ⌧ 00: Straightforward application of the rule RED.
• ⌧ 00 = ⌦0(⇢) for some ⌦0: Because ⇢ cannot contain type fami-

lies, it must be that ⌦ maps some variables to types containing
F (�). Choose⌦0 to be⌦with all occurrences of F (�) replaced
by �0. Because all occurrences of F (�) in ⌧ have been replaced
by �0, we can see that ⌦0(⇢) must be ⌧ 00.

• For every ⇢0 such that apart(⇢0, ⌧), we have apart(⇢0, ⌧ 00):
Assume we have ⇢0 such that apart(⇢0, ⌧). Unfolding defi-
nitions (and taking the contrapositive) gives us ! such that
!(⇢0) = !(flatten(⌧ 00)), and we must find !0 such that
!0(⇢0) = !0(flatten(⌧)).

Let↵ be the variable mapped from F (�). Thus, flatten(F (�)) =
↵. Let ⌦0 = [↵ 7! �0] and choose !0 = ! � ⌦0. Noting that
↵ does not appear in ⇢0, we see that !0(⇢0) = !(⇢0). Now, we
must only show that !0(flatten(⌧)) = !(flatten(⌧ 00)). By our
choice of !0, we know !0(flatten(⌧)) = !(⌦0(flatten(⌧))),
thus we must show ⌦0(flatten(⌧)) = flatten(⌧ 00). By its def-
inition, flatten takes all occurrences of F (�) in ⌧ to ↵. Then,
⌦0 takes all of these occurrences of ↵ to �0. Since the only
difference between ⌧ and ⌧ 00 is that all occurrences of F (�)
are replaced by �0, we can see that ⌦0(flatten(⌧)) is indeed
flatten(⌧ 00), and we are done.

F.2 Proofs of Properties 2 and 4
Property (Apartness through substitution [Property 2]). If apart(⇢, ⌧)
then there exists no ⌦ such that match(⇢,⌦(⌧)).

Proof. We shall prove by contradiction: assume ⌦ and ⌦0 such
that ⌦0(⇢) = ⌦(⌧). We can simplify a bit and combine these
substitutions, because the free variables of ⇢ are distinct from those
in ⌧ ; we can say ⌦0(⇢) = ⌦0(⌧). Then, this is a contradiction,
appealing to Property 13, and we are done.

The next property (Property 4) requires an important auxiliary
lemma.

Lemma 46 (Matching can be regained after reduction). If Good⌃
and ⌃ ` ⌦(⇢) ⇤ ⌧ then there exists an ⌦0 such that ⌃ `
⌧ ⇤ ⌦0(⇢).

Proof. Throughout this proof, we will consider types as abstract
syntax trees. We will use “type” and “tree” interchangeably.

Define the operation linearize to take a pattern and freshen all
the type variables therein, thus producing a linear pattern. Our first
step is to show that ⌧ matches linearize(⇢). How does ⌦(⇢) step to
⌧? It must be through a series of type family reductions. Because
⇢ does not mention type families, these type families must occur
in ⌦(⇢) at or beneath where variables appear in the tree ⇢. Thus,
as ⌦(⇢) steps, the tree structure imposed by ⇢ does not change.
However, it is possible that a type family application, say F (�)
steps in two different ways throughout the tree ⌦(⇢) as ⌦(⇢) is
reducing. Thus, we can claim only that ⌧ matches linearize(⇢), not
⇢ itself.

When comparing the trees ⌧ and ⇢, define a mismatch to be two
locations in the respective trees where ⇢ has a repeated variable
and ⌧ has two different sub-trees. Count only those matches that
involve the left-most occurrence of a variable in ⇢. We proceed by
induction on the number of mismatches between ⇢ and ⌧ .

Base case: If there are no mismatches, then we know that ⇢ must
match ⌧ with a substitution ⌦0. We are done.

Inductive case: Choose the left-most mismatch. Say that the re-
peated variable in ⇢ is ↵ and the disagreeing types in ⌧
are �1 and �2. We know that ⌃ ` ⌦(⇢) ⇤ ⌧ , and thus
that ⌃ ` ⌦(↵) ⇤ �1 and ⌃ ` ⌦(↵) ⇤ �2. By conflu-
ence (Lemma 35), we know that there exists a �3 such that
⌃ ` �1 ⇤ �3 and ⌃ ` �2 ⇤ �3. Let ⌧ 0 be ⌧ , except that
both �1 and �2 in ⌧ are replaced by �3 in ⌧ 0. We know that
⌃ ` ⌧ ⇤ ⌧ 0 by congruence of the rewrite relation and thus
that ⌃ ` ⌦(⇢) ⇤ ⌧ 0. Thus, we can use the induction hypoth-
esis to get ⌦0 such that ⌃ ` ⌧ 0 ⇤ ⌦0(⇢). Then, by transitivity
of ⌃ ` · ⇤ ·, we are done.
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Lemma 47 (Matching normal forms). If Good⌃ and ⌃ `
⌦(⇢) ⇤ � where � is a normal form, then there exists ⌦0 such
that � = ⌦0(⇢).

Proof. We apply Lemma 46 to see that there exists an ⌦0 such
that ⌃ ` � ⇤ ⌦0(⇢). But, we know that � cannot step, and thus
� = ⌦0(⇢).

Lemma 48 (Longest reduction). Suppose Good⌃. For every type
⌧ and its normal form � (whose uniqueness is guaranteed by the
combination of confluence and termination), there exists a number
n such that all reductions from ⌧ to � are of length at most n.

Proof. König’s lemma states that every tree with infinitely many
vertices, each having finite degree, has at least one infinite simple
path. Here, we are considering trees of reductions, rooted at ⌧ .
We will use the contrapositive of König’s lemma: that if every
node in a tree has finite degree and all simple paths are finite,
then there are finitely many vertices. For any type �, there are
finitely many types �0 such that ⌃ ` �  �0, because there
are finitely many locations within � that can be headed by a type
family and finitely many equations that type family application
might match. By termination, we know all simple paths in the tree
of reductions are finite. Thus, the contrapositive of König’s lemma
tells us that the tree has a finite number of nodes. Thus, we can
simply enumerate all paths from ⌧ to � to discover the one with the
longest path. This path’s length is our result n.

Lemma 49 (Apartness and normal forms). If apart(⇢, ⌧) and ⌃ `
⌧ ⇤ � where � is a normal form, then apart(⇢, �).

Proof. Let the longest path from ⌧ to � be of length n (Lemma 48).
We perform induction on n.

Base case: Trivial.
Inductive case: We know that ⌧ can step to some ⌧ 0; that is,
⌃ ` ⌧  ⌧ 0. We then appeal to Property 14 (choosing
⇢ = flatten(⌧), but the choice is irrelevant) to get ⌧ 00 such
that ⌃ ` ⌧ 0 ⇤ ⌧ 00 and apart(⇢, ⌧ 00). By our assumption that
n is the length of the longest path from ⌧ to � and the fact that
⌃ ` ⌧ ⇤ ⌧ 00 by at least one step, we know that the longest
path from ⌧ 00 to � has length less than n. Thus, we can use the
induction hypothesis, and we are done.

Lemma 50 (Apartness implies no match). If apart(⇢, ⌧), then
¬match(⇢, ⌧).

Proof. We prove by contradiction. Assume ⌦ such that ⌦(⇢) = ⌧ .
By the assumption that pattern variables are fresh, we can say
⌦(⇢) = ⌦(⌧). Then, by Property 13, we have a contradiction.

Property (Apartness through reduction and substitution [Prop-
erty 4]). If apart(⇢, ⌧), then for any ⌧ 0 such that ⌧  ⇤ ⌧ 0:
¬match(⇢, ⌧ 0).

Proof. Let � be the unique normal form of ⌧ . By Lemma 49,
we know apart(⇢, �). By Lemma 50, ¬match(⇢, �). Note that
the uniqueness of normal forms, we know ⌃ ` ⌧ 0 ⇤ �. By
the contrapositive of Lemma 47, we see that ¬match(⇢, ⌧ 0) as
desired.

G. Proof of compatibility soundness
In this appendix, we show that the concrete implementation of
compatibility (Definition 8) satisfies the definition of compatibility
(Property 7). We use the implementation of compatibility included
in our formal inference rules, as it separates Definition 8 into its
two cases:

compat(�1,�2) Equation compatibility

�1 = [↵1:1]. F (⇢1) ⇠ �1
�2 = [↵2:2]. F (⇢2) ⇠ �2
unify(⇢1, ⇢2) = ⌦
⌦(�1) = ⌦(�2)

compat(�1,�2)
COMPAT COINCIDENT

�1 = [↵1:1]. F (⇢1) ⇠ �1
�2 = [↵2:2]. F (⇢2) ⇠ �2
unify(⇢1, ⇢2) fails

compat(�1,�2)
COMPAT DISTINCT

We generalize Property 7 to work with unify1.

Property 51 (Compatibility (with infinite unification)). Two type-
family equations p and q are compatible iff !1(lhsp) = !2(lhsq)
implies !1(rhsp) = !2(rhsq).

Proof. For all type family equations �1 and �2, where �1 =
[↵1:1]. F (⇢1) ⇠ �1 and �2 = [↵2:2]. F (⇢2) ⇠ �2, we must
show that compat(�1,�2) implies that, for all !1 and !2 such that
!1(⇢1) = !2(⇢2), it is the case that !1(�1) = !2(�2).

We have two cases:

Case COMPAT COINCIDENT: Here, we know that !(⇢1) =
!(⇢2) and, by Property 40, that ! is a most general uni-
fier. We further know that !(�1) = !(�2). By assumption,
!1(⇢1) = !2(⇢2). By the assumption that all patterns in type
families have distinct variables, we know that the domains of !1

and !2 are distinct. Thus, we can write !0 = !1 [ !2, and say
!0(⇢1) = !0(⇢2). Similarly, we can say that we wish to show
!0(�1) = !0(�2). Because ! is a most general unifier, we can
say that !0 = !00 � ! for some !00. Thus, we wish to show
!00(!(�1)) = !00(!(�2)). But, we know that !(�1) = !(�2)
so we are done.

Case COMPAT DISTINCT: Here, we know that there exists no !
such that !(⇢1) = !(⇢2). Yet, we have assumed that !1(⇢1) =
!2(⇢2) and by an argument similar to the last case, we can
combine !1 and !2 to !0. This substitution ! is then a unifier,
leading to a contradiction.
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