
Resource Bound Certification

Karl Crary

Carnegie Mellon University

Stephanie Weirich

Cornell University

Abstract

Various code certification systems allow the certification and
static verification of important safety properties such as
memory and control-flow safety. These systems are valuable
tools for verifying that untrusted and potentially malicious
code is safe before execution. However, one important safety
property that is not usually included is that programs ad-
here to specific bounds on resource consumption, such as
running time.

We present a decidable type system capable of specifying
and certifying bounds on resource consumption. Our system
makes two advances over previous resource bound certifica-
tion systems, both of which are necessary for a practical
system: We allow the execution time of programs and their
subroutines to vary, depending on their arguments, and we
provide a fully automatic compiler generating certified ex-
ecutables from source-level programs. The principal device
in our approach is a strategy for simulating dependent types
using sum and inductive kinds.

1 Introduction

A current trend in systems software is to allow untrusted
extensions to be installed in protected services, relying on
language technology to protect the integrity of the service
instead of hardware-based protection mechanisms [11, 20,
1, 16, 14]. For example, the SPIN project [1] relies on the
Modula-3 type system to protect an operating system kernel
from erroneous extensions. Similarly, web browsers rely on
the Java Virtual Machine bytecode verifier [11] to protect
users from malicious applets. In both situations, the goal
is to eliminate expensive inter-process communications or
boundary crossings by allowing extensions to access directly
the resources they require.

Recently, Necula and Lee [16, 15] have proposed Proof-
Carrying Code (PCC) and Morrisett et al. [14] have pro-
posed Typed Assembly Language (TAL) as language tech-
nologies that provide the security advantages of high-level
languages, but without the overheads of interpretation or
just-in-time compilation. In both systems, low-level ma-
chine code can be heavily optimized, by hand or by com-
piler, and yet be automatically verified through proof- or
type-checking.

Each of these systems (SPIN, Java, TAL, and Touch-
stone [18], a compiler that generates PCC) automatically

To appear in the Twenty-Seventh Symposium on
Principles of Programming Languages, Boston, Mas-
sachusetts, January 2000. Last revised October 25,
1999.

certifies a large set of important security properties, such as
type safety, memory safety, and control-flow safety. How-
ever, one important security property that none of these
systems certifies is bounded termination; none can guaran-
tee that an accepted program will terminate within a given
amount of time. Such guarantees of running-time bounds
(and, more generally, of resource-consumption bounds) are
essential to many applications, such as active networks and
extensible operating system kernels. To obtain such bounds
on resource consumption, code consumers have generally
had to rely on operating system monitoring, which can be
costly and which works against the direct access afforded by
language-based mechanisms.

To redress this shortcoming, we present a decidable type
system called LXres for specifying bounds on resource con-
sumption and for certifying that programs satisfy those
bounds. In this paper we will focus on specification and
certification of running-time bounds; we consider at the end
how our mechanisms can be generalized to other sorts of re-
sources, such as space. Note that we make no effort to infer
any bounds on resource consumption; rather we provide a
mechanism for certifying those bounds once they have been
discovered by the programmer or by program analysis.

We have implemented our type system within the frame-
work of the Typed Assembly Language security infrastruc-
ture [14, 13]. The implemented version of this work (called
TALres) lowers the mechanisms we discuss in this paper
down to the TAL level, augmenting TAL’s very low-level
safety certification with running-time guarantees. We have
also implemented a prototype certifying compiler that gen-
erates TALres, taking as its input an impure functional lan-
guage (called PopCron) derived from a safe dialect of C [13]
and annotated with termination information. Many of the
low-level details that are the focus of TAL are not germane
to certification of resource bounds, so in the interest of clar-
ity we present our results at a higher level before discussing
TALres informally.

2 Informal account

At its core, our approach is quite simple. Following Necula
and Lee [17], we augment the underlying computing ma-
chinery with a virtual clock that winds down as programs
execute. The virtual clock exists only in support of the for-
mal semantics; the machine provides no run-time operations
that can inspect the clock, and therefore the clock need not
be (and is not) implemented at run time. The pertinence of
the clock is to the type system: Function types, in addition
to specifying the types of a function’s argument and result,
also specify that function’s beginning and ending clock read-
ings. For example, a function that takes an integer at time

15 and returns another integer at time 12 could be given the
type:

(int, 15) → (int, 12)

However, such a type is unduly specific. By specifying the
starting clock to be 15, this type restricts its members so
that they may be started only at one particular time. We
would prefer a more flexible type the specifies that the func-
tion runs in 3 clock steps. Indeed, since there exist no oper-
ations that can inspect the clock, that is the entire import
of the above type anyway.

We can get the desired type by using polymorphism to
abstract over the finishing time. For example, the type

∀n. (int, n + 3) → (int, n)

specifies that for any time n, when presented with an integer
at time n + 3, its members return an integer at time n. In
other words, its members run in 3 clock steps. The former
type can be obtained by instantiating n with 12, but such
functions can also be run at any other time (provided the
clock reads at least 3) by a suitable instantiation.

As a minor point, we also allow programs to waste clock
steps on demand, so a function with the latter type could
in fact take 1 or 2 steps and then waste the remaining steps
as necessary to meet the specification. Also, due to some
practical considerations that we discuss in Section 4, we only
step the clock for function calls. However, this decision is
only to simplify the compiler, and has no significant impact
on the design of the language; one could just as easily use
a tighter measure of running time such as the number of
instructions executed.

To make this concrete, consider the function map pair, a
higher-order function that takes a function f and a pair p,
and applies f to both components of p:

Λα:Type, β:Type, k:Nat, n:Nat.
λ(fp : (∀m:Nat.(α,m + k) → (β,m)) × (α × α),

n + 2k + 2).
let f = prj1 fp in
let p = prj2 fp
in

〈f [n + k + 1](prj1 p), f [n](prj2 p)〉
The function first takes four static arguments, two types and
two natural numbers: α and β (the domain and codomain
types of f), k (the running time of f), and n (the overall fin-
ishing time). After taking static arguments, map pair takes
f and p as a pair (curried functions quickly become tedious
when writing clock values on each end of every arrow), and
specifies the function’s starting time to be n + 2k + 2.

The body typechecks as follows: The starting clock, as
specified by the abstraction, is n + 2k + 2. The clock only
steps for function calls, so the clock is unchanged by extrac-
tion of f and p, by the first instantiation of f , and by the
projection from p. The first function call expects a starting
clock of (n + k + 1) + k, which it receives once the clock is
stepped for the function call. The function call then returns
with the clock reading n+ k +1, as given by f ’s type. Step-
ping the clock for the second function call leaves it reading
n + k, the expected starting clock for the second function
call, which then returns with the clock reading n.

Therefore, map pair is given the type:

∀α:Type, β:Type, k:Nat, n:Nat.
((∀m:Nat.(α,m + k) → (β,m)) × (α × α), n + 2k + 2)
→ (β × β, n)

Effects systems At alternative formulation that one could
consider would use an effects type system [19] to track the
passage of time. Such a system would allow for a sim-

pler notation for function types (int
3→ int) as opposed to

∀n. (int, n + 3) → (int, n)) and would eliminate the effort
seen in the previous example in matching up clock readings.

We did not adopt an effects formulation because, al-
though such a formulation would works quite neatly for time,
it does not neatly generalize to resources that can be recov-
ered, such as space. For example, if we interpret resources
to mean space, the type ∀n. (int, n + 15) → (int, n + 12)
specifies a function that allocates as many as 15 units of
space but deallocates all but 3 of those, and so must be
called with at least 15 units of space. There is no conve-
nient way to specify such a function using a conventional
effects system. When resources cannot be recovered, such
a type is pointless (one would always prefer the more flex-
ible ∀n. (int, n + 3) → (int, n)), but when they can, such
types draw clearly important distinctions. Nevertheless, in
this paper we will adopt the effects notation as a convenient
shorthand:

Notation 2.1 We write τ1
n→ τ2 to mean ∀m:Nat. (τ1, m+

n) → (τ2, m).

For example, map pair’s type may be abbreviated:

∀α:Type, β:Type, k:Nat. ((α
k→ β) × (α × α))

2k+2−→ (β × β)

2.1 Variable-time functions

The programming idiom seen so far is pleasantly simple,
but it supports only constant-time functions, which renders
it insufficient for most real programs. Even when whole
programs run in constant time, they still very often con-
tain variable-time subroutines. In order to support real pro-
grams, we must permit a function’s running time to depend
on its arguments. Since this involves type expressions refer-
ring to values, we require some notion of dependent type.

One possible design is simply to add dependent types to
the system directly. It is possible that a workable design
could be constructed using such an approach (following Xi
and Pfenning [21], for example), but we adopted another
approach to better leverage the type structure already de-
veloped for TAL [3], and in order to keep the type system as
simple as possible. In our approach, we take sum and induc-
tive kinds and polymorphism as our primitive constructs,
and use them to construct a form of synthetic dependent
type. As a result, our programming language is simpler,
but the programming idiom is more complex. This is rea-
sonable in keeping with our intention for this language to be
primarily machine manipulated; we do however include de-
pendent types in our compiler’s source language, PopCron
(Section 4).

Our approach to dependent types is based on a device
from Crary and Weirich [3] (hereafter, CW), for the compiler
intermediate language LX. CW showed how, using sum and
inductive kinds, to construct run-time values that represent
static type information. This made it possible to perform
intensional type analysis [7] while inspecting only values.
Here we use the same device for the opposite purpose, to
construct static representations of run-time values. We can
then make a function’s running time depend on the static
representation of an argument, rather than on the argument
itself.

2

We begin with a representative example to illustrate how
this works. Suppose we wish to implement a map tree func-
tion. The running time of map tree depends on the size of
the tree: If k is the running time of the argument function
and t is the tree argument, then map tree’s running time is
size(t) · (k + 3) (one call to the mapping function and two
recursive calls for each node). Using an ordinary dependent
type, we might write map tree’s type as something like:

∀α:Type, β:Type, k:Nat.

(α
k→ β, t : treeα)

size(t)·(k+3)
- treeβ

In our idiom, we add an additional static argument (s) that
represents the argument t, and we compute the running time
based on that static argument:

∀α:Type, β:Type, k:Nat, s:TreeRep.

((α
k→ β) × tree(s)(α))

cost(s)−→ tree(s)(β)

We define TreeRep using an inductive kind and cost using
primitive recursion over that inductive kind. In this section
we will use an informal notation for each of these; we show
how the example is formalized in the next section:

kind TreeRep = Leaf
| Node of TreeRep * TreeRep

fun cost(Leaf) = 0
| cost(Node (s1, s2)) =

cost(s1) + cost(s2) + k + 3

The example is simplified by the fact that s needs only to
represent the shape of the tree, and not its contents, allowing
the same representation to be used for the argument and
result trees. If the mapping function were a variable-time
function, instead of constant-time k, the TreeRep kind would
need to be augmented to supply information about the data
items lying at each node. Also note that we have simplified
the definition of cost by including the variable k free, rather
than as an argument.

The most delicate aspect is the definition of tree(s) as a
parameterized recursive type that includes only those trees
represented by the argument, s. A simple and naively ap-
pealing definition is:

type wrong tree(s)(α) =
(case s of

Leaf => unit + void
| Node (s1, s2) =>

void + (α * wrong tree(s1)(α)
* wrong tree(s2)(α)))

Unfortunately, this definition makes map tree unimple-
mentable, as s, the argument to tree, will nearly always be
abstract. In such cases, wrong tree(s)(α) will be a useless,
irreducible type. Instead, following CW, if we implement it
as (again using an informal notation):

type tree(s)(α) =
(case s of

Leaf => unit
| Node (s1, s2) => void) +

(case s of
Leaf => void

| Node (s1, s2) =>
α * tree(s1)(α) * tree(s2)(α))

Given a member of t of tree(s)(α), we can always case-split
t. Suppose t is a left injection, inj1 t′. Then we know that
s is necessarily Leaf, because if it were Node, then t′ would
have type void, which is impossible. LXres permits us to
propagate this new information back into the type system
and refine s according to whatever we learn. In this man-
ner, static representations can keep up with their dynamic
counterparts.

With these definitions, we can implement map tree as
shown below. The propagation of information into the type
system is conducted by a virtual case construct (described
in Section 3), but for the sake of clarity in this informal
account, we allow that propagation to be implicit in the
example.

fix map tree =
Λα:Type, β:Type, k:Nat, s:TreeRep, n:Nat.

λ(ft : (α
k→ β) × tree(s)(α), n + cost(s)).

let〈f : α
k→ β, t : tree(s)(α)〉 = ft in

case t of
inj1 t′ ⇒ inj1 ∗
inj2 t′ ⇒
let Node(s1, s2) = s in
let〈x : α, t1 : tree(s1)(α), t2 : tree(s2)(α)〉 = t′ in
let x′ = f [n + cost(s1) + cost(s2) + 2](x) in
let t′1 = map tree[α,β, k, s1,

n + cost(s2) + 1]〈f, t1〉 in
let t′2 = map tree[α,β, k, s2, n]〈f, t2〉
in
inj2〈x′, t′1, t

′
2〉

The function typechecks as follows: We begin with a func-
tion f that runs in k steps, an abstract tree representation
s, a tree t matching that representation, and n + cost(s)
on the clock. The tree t is a member of a sum type, so we
can case analyze it. In the first case, t is inj1 t′ and there-
fore, as argued above, s is Leaf. Consequently, cost(s) = 0
and the clock reads n. The result value (inj1 ∗) has type
tree(Leaf)(α) and constructing it takes no steps off the
clock, so the function’s postcondition is satisfied.

In the second case, t is inj2 t′ and therefore, since t′

cannot have type void, we may infer that s is Node(s1, s2)
(for some tree representations s1 and s2) and that t′ has
type α × tree(s1)(α)× tree(s2)(α). A let expression binds
x, t1 and t2 to the respective components of the node. We
then compute the components x′, t′1 and t′2 of a new node
in three steps:

1. With the clock reading n + cost(s) = n + cost(s1) +
cost(s2) + k + 3, we instantiate f with the finishing
time n + cost(s1) + cost(s2) + 2. Thus f expects a
starting time of n + cost(s1) + cost(s2)+2 + k, which
is satisfied once the clock is stepped for the function
call.

2. With the clock now reading n+cost(s1)+cost(s2)+2,
we instantiate map tree with a tree representation s1

and a finishing time n + cost(s2) + 1. Thus map tree
expects a starting time of n + cost(s2) + 1 + cost(s1),
which is satisfied once the clock is stepped. The argu-
ment, t1 has type tree(s1)(α), so the function call is
well-typed.

3. With the clock now reading n+cost(s2)+1, we instan-
tiate map tree with s2 and a finishing time of n. The

3

starting time, n + cost(s2), is satisfied and the argu-
ment has the appropriate type, so the function call is
again well-typed.

The function concludes by assembling these components into
a tree node with type tree(Node(s1, s2))(α) and the clock
reads n, so the function’s postcondition is satisfied.

2.2 Discussion

The map tree example is typical of the use of our system.
First, one identifies one or more metric arguments on which
a function’s running time depends. In this example, the
running time depends on both the running time of f and
the size of t, so both f and t are metric arguments.

Second, one defines representations for the metric argu-
ments that are detailed enough both to compute the cost
function and to define enforcement types (such as tree(s))
that contain only values that match the representative.
The representation for the f argument was simple; all that
needed to be known was its running time k and an enforce-

ment type α
k→ β was easily defined. The t argument is

more complicated (and often more typical). We would be
happy to represent it by only its size, but our type system
is incapable of constructing an enforcement type for a tree
given only its size (more on this below), and so consequently
we needed to specify the tree’s entire shape.

Finally, after defining a cost function and an enforcement
type, the function itself is written. Two main issues arise in
this process:

• The cost must be woven through the function; this is
done by correct choices of finishing times for function
calls and by wasting extra clock cycles in order to make
parallel branches match. (The latter was not necessary
in the map tree example.)

• Representations must be supplied for all metric argu-
ments to inner function calls. Constructing such repre-
sentations requires access to representations of all com-
ponents from which those arguments are built. When
a component is part of one of the function’s own metric
arguments, the desired representation is easily obtained
from that argument’s representation. (In this map tree
example, the needed representations were obtained by
decomposing s into Node(s1, s2) once it was determined
that t was a node.)

When a component is the result of another function
call, that function’s type must specify the representa-
tion of that return value. For example, map tree spec-
ified that its result had the same specification as its
argument. More generally, the result could have a dif-
ferent specification given by a static function. For ex-
ample, if map tree also possibly restructured the tree,
it would need to have the type

∀α:Type, β:Type, k:Nat, s:TreeRep.

((α
k→ β) × tree(s)(α))

cost(s)−→ tree(newrep(s))(β)

where newrep is a static function with kind TreeRep→
TreeRep. Such functions with specified results are more
limited in what they can do than ordinary functions,
because static functions are required to be primitive
recursive and therefore the specified functions must be

primitive recursive, at least as far as the structure de-
scribed by the representations are concerned. This re-
quirement, which we discuss further in the next section,
is necessary to ensure decidability of type checking.

In some cases, an argument may be a metric argument
to an inner function call even when it does not affect
the total running time of the outer function. For ex-
ample, suppose a function broke a fixed-length array
into two variable-sized pieces based on an integer argu-
ment, and then mapped a constant-time function over
each piece. The total running time does not depend
on the integer argument, but each internal call’s time
does. In such cases, the “phantom” dependency must
be treated as a metric argument and a representation
must be required.

A similar issue arises when an inner function’s result is
a metric argument to another inner function, but that
result does not affect the total remaining running time
of the outer function. In this case, a representation
must again be obtained, but since there is no need to
link this representation back to the total cost, it can
be existentially quantified rather than specified by a
static function. This case is more typical than the case
of functions that require specified results.

Returning to the topic of enforcement types, the aspect
of trees that makes it impossible to define an enforcement
type for them given only a size is that trees have multiple
spines. That is, given a total size, the enforcement type does
not know how much size to place in the left subtree and how
much to place in the right. Therefore, the representation
must also specify how much to place in each subtree, and
by doing so inductively it specifies the tree’s entire shape.
Multiple-spined data structures are quite common, so it is
common to require representations of entire data structures.
Consequently, our prototype compiler makes no effort to op-
timize representations, instead providing (nearly) full repre-
sentations for all metric arguments (other than functions).
However, it is important to emphasize that the static rep-
resentations are not constructed at run time, so the cost of
over-representing a metric argument is paid at verification
time only.

An alternative strategy that could permit much more
succinct representations at the cost of a more complicated
type system would be to use union types to enumerate the
possible divisions of the total size. We have not explored
the ramifications of such a design, but it seems likely that
it would complicate typechecking.

3 A Language for Resource Bound Certification

In this section we discuss LXres and its semantics. We
present the constructor and term levels individually, concen-
trating discussion on the novel features of each. The syntax
of LXres (shown in Figures 1 and 2) is based on Girard’s Fω

[6, 5] augmented mainly by a rich programming language
at the constructor level, constructor refinement operators
at the term level, and resource bounds in types and terms.
LXres is very similar to CW’s LX, the difference being that
LXres includes virtual clocks and a primitive natural num-
ber kind in support of those clocks. The full static and
operational semantics of LXres are given in Appendices A
and B.

4

(kinds) k ::= Type | Nat | 1 | k1 → k2 | k1 × k2 | k1 + k2 | j | µj.k

(constructors) c, τ ::= ∗ | α | λα:k.c | c1c2 unit, variables and functions
| 〈c1, c2〉 | prj1 c | prj2 c products

| injk1+k2
1 c | injk1+k2

2 c | case(c, α1.c1, α2.c2) sums
| foldµj.k c | pr(j, α:k,β:j→k′.c) primitive recursion
| n | c1 u c2 | prnat(α, β:k.c1; c2) natural numbers
| (τ1, c1) → (τ2, c2) | τ1 × τ2 | τ1 + τ2 types
| ∀α:k.τ | ∃α:k.τ | unit | void | reck(c1, c2) types

Figure 1: LXres kinds and constructors

3.1 Kinds and constructors

The constructor and kind levels, shown in Figure 1, contain
both base constructors of kind Type (called types) for clas-
sifying terms, and a variety of programming constructs for
computing types. In addition to the variables and lambda
abstractions of Fω, LXres also includes a unit kind, prod-
ucts, sums, and the usual introduction and elimination con-
structs for those kinds. LXres also includes a natural num-
ber kind discussed further in Section 3.3.

We denote the simultaneous, capture-avoiding
substitution of E1, . . . , En for X1, . . . , Xn in E by
E[E1, . . . , En/X1, . . . , Xn]. As usual, we consider alpha-
equivalent expressions to be identical. A few constructs
(inji, fold, pr, and rec) are labeled with kinds to assist in
kind checking; we will omit such kinds when they are clear
from context. When a constructor is intended to have kind
Type, we often use the metavariable τ .

To support computing with static representations, LXres
includes kind variables (j) and inductive kinds (µj.k). A
prospective inductive kind µj.k will be well-formed provided
that j appears only positively within k. Inductive kinds
are formed using the introductory operator foldµj.k, which
coerces constructors from kind k[µj.k/j] to kind µj.k. For
example, consider the kind Tlist of lists of types, defined as
µj.(1+Type×j). The constructor (inj1+Type×Tlist

1 ∗) has kind

(1+Type×j)[Tlist/j]. Therefore foldTlist(inj
1+Type×Tlist
1 ∗) has

kind Tlist.
Inductive kinds are eliminated using the primitive re-

cursion operator pr. Intuitively, pr(j, α:k,ϕ:j → k′.c) may
be thought of as a recursive function with domain µj.k in
which α stands for the argument unfolded and ϕ recursively
stands for the full function. However, in order to ensure that
constructor expressions always terminate, we restrict pr to
define only primitive recursive functions. Informally speak-
ing, a function is primitive recursive if it can only call itself
recursively on a subcomponent of its argument. Following
Mendler [12], we ensure this using abstract kind variables.
Since α stands for the argument unfolded, we could consider
it to have the kind k[µj.k/j], but instead of substituting for
j in k, we hold j abstract. Then the recursive variable ϕ
is given kind j → k′ (instead of j[µj.k/j] → k′) thereby
ensuring that ϕ is called only on a subcomponent of α.

The kind k′ in pr(j,α:k, ϕ:j→k′.c) is permitted to con-
tain (positive) free occurrences of j. In that case, the func-
tion’s result kind employs the substitution for j that was
internally eschewed. Hence, the result kind of the above
constructor is k′[µj.k/j]. This is useful so that some part of
the argument may be passed through without ϕ operating
on it. As a particularly useful application, we can define
the constructor unfoldµj.k with kind µj.k → k[µj.k/j] to

be pr(j,α:k, ϕ:j→k.α).
For example, given a constructor with kind Tlist, we can

use primitive recursion to construct the tuple type built from
the types in the list (using an informal, expanded notation
for case):

tuple
def
= pr(j, α:1+Type×j,ϕ:j→Type.

case α of
inj1 β ⇒ unit
inj2 γ ⇒ prj1 γ × ϕ(prj2 γ))

Suppose we apply tuple to the list [int] (that is, the en-
coding fold(inj2〈int, fold(inj1 ∗)〉). By unrolling the pr
expression, we may show:

(pr(j, α:1+Type×j, ϕ:j→Type.
case α of
inj1 β ⇒ unit
inj2 γ ⇒ prj1 γ × ϕ(prj2 γ))) [int]

= case(inj2〈int, fold(inj1 ∗)〉) of
inj1 β ⇒ unit
inj2 γ ⇒ prj1 γ × tuple(prj2 γ)

= int× (tuple(fold(inj1 ∗)))
(that is, int× tuple([]))

= int× (case (inj1 ∗) of
inj1 β ⇒ unit
inj2 γ ⇒ prj1 γ × tuple(prj2 γ))

= int× unit

The unrolling process is formalized by the following con-
structor equivalence rule (the relevant judgment forms are
summarized in Figure 5):

∆ ` c′ : k[µj.k/j] ∆, j ` k′ kind
∆, j, α:k, ϕ:j→k′ ` c : k′ ∆ ` µj.k kind

∆ ` pr(j, α:k, ϕ:j → k′.c)(foldµj.k c′) =
c[µj.k, c′, pr(j, α:k,ϕ:j→k′.c)/j,α, ϕ]

: k′[µj.k/j]
(j only positive in k′ and j, α, ϕ 6∈ ∆)

Notation 3.1 If k1 is of the form µj.k, then we write k1[k2]
to mean k[k2/j]. For example, Tlist[Tlist] abbreviates 1 +
Type × Tlist.

3.2 Types and terms

The syntax of LXres terms is given in Figure 2. Most LXres
terms are standard, including the usual introduction and

5

(terms) e ::= ∗ | x | λ(x:τ, c).e | e1e2 unit, variables, functions
| waste[c]e clock advance
| 〈e1, e2〉 | prj1 e | prj2 e products
| injτ1+τ2

1 e | injτ1+τ2
2 e | case(e, x1.e1, x2.e2) sums

| Λα:k.v | e[c] | fix f :τ.v constructor abstractions and recursion
| pack e as∃α:k.τ hiding c | unpack〈α, x〉 = e1 in e2 existential packages
| foldreck(c,c′) e | unfold e parameterized recursive types
| vcaseτ.c(c, β. e, γ. deadv) | vcaseτ.c(c, β. deadv, γ. e) constructor refinement operations
| letτ.c 〈β, γ〉 = c in e | letτ.c (foldβ) = c in e constructor refinement operations

Figure 2: LXres terms

∆ ` τ1 : Type ∆ ` c1 : Nat ∆ ` τ2 : Type ∆ ` c2 : Nat

∆ ` (τ1, c1) → (τ2, c2) : Type

∆ ` τ1 : Type ∆ ` c1 : Nat ∆; (Γ, x:τ1); c1 ` e : τ2 . c2

∆;Γ; c ` λ(x:τ1, c1).e : (τ1, c1) → (τ2, c2) . c
(x 6∈ Γ)

∆; Γ; c ` e1 : (τ1, c1) → (τ2, c2) . c′

∆;Γ; c′ ` e2 : τ1 . (c1 u 1)

∆; Γ; c ` e1e2 : τ2 . c2

∆;Γ; c ` e : τ . (c1 u c2)

∆; Γ; c ` waste[c1]e : τ . c2

Figure 3: Virtual clock rules

elimination forms for products, sums, unit, and universal
and existential types.

Function types and lambda abstractions are written with
virtual clock specifications, as discussed in Section 2. A
few representative rules governing virtual clocks appear in
Figure 3, in which the typing judgment ∆; Γ; c ` e : τ . c′

states that (in constructor context ∆ and value context Γ)
the term e has type τ , and given a clock reading c it finishes
evaluating with the clock reading c′.

Constructor abstractions are limited by a value restric-
tion to avoid unsoundness in the presence of effects. The
value forms are given in Appendix B. Recursive functions
are expressible using fix terms, the bodies of which are syn-
tactically restricted to be functions (usually polymorphic)
by their typing rule (Appendix A). As at the constructor
level, some constructs are labeled with types or clocks to
assist in type checking; we omit these when clear from con-
text.

Parameterized recursive types are written reck(c1, c2),
where k is the parameter kind and c1 is a type construc-
tor with kind (k → Type) → (k → Type). Intuitively, c1

recursively defines a type constructor with kind k → Type,
which is then instantiated with the parameter c2 (having
kind k). Thus, members of reck(c1, c2) unfold into the type
c1(λα:k. reck(c1, α))c2, and fold the opposite way. The spe-
cial case of non-parameterized recursive types are defined
as rec(α.τ) = rec1(λϕ:1 → Type. λβ:1. τ [ϕ(∗)/α], ∗). Un-

like inductive kinds, no positivity condition is imposed on
recursive types.

Refinement The most novel features of the LXres term
language are the constructor refinement operations. The
main refinement operations are the two virtual case con-
structs, written vcase(c, β. e, γ. deadv) and dually. These
operations may been thought of as branching operations
for sum kinds: if c normalizes to inj1(c

′), then the term
vcase(c, β. e, γ. deadv) evaluates to e[c′/β].

However, constructors are static components of the pro-
gram only, and therefore may not be relied upon at run time.
Consequently, the semantics of vcase(c, β. e, γ. deadv) dic-
tates that it always reduces to the first branch, and the
second branch is dead code. To avoid unsoundness, the typ-
ing rule for vcase requires that its dead branch be a value
with type void, and thus that branch is statically known to
be dead code. Somewhat surprisingly, it may be shown [3]
that this virtual case construct provides the same expressive
power as an unrestricted case construct would.

In the left branch of a virtual case, the constructor be-
ing branched on is determined to be a left injection, and
conversely in the right branch. When that constructor is a
variable, the vcase typing rule propagates this information
back into the type system by substituting for that variable:

∆, β:k1, ∆
′; Γ[inj1 β/α]; c1[inj1 β/α] `

e[inj1 β/α] : τ [inj1 β/α] . c2[inj1 β/α]
∆, γ:k2, ∆

′; Γ[inj2 γ/α]; c1[inj2 γ/α] `
v[inj2 γ/α] : void . c′2

∆, α:k1+k2, ∆
′ ` c = α : k1 + k2

∆, α:k1+k2, ∆
′; Γ; c1 ` vcaseτ.c2(c, β. e, γ. deadv) : τ . c2

(β,γ 6∈ ∆)

Within the branches, types that depend on α can be re-
duced using the new information. For example, if x has
type case(α,β.int, β.void), its type can be reduced in each
branch, allowing its use as an integer in the active branch
and as void value in the dead branch.

In order for LXres to enjoy the subject reduction prop-
erty, we also require a trivialization rule [4] for vcase, for
use when the argument is a sum introduction:

∆ ` c = inj1 c′ : k1 + k2 ∆;Γ; c1 ` e[c′/β] : τ . c2

∆;Γ; c1 ` vcaseτ.c2(c, β. e, γ. deadv) : τ . c2

Path refinement There may also be useful refinement to
perform when the constructor to be branched on is not a
variable. For example, suppose α has kind (1+1)×Type and

6

TreeRep = µj.(1 + j×j)
cost = pr(j, α:TreeRep[j],ϕ:j → Nat.

caseα of

inj1 β ⇒ 0
inj2 β ⇒

ϕ(prj1 β)u ϕ(prj2 β)u k u 3)
tree(s)(α) =
recTreeRep(λϕ:TreeRep→ Type. λβ:TreeRep.

(caseunfold β of
inj1 γ ⇒ ∗
inj2 γ ⇒ void) +

(caseunfold β of
inj1 γ ⇒ void
inj2 γ ⇒

α × ϕ(prj1 γ)(α) × ϕ(prj2 γ)(α)),
s)

map tree =
fixmap tree :

(∀α:Type, β:Type, k:Nat, s:TreeRep.
((α

k→ β) × tree(s)(α))
cost(s)−→ tree(s)(β)) .

Λα:Type, β:Type, k:Nat, s:TreeRep, n:Nat.

λ(ft : (α
k→ β) × tree(s)(α), nu cost(s)).

let〈f : α
k→ β, t : tree(s)(α)〉 = ft in

case unfold t of
inj1 t′ ⇒
let fold(s′) = s in
vcase s′ of
inj1 s′′ ⇒ inj1 ∗
inj2 s′′ ⇒ dead t′

inj2 t′ ⇒
let fold(s′) = s in
vcase s′ of
inj1 s′′ ⇒ dead t′

inj2 s′′ ⇒
let〈s1, s2〉 = s′′ in
let〈x : α, t1 : tree(s1)(α), t2 : tree(s2)(α)〉 = t′ in
let x′ = f [nu cost(s1) u cost(s2)u 2](x) in
let t′1 = map tree[α, β, k, s1,

nu cost(s2)u 1]〈f, t1〉 in
let t′2 = map tree[α, β, k, s2, n]〈f, t2〉
in
inj2〈x′, t′1, t

′
2〉

Figure 4: Formalized map tree example

x has type case(prj1 α,β.int, β.void). When branching on
prj1 α, we should again be able to consider x an integer or a
void-value, but the ordinary vcase rule above no longer ap-
plies since prj1 α is not a variable. This is solved using the
product refinement operation, letτ.c 〈β, γ〉 = α in e. Like
vcase, the product refinement operation substitutes every-
where for α:

∆, β:k1, γ:k2, ∆
′; Γ[〈β,γ〉/α] . c1[〈β,γ〉/α] `

e[〈β, γ〉/α] : τ [〈β,γ〉/α] . c2[〈β,γ〉/α]
∆, α:k1 × k2, ∆

′ ` c = α : k1 × k2

∆, α:k1 × k2, ∆
′; Γ; c1 ` letτ.c2〈β, γ〉 = c in e : τ . c2

(β, γ 6∈ ∆)

A similar refinement operation exists for inductive types,
and each operation also has a trivialization rule similar to
those of vcase.

We may use these refinement operations to turn paths
into variables and thereby take advantage of vcase. For
example, suppose α has kind Tlist × Tlist and we wish to
branch on unfold (prj1 α). We do it using product and
inductive kind refinement in turn:

let 〈β1, β2〉 = α in
let (foldγ) = β1 in

vcase(γ, δ. e, δ. deadv)

A formalized version of the map tree example using path
refinement appears in Figure 4. For clarity, the example uses
a let notation on terms as the informal version in Section 2
did.

Non-path refinement Since there is no refinement opera-
tion for functions, sometimes a constructor cannot be re-
duced to a path. Nevertheless, it is still possible to gain
some of the benefits of refinement, using a device due to
Harper and Morrisett [7]. Suppose ϕ has kind Nat → (1+1),
x has type case(ϕ(4), β.int, β.void), and we wish to branch
on ϕ(4) to learn the type of x. First we use a constructor
abstraction to assign a variable α to ϕ(4), thereby enabling
vcase, and then we use a lambda abstraction to rebind x
with type case(α, β.int, β.void):

(Λα:1+1. λx: case(α,β.int, β.void).
vcase(α, β.e, β. deadv)) [ϕ(4)] x

Within e, x will be an integer, and similarly within v. This
device has all the expressive power of refinement, but is less
efficient because of the need for extra beta-expansions. How-
ever, this is the best that can be done with unknown func-
tions.

3.3 Natural numbers

LXres includes a primitive natural number kind, even
though natural numbers could be defined as the inductive
kind µj.(1+j) and addition could be defined using primi-
tive recursion. This is because the inductive kind definition
does not provide commutativity and associativity axioms,
which are frequently necessary to prove adherence to re-
source bounds. The problem derives from the absence of an
eta-equivalence rule on inductive kinds. For example, the

7

Judgment Meaning

∆ ` k kind k is a well-formed kind
∆ ` c : k c is a valid constructor of kind k
∆ ` c1 = c2 : k c1 and c2 are equal constructors
∆; Γ; c1 ` e : τ . c2 e is a term of type τ , and, when

starting with clock c1, evaluation
of e finishes with clock c2

Contexts

∆ ::= ε | ∆, j | ∆, α:k
Γ ::= ε | Γ, x:τ

Figure 5: Judgments

analog of α + 0 = 0 + α does not hold,

α 6= pr(j, β:1+j,ϕ:j → µj.(1+j).
caseβ of
inj1 γ ⇒ fold(inj1 γ)
inj2 γ ⇒ fold(inj2 ϕ(γ))))α

because the right-hand side is irreducible, even though the
equivalence does hold for all closed instances.

By making natural numbers primitive, we can easily add
commutativity and associativity axioms. Addition of natu-
ral numbers is written c1 u c2 to distinguish it from a sum
type. Numerals in LXres are written n to distinguish them
from numbers in the metatheory, but we will often omit the
overbar when there is no possibility of confusion.

Natural numbers are eliminated by primitive recursion.
The constructor prnatk(α,β.c1; c2) is a function with kind
Nat → k. On zero it returns c2, and on n u 1 it returns
the body c1, in which α stands for n and β stands for the
recursively computed value:

∆, α:Nat, β:k ` c1 : k ∆ ` c2 : k ∆ ` c : Nat

∆ ` prnatk(α, β.c1; c2)(cu 1) =
c1[c,prnatk(α, β.c1; c2)(c)/α,β] : k

(α, β 6∈ ∆)

The implemented version of this type system, TALres, also
provides a variety of other primitive operations (e.g., min-
imum, proper subtraction, and multiplication) and appro-
priate axioms for those operations.

3.4 Properties of LXres

The judgments of the static semantics of LXres appear in
Figure 5. The important properties to show are decidable
type checking and type safety. Due to space considerations,
we do not present proofs of these properties here; the proofs
are nearly identical to those for LX [3]. For typechecking,
the challenging part is deciding equality of type construc-
tors. We do this using a normalize, sort, and compare al-
gorithm employing a reduction relation extracted from the
equality rules. The reduction relation is constructed in the
obvious manner except for commutativity and associativity,
where it simply moves natural number literals outward. A
second phase of the algorithm sorts addition expressions to
account for full commutativity and associativity.

Lemma 3.2 Reduction of well-formed constructors is
strongly normalizing, confluent, preserves kinds, and is re-
spected by equality.

Strong normalization is proven using Mendler’s varia-
tion on Girard’s method [12]. Given Lemma 3.2, it is easy
to show the normalize, sort, and compare algorithm to be
terminating, sound and complete, and decidability of type
checking follows in a straightforward manner.

Theorem 3.3 (Decidability) It is decidable whether or
not ∆;Γ; c ` e : τ . c′ is derivable in LXres.

We say that a term (together with a clock) is stuck if
it is not a value and if no rule of the operational semantics
applies to it. Type safety requires that no well-typed term
can become stuck:

Theorem 3.4 (Type Safety) If ε; ε; n ` e : τ . c and
(e, n) 7→∗ (e′, n′) then (e′, n′) is not stuck.

This is shown using the usual subject reduction and
progress lemmas, augmented to track clocks.

No rule in the operational semantics will allow a pro-
gram to perform a function call when its clock reads 0, so
any program attempting to exceed its time bounds would
become stuck. It therefore follows from type safety that a
well-typed program cannot exceed its time bound:

Corollary 3.5 (Adherence to Resource Bounds) If
ε; ε;n ` e : τ . c then e executes in at most n clock steps.

4 Implementation

We have implemented this work within the framework of
the Typed Assembly Language (TAL) security architec-
ture [14, 13]. Our typechecker implements TALres, a vari-
ant of TALx86 [13] augmented to include the key features
of LXres. An example of TALres code appears in Figure 8.

The features of TAL and LXres interact pleasantly:
LXres’s virtual clocks may conveniently be considered reg-
isters, so LXres’s clock-tracking mechanism is easily incor-
porated into TAL’s existing register file mechanism. The
kind and constructor languages of TAL are easily augmented
to incorporate those of LXres, and the constructor refine-
ment operations are accounted for in TAL by new pseudo-
instructions similar to TAL’s unpack instruction.

TALres also supports a few features in addition to those
of LXres. One often requires an enforcement type link-
ing a run-time number to a static natural number. Such
an enforcement type can easily be built when numbers are
represented by Church numerals, but we wish to avoid the
inefficiency of Church numerals and use the built-in inte-
gers of TAL. TAL includes a singleton integer type to sup-
port the compilation of tagged unions; with the addition of
constructor-refining variants of the basic arithmetic opera-
tions, TALres allows this type to serve as an enforcement
type. TALres also provides primitive natural number oper-
ations other than addition, in support of richer cost func-
tions. In all, none of the enhancements to TAL to account
for resource bounds have substantially enlarged its trusted
computing base.

Outside the trusted computing base, we implemented a
prototype compiler generating TALres. Our compiler takes
source programs written in PopCron (which includes cost
function annotations) and compiles them to TALres, thereby
certifying them for safety and for resource bounds. The
PopCron language resembles Popcorn [13], which in turn is
a safe dialect of C. At the level of a C source program it

8

is difficult to predict the exact number of instructions the
resulting executable will use, but the number of jumps is
more stable, and for this reason we measure running time
in terms of backward jumps. (More precisely, we charge a
jump when it cannot be determined to be forward.) The dis-
crepancy between function calls in the source and chargeable
jumps in the executable (typically two jumps per function
call) is easily compensated for by the compiler.

Each function in PopCron must be annotated with a run-
ning time expression given in terms of zero or more of the
function’s arguments using a dependent type notation. For
example, the notation <|0|> in the following definition of an
increment function specifies that this code makes no func-
tion calls.

int add1 (int x)<|0|> { return x+1; }

The compiler automatically adds representation argu-
ments, threads the cost through the function, and provides
representations for function calls. The PopCron language
does not currently provide a facility for a function type to
specify the representation of its result (recall Section 2.2),
but we plan to add such a facility in the future.

Continuing the trivial example, the generated TALres
code for the function add1 is :

_add1:
LABELTYPE <All[k:Sint s:Ts].{CLK: 1 + k,
ESP:sptr {CLK:k, EAX:B4, ESP:sptr B4::s}::B4::s}>

MOV EAX,[ESP+4]
INC EAX
RETN

The type of this label is a precondition for jumping to it.
The precondition says that the stack (contained in register
ESP) must contain the pointer to a return address, followed
by a four byte value (type B4), followed by the rest of the
stack, s, which is held abstract. Furthermore, the clock
time, in register CLK, is also abstract, though it must be at
least 1. This extra clock step is added by the compiler to
account for the function’s return.

Example Space considerations preclude a thorough discus-
sion of PopCron and the compiler, so we illustrate them by
example. Figure 6 contains an example of a more substan-
tial source program written in PopCron. This program first
defines the tree type (specialized in this case to integers),
using recursive unions and structs. Note that the left and
right branches of each tree node are immutable; the PopCron
type system does not permit any mutable data to contribute
to a cost function. The bulk of this example is the function
app tree that applies its argument function f to every value
in the tree.1 The type given for f specifies that, like add1, it
may make no function calls. This is just for simplicity, like
TALres, PopCron does allow functions to be polymorphic
over the time taken by a parameter function.

The time annotation for app tree refers to cost tree in
calculating the time taken for the tree t. The keyword time
indicates that cost tree is only used in timing annotations,
and, as it will never be executed, does not need its own time
annotation.

The compiler’s TALres output appears in Figures 7
and 8. The only changes to this code for presentation are

1PopCron follows the terminology of C by using void to refer to
the trivial type; however, TALres follows standard type-theoretic ter-
minology in which void refers to the empty type.

struct tree_node {
const tree left;
const tree right;
int val;

}
union tree {
void leaf;
tree_node node;

}

time cost_tree (tree t) {
switch t {
case leaf : return 0;
case node(n): return (cost_tree_node(n));
}

}
time cost_tree_node (tree_node n) {
return (cost_tree (n.left) +

cost_tree (n.right) + 3);
}

void app_tree (tree t, void f (int x)<|0|>)
<| cost_tree(t) |> {

switch t {
case leaf : return;
case node(n) :
f(n.val);
app_tree(n.left,f);
app_tree(n.right,f);
return;

}
}

Figure 6: Example of PopCron code

some constructor simplification (in some cases they have
been replaced with equivalent, but smaller versions) and for-
matting. For example, we define two common types at the
bottom of Figure 8: ftype is the type of the function argu-
ment to app tree, and ra is the type of the return address
of the function.

Figure 7 contains the definitions of the TALres kinds
constructors and types necessary to annotate the compiled
code of app tree. The first two lines of this figure define
the mutually recursive kinds representing the tree union
and tree node struct.2 The next four lines define unfold
for these recursive kinds, where RECCON and ANDCON provide
a mutually recursive version of LXres’s pr. The two time
functions, cost tree and cost tree node, are also defined
with these constructs.

Lines 13 through 22 define the parameterized recursive
types of trees and tree nodes,3 where rec creates a tuple of
mutually recursive types, and then the individual compo-
nents are projected out in lines 21 and 22. Like tree(s)(α),
in Figure 4, tree rep forms a tagged sum (the branches are
discriminated by the singleton types S(1) and S(2)), and
within each branch of the sum, a case constructor allows
the argument to be refined with a virtual case.

2Both sums and products in TALres may contain an arbitrary
number of fields. Sums are denoted by +[object, ...], products by
*[object, ...], and unit is the empty product *[] .

3Product values must be boxed (unless they lie within an outer
boxed object), and consequently product types are often indicated to
be boxed by a ^ prefix. Additionally, product types contain flags
indicating that a field is read-only (^r) or read-write (^rw) [13].
For example, a boxed pair of mutable integers would have type
^*[B4^rw,B4^rw]. For brevity, when each field of a sum is boxed,
the boxing prefix may be placed on the entire sum.

9

1 RECKIND <tree_k = +[*[],tree_node_k]>
2 ANDKIND <tree_node_k = *[tree_k,tree_k]>
3 RECCON <unfold_tree : tree_k -!> +[*[],tree_node_k] = \
4 fn a$15 : +[*[],tree_node_k] . a$15>
5 ANDCON <unfold_tree_node : tree_node_k -!> *[tree_k,tree_k] = \
6 fn a$13 : *[tree_k,tree_k] . a$13>
7
8 RECCON <cost_tree : tree_k -!> Nat = \
9 fn t : +[*[],tree_node_k] . case (t) beta [0,cost_tree_node beta]>
10 ANDCON <cost_tree_node : tree_node_k -!> Nat = \
11 fn n : *[tree_k,tree_k] . 3 + (cost_tree n.0)+ (cost_tree n.1)>
12
13 TYPE <_reptype = rec(
14 tree_rep:tree_k-!>T4. fn union$16:tree_k . \
15 ^+[*[S(1)^r,case (unfold_tree union$16) b$17 [B4,void[T4]]^r], \
16 *[S(2)^r,case (unfold_tree union$16) b$18 [void[T4], \
17 tree_node_rep b$18]^r]], \
18 tree_node_rep:tree_node_k-!>T4. fn struct$14:tree_node_k . \
19 ^*[(tree_rep (unfold_tree_node struct$14).0)^r, \
20 (tree_rep (unfold_tree_node struct$14).1)^r,B4^rw])>
21 TYPE <tree_rep = _reptype.0>
22 TYPE <tree_node_rep = _reptype.1>

Figure 7: TALres kind and constructor definitions

Figure 8 contains the TALres output of the compiler for
app tree. Like add1, the precondition of this label expects
that the return address and then the arguments (first the
tree, then the function) will be passed to it on the stack.
Furthermore, the time annotation of app tree has been com-
piled to the constructor in the CLK register. As function calls
are composed of two jumps, the PopCron time annotation
is doubled, and an extra step is added for the final jump at
the function return.

The first step of the code is to explicitly unroll the
recursive type, and then branch on the sum tag, using
TAL’s pseudo-instruction BTAGVAR. If the tag is equal4 to
1, the code jumps to label leaf void$21, otherwise it falls
through. At leaf void$21, as BTAGVAR has removed all but
one branch, EAX contains a pointer to the degenerate sum

^+[*[S(1)^r,case (unfold_tree t)
b$17 [B4,void[T4]]^r]]

so it is explicitly coerced to remove the sum wrapping. Next,
t is refined in the next two lines. The VCASE instruction5

examines the type of second component of the product, ver-
ifying that it would be void if the argument to the case
were (fold (inj 1 beta)). After refinement, t has been
replaced by (fold (inj 0 beta)) so the clock reads

1 + (cost_tree (fold (inj 0 beta)))
+ (cost_tree (fold (inj 0 beta))) + k

which normalizes to 1+k. After the clock is stepped for the
jump, this gives the time expected by the return address.

In the other branch, node value$22 also coerces the EAX
from a degenerate sum so that its type becomes

^*[S(2)^r,case (unfold_tree t) b$18
[void[T4], tree_node_rep b$18]^r]

After refinement (Lines 8 and 9), this type is equivalent to
^*[S(2)^r, (tree_node_rep n)^r], for a new variable n.

4The “E” in the BTAGVAR instruction indicates a test for equality.
5The VCASE instruction takes four arguments: the number of the

live branch, a new constructor variable to bind, the constructor being
case analyzed, and the value residing in the dead branch.

In lines 10 and 11, the second component of this tuple is
pushed onto the stack and also put into EAX. After more
refinement in lines 12 and 13, EAX is of type tree node rep
[left3,right4], for new variables left3 and right4. This
recursive type is explicitly unrolled so that the third com-
ponent can be extracted and placed on the stack in line 15.
The argument f is then fetched from the stack and called
in line 17. Before the call, the clock reads (through the
refinements):

7 + cost_tree(left3) + cost_tree(left3)
+ cost_tree(right4) + cost_tree(right4) + k

As the call to f takes one step, and f takes one step to
return, we expect that after the call the clock should read

5 + cost_tree(left3) + cost_tree(left3)
+ cost_tree(right4) + cost_tree(right4) + k

and so pass this constructor argument to f. The second
constructor argument is the current state of the stack minus
the argument to f.

On return from f we pop the argument off the stack (line
21), move the pointer for f up the stack to prepare for the
recursive call (22), and then extract the left child of the
tree (23–24). The call (25) requires the type application of
the time after the call, the constructor representing the left
child, and the stack. Lines 29–34 perform a similar call with
the right child. At Line 36, the clock reads 1+k, allowing
the return.

5 Conclusion

Adherence to resource bounds is an important safety prop-
erty for untrusted agents in real-world situations. Our type
system certifies programs by augmenting them with virtual
clocks, and proving that the clocks of well-typed programs
cannot expire. This mechanism was first suggested by Nec-
ula and Lee [17] for the PCC framework. This work extends
theirs by allowing executions to vary in length depending
on their input, and by providing a fully automatic com-
piler generating executables certified for resource bounds.

10

1 _app_tree:
2 LABELTYPE <All[k:Nat t:tree_k s:Ts].{CLK: 1+(cost_tree t)+(cost_tree t)+k, \
3 ESP: sptr ra :: (tree_rep t) :: ftype :: s}>
4 MOV EAX,unroll([ESP+4])
5 BTAGVAR E,[EAX+0],1,leaf_void$21
6 node_value$22:
7 COERCE unisum(EAX)
8 LETFOLD alpha1,t
9 VCASE 1,n,alpha1,[EAX+4]
10 PUSH DWORD PTR [EAX+4]
11 MOV EAX,[ESP+0]
12 LETFOLD r$24,n
13 LETPROD [left3,right4],r$24
14 COERCE unroll(EAX)
15 PUSH DWORD PTR [EAX+8]
16 MOV EAX,[ESP+16]
17 CALL tapp(EAX,<5 + (cost_tree left3) + (cost_tree right4) + \
18 + (cost_tree left3) + (cost_tree right4) + k, \
19 tree_node_rep [left3,right4] :: ra \
20 :: (tree_rep t) :: ftype :: s >)
21 ADD ESP,4
22 PUSH DWORD PTR [ESP+12]
23 MOV EAX,unroll([ESP+4])
24 PUSH DWORD PTR [EAX+0]
25 CALL tapp(_app_tree,<3 + (cost_tree right4) + (cost_tree right4) + k, \
26 left3, tree_node_rep [left3,right4] :: ra \
27 :: (tree_rep t) :: ftype :: s >)
28 ADD ESP,8
29 PUSH DWORD PTR [ESP+12]
30 MOV EAX,unroll([ESP+4])
31 PUSH DWORD PTR [EAX+4]
32 CALL tapp(_app_tree,<1 + k, right4, \
33 tree_node_rep [left3,right4] :: ra \
34 :: (tree_rep t) :: ftype :: s>)
35 ADD ESP,12
36 RETN
37 leaf_void$21:
38 COERCE unisum(EAX)
39 LETFOLD alpha1,t
40 VCASE 0,beta2,alpha1,[EAX+4]
41 RETN

where ftype = All[k:Nat s:Ts].{CLK: 1+k, ESP: sptr { CLK: k, ESP: sptr B4::s} :: B4 :: s}
and ra = { CLK: k, ESP: sptr (tree_rep t) :: ftype :: s }

Figure 8: Compilation of the function app tree

Like Necula and Lee, we make no effort to infer resource
bounds, and instead rely on annotations supplied by the
programmer.

Some other type systems for controlling resource con-
sumption are Hoffman’s linear type system for (asymptot-
ically) bounding time [8] and Hughes, Pareto and Sabry’s
sized types for bounding space [10, 9]. These type systems
provide different expressive power from ours: Hoffman pro-
vides asymptotic bounds, and Hughes et al. account for heap
space, but neither allow bounds to depend on input data,
and both work at the level of source code, not executables.

Most similar to our work is Reistad and Gifford’s type
system for expressing the running time of programs as a
function of their inputs [19]; their work differs mainly in
that they limit the programmer to what can be done using
a set of primitive cost-related constructs, whereas we build
such constructs from basic mechanisms, and (like Hoffman
and Hughes et al.) they operate at the level of source, not
executables. However, Reistad and Gifford consider cost
inference, which we do not, so it may well be profitable to
combine their source language with our executable language.

A key contribution of this work is a programming id-
iom for simulating dependent types using sum and inductive
kinds. This idiom does make programs more complex than
they would be in a language that included dependent types;
the benefit of our approach lies in its substantially simpler
type theory and resulting ease of type checking (i.e., verifi-
cation). We prefer a simpler type theory because, aside from
a general preference for simpler type theories, simplicity is
key to the robustness of our system. The type checker is part
of the trusted computing base of our security infrastructure,
so any complexity there makes the system less likely to be
secure. The compiler, on the other hand, is not part of the
trusted computing base, so any error there merely leads to
rejected code.

The principal limitation of our approach lies in the lim-
itations that exist on cost functions. First, cost functions
must be primitive recursive, which rules out some resource
bounds. Second, cost functions are limited to using a fixed
set of built-in arithmetic operators. As discussed in Sec-
tion 3.3, defined arithmetic operators often do not work as
intended because of the lack of an eta-equivalence rule for

11

inductive kinds. Third, cost functions are limited to us-
ing aspects of their metric arguments that can be statically
represented (or, more precisely, statically represented in a
manner admitting an enforcement type). In TALres many
sorts of data are not easily represented, such as cyclic data
structures. Despite these limitations, we believe that our
approach is applicable to a wide variety of important appli-
cations.

This work easily generalizes to some other sorts of re-
source bounds. Easiest is stack space; by replacing the
virtual clock with a record of remaining stack space, we
may statically prevent stack overflow. Our type system al-
ready accounts for the complications involved in recovering
resources (recall Section 2). Our approach also appears to
generalize to heap space, but to do so we must make the
type system aware of when heap space is reclaimed, which
it is not when memory is reclaimed by a garbage collec-
tor. We conjecture that this can be done using elements of
the typed memory management language of Crary et al. [2],
which was designed to expose memory management primi-
tives in Typed Assembly Language. Finally, we can account
for resource consumption rates by having the program in-
termittently yield and by replenishing its resource allowance
when it is next scheduled after a yield.

Acknowledgements

We thank Dan Grossman, Greg Morrisett, David Walker and
Steve Zdancewic for helpful comments, and the TAL group at
Cornell University for the Popcorn compiler and TALx86 verifier,
the basis of our PopCron compiler and TALres verifier.

References

[1] B. Bershad, S. Savage, P. Pardyak, E. Sirer, M. Fiuczynski,
D. Becker, C. Chambers, and S. Eggers. Extensibility, safety
and performance in the SPIN operating system. In Fifteenth
ACM Symposium on Operating Systems Principles, pages
267–284, Copper Mountain, Dec. 1995.

[2] K. Crary, D. Walker, and G. Morrisett. Typed memory man-
agement in a calculus of capabilities. In Twenty-Sixth ACM
Symposium on Principles of Programming Languages, San
Antonio, Texas, Jan. 1999.

[3] K. Crary and S. Weirich. Flexible type analysis. In
1999 ACM International Conference on Functional Pro-
gramming, pages 233–248, Paris, Sept. 1999.

[4] K. Crary, S. Weirich, and G. Morrisett. Intensional poly-
morphism in type-erasure semantics. In 1998 ACM Interna-
tional Conference on Functional Programming, pages 301–
312, Baltimore, Sept. 1998. Extended version published as
Cornell University technical report TR98-1721.

[5] J.-Y. Girard. Une extension de l’interprétation de Gödel à
l’analyse, et son application à l’élimination de coupures dans
l’analyse et la théorie des types. In J. E. Fenstad, editor,
Proceedings of the Second Scandinavian Logic Symposium,
pages 63–92. North-Holland Publishing Co., 1971.

[6] J.-Y. Girard. Interprétation fonctionelle et élimination des
coupures de l’arithmétique d’ordre supérieur. PhD thesis,
Université Paris VII, 1972.

[7] R. Harper and G. Morrisett. Compiling polymorphism using
intensional type analysis. In Twenty-Second ACM Sympo-
sium on Principles of Programming Languages, pages 130–
141, San Francisco, Jan. 1995.

[8] M. Hoffman. Linear types and non-size increasing polyno-
mial time computation. In Fourteenth IEEE Symposium on
Logic in Computer Science, Trento, Italy, July 1999.

[9] J. Hughes and L. Pareto. Recursion and dynamic data-
structures in bounded space: Towards embedded ML pro-
gramming. In 1999 ACM International Conference on Func-
tional Programming, pages 70–81, Paris, Sept. 1999.

[10] J. Hughes, L. Pareto, and A. Sabry. Proving the correctness
of reactive systems using sized types. In Twenty-Third ACM
Symposium on Principles of Programming Languages, pages
410–423, St. Petersburg, Florida, Jan. 1996.

[11] T. Lindholm and F. Yellin. The Java Virtual Machine Spec-
ification. Addison-Wesley, 1996.

[12] N. P. Mendler. Inductive types and type constraints in the
second-order lambda calculus. Annals of Pure and Applied
Logic, 51(1–2):159–172, 1991.

[13] G. Morrisett, K. Crary, N. Glew, D. Grossman, R. Samuels,
F. Smith, D. Walker, S. Weirich, and S. Zdancewic. TALx86:
A realistic typed assembly language. In Second Workshop on
Compiler Support for System Software, Atlanta, May 1999.

[14] G. Morrisett, D. Walker, K. Crary, and N. Glew. From Sys-
tem F to typed assembly language. ACM Transactions on
Programming Languages and Systems, 1999. To appear. An
earlier version appeared in the 1998 Symposium on Princi-
ples of Programming Languages.

[15] G. Necula. Proof-carrying code. In Twenty-Fourth ACM
Symposium on Principles of Programming Languages, pages
106–119, Paris, Jan. 1997.

[16] G. Necula and P. Lee. Safe kernel extensions without run-
time checking. In Second Symposium on Operating Systems
Design and Implementation, pages 229–243, Seattle, Oct.
1996.

[17] G. Necula and P. Lee. Safe, untrusted agents using proof-
carrying code. In Special Issue on Mobile Agent Secu-
rity, volume 1419 of Lecture Notes in Computer Science.
Springer-Verlag, Oct. 1997.

[18] G. Necula and P. Lee. The design and implementation of
a certifying compiler. In 1998 SIGPLAN Conference on
Programming Language Design and Implementation, pages
333–344, Montreal, June 1998.

[19] B. Reistad and D. K. Gifford. Static dependent costs for
estimating execution time. In 1994 ACM Conference on
Lisp and Functional Programming, pages 65–78, Orlando,
Florida, June 1994.

[20] R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Ef-
ficient software-based fault isolation. In Fourteenth ACM
Symposium on Operating Systems Principles, pages 203–
216, Asheville, Dec. 1993.

[21] H. Xi and F. Pfenning. Dependent types in practical pro-
gramming. In Twenty-Sixth ACM Symposium on Principles
of Programming Languages, pages 214–227, San Antonio,
Texas, Jan. 1999.

A Static semantics

A.1 Kind formation

∆ ` k kind

∆ ` Type kind ∆ ` Nat kind ∆ ` 1 kind

∆ ` j kind
(j ∈ ∆) ∆, j ` k kind

∆ ` µj.k kind

�
j only positive in k
j 6∈ ∆

�

∆ ` k1 kind ∆ ` k2 kind

∆ ` k1 → k2 kind

∆ ` k1 kind ∆ ` k2 kind

∆ ` k1 + k2 kind

∆ ` k1 kind ∆ ` k2 kind

∆ ` k1 × k2 kind

12

A.2 Constructor Formation

∆ ` c : k

∆ ` ∗ : 1 ∆ ` α : ∆(α)

∆, α:k′ ` c : k ∆ ` k′ kind

∆ ` λα:k′.c : k′ → k
(α 6∈ ∆)

∆ ` c1 : k′ → k ∆ ` c2 : k′

∆ ` c1c2 : k

∆ ` c1 : k1 ∆ ` c2 : k2

∆ ` 〈c1, c2〉 : k1 × k2

∆ ` c : k1 × k2

∆ ` prj1 c : k1

∆ ` c : k1 × k2

∆ ` prj2 c : k2

∆ ` c : k1 ∆ ` k2 kind

∆ ` inj
k1+k2
1 c : k1 + k2

∆ ` c : k2 ∆ ` k1 kind

∆ ` inj
k1+k2
2 c : k1 + k2

∆ ` c : k1 + k2

∆, α:k1 ` c1 : k
∆, α:k2 ` c2 : k

∆ ` case(c, α.c1, α.c2) : k
(α 6∈ ∆)

∆ ` c : k[µj.k/j]

∆ ` foldµj.k c : µj.k

∆, j, α:k,ϕ:j → k′ ` c : k′
∆ ` µj.k kind ∆, j ` k′ kind

∆ ` pr(j, α:k,ϕ:j→k′.c) : µj.k → k′[µj.k/j]
(j only positive in k′, and j, α, ϕ 6∈ ∆)

∆ ` n : Nat

∆ ` c1 : Nat ∆ ` c2 : Nat

∆ ` c1 u c2 : Nat

∆, α:Nat, β:k ` c1 : k ∆ ` c2 : k

∆ ` prnatk(α,β.c1; c2) : k
(α,β 6∈ ∆)

∆ ` τ1 : Type ∆ ` τ2 : Type
∆ ` c1 : Nat ∆ ` c2 : Nat

∆ ` (τ1, c1) → (τ2, c2) : Type

∆ ` τ1 : Type ∆ ` τ2 : Type

∆ ` τ1 × τ2 : Type

∆ ` τ1 : Type ∆ ` τ2 : Type

∆ ` τ1 + τ2 : Type

∆, α:k ` τ : Type ∆ ` k kind

∆ ` ∀α:k.τ : Type
(α 6∈ ∆)

∆, α:k ` τ : Type ∆ ` k kind

∆ ` ∃α:k.τ : Type
(α 6∈ ∆)

∆ ` void : Type ∆ ` unit : Type

∆ ` c : (k → Type) → k → Type
∆ ` k kind ∆ ` c′ : k

∆ ` reck(c, c′) : Type

A.3 Constructor Equivalence

∆ ` c = c′ : k

∆ ` c′ : k[µj.k/j] ∆, j ` k′ kind
∆, j, α:k, ϕ:j → k′ ` c : k′ ∆ ` µj.k kind

∆ ` pr(j, α:k,ϕ:j → k′.c)(foldµj.k c′) =
c[µj.k, c′, pr(j, α:k, ϕ:j→k′.c)/j, α,ϕ] : k′[µj.k/j]

(j only positive in k′ and j, α,ϕ 6∈ ∆)

∆ ` c1 : k ∆ ` c2 : k′

∆ ` prj1〈c1, c2〉 = c1 : k

∆ ` c1 : k′ ∆ ` c2 : k

∆ ` prj2〈c1, c2〉 = c2 : k

∆ ` c : k1 × k2

∆ ` 〈prj1 c, prj2 c〉 = c : k1 × k2

∆ ` k′ kind
∆, α:k′ ` c : k ∆ ` c′ : k

∆ ` (λα:k′.c)c′ = c[c′/α] : k
(α 6∈ ∆)

∆ ` c : k′ → k

∆ ` (λα:k′.cα) = c : k′ → k
(α 6∈ FV (c))

∆, α:k1 ` c1 : k ∆, α:k2 ` c2 : k
∆ ` c : k1 ∆ ` k2 kind

∆ ` case(inj
k1+k2
1 c, α.c1, α.c2) = c1[c/α] : k

∆, α:k1 ` c1 : k ∆, α:k2 ` c2 : k
∆ ` c : k2 ∆ ` k1 kind

∆ ` case(injk1+k2
2 c, α.c1, α.c2) = c2[c/α] : k

∆ ` c : k1 + k2

∆ ` case(c, α1.injk1+k2
1 α1, α2. injk1+k2

2 α2) =
c : k1 + k2

∆ ` c1 : Nat ∆ ` c2 : Nat

∆ ` c1 u c2 = c2 u c1 : Nat

∆ ` c1 : Nat ∆ ` c2 : Nat ∆ ` c3 : Nat

∆ ` c1 u (c2 u c3) = (c1 u c2) u c3 : Nat

∆ ` c : Nat

∆ ` cu 0 = c : Nat

∆ ` n1 u n2 = n1 + n2 : Nat

∆, α:Nat, β:k ` c1 : k ∆ ` c2 : k

∆ ` prnatk(α,β.c1; c2) 0 = c2 : k
(α,β 6∈ ∆)

∆, α:Nat, β:k ` c1 : k ∆ ` c2 : k ∆ ` c : Nat

∆ ` prnatk(α,β.c1; c2)(cu 1) =
c1[c, prnatk(α,β.c1; c2)(c)/α,β] : k

(α,β 6∈ ∆)

∆ ` c : k
∆ ` c = c : k

∆ ` c′ = c : k

∆ ` c = c′ : k

∆ ` c1 = c2 : k ∆ ` c2 = c3 : k

∆ ` c1 = c3 : k

∆, α:k′ ` c = c′ : k ∆ ` k′ kind

∆ ` λα:k′.c = λα:k′.c′ : k′ → k
(α 6∈ ∆)

13

∆ ` c1 = c′1 : k′ → k ∆ ` c2 = c′2 : k′

∆ ` c1c2 = c′1c′2 : k

∆ ` c1 = c′1 : k1 ∆ ` c2 = c′2 : k2

∆ ` 〈c1, c2〉 = 〈c′1, c′2〉 : k1 × c2

∆ ` c = c′ : k1 × k2

∆ ` prj1 c = prj1 c′ : k1

∆ ` c = c′ : k1 × k2

∆ ` prj2 c = prj2 c′ : k2

∆ ` c = c′ : k1 ∆ ` k2 kind

∆ ` inj
k1+k2
1 c = inj

k1+k2
1 c′ : k1 + k2

∆ ` c = c′ : k2 ∆ ` k1 kind

∆ ` inj
k1+k2
2 c = inj

k1+k2
2 c′ : k1 + k2

∆ ` c = c′ : k1 + k2

∆, α:k1 ` c1 = c′1 : k
∆, α:k2 ` c2 = c′2 : k

∆ ` case(c, α.c1, α.c2) =
case(c′, α.c′1, α.c′2) : k

(α 6∈ ∆)

∆ ` c = c′ : k[µj.k/j]

∆ ` foldµj.k c = foldµj.k c′ : µj.k

∆, j, α:k,ϕ:j → k′ ` c1 = c2 : k′
∆ ` µj.k kind ∆, j ` k′ kind

∆ ` pr(j, α:k,ϕ:j→k′.c1) = pr(j, α:k,ϕ:j→k′.c2)
: µj.k → k′[µj.k/j]

(j only positive in k′ and j, α,ϕ 6∈ ∆)

∆ ` c1 = c′1 : Nat ∆ ` c2 = c′2 : Nat

∆ ` c1 u c2 = c′1 u c′2 : Nat

∆, α:Nat, β:k ` c1 = c′1 : k ∆ ` c2 = c′2 : k

∆ ` prnatk(α, β.c1; c2) = prnatk(α,β.c′1; c
′
2) : k

(α,β 6∈ ∆)

∆ ` τ1 = τ ′
1 : Type ∆ ` τ2 = τ ′

2 : Type
∆ ` c1 = c′1 : Nat ∆ ` c2 = c′2 : Nat

∆ ` (τ1, c1) → (τ2, c2) = (τ ′
1, c′1) → (τ ′

2, c
′
2) : Type

∆ ` τ1 = τ ′
1 : Type ∆ ` τ2 = τ ′

2 : Type

∆ ` τ1 × τ2 = τ ′
1 × τ ′

2 : Type

∆ ` τ1 = τ ′
1 : Type ∆ ` τ2 = τ ′

2 : Type

∆ ` τ1 + τ2 = τ ′
1 + τ ′

2 : Type

∆, α:k ` τ = τ ′ : Type ∆ ` k kind

∆ ` ∀α:k.τ = ∀α:k.τ ′ : Type
(α 6∈ ∆)

∆, α:k ` τ = τ ′ : Type ∆ ` k kind

∆ ` ∃α:k.τ = ∃α:k.τ ′ : Type
(α 6∈ ∆)

∆ ` k kind ∆ ` c2 = c′2 : k
∆ ` c1 = c′1 : (k → Type) → k → Type

∆ ` reck(c1, c2) = reck(c′1, c′2) : Type

A.4 Term Formation

∆; Γ; c ` e : τ

∆; Γ; c ` ∗ : unit . c ∆; Γ; c ` x : Γ(x) . c

∆; (Γ, x:τ1); c1 ` e : τ2 . c2
∆ ` τ1 : Type ∆ ` c1 : Nat

∆; Γ; c ` λ(x:τ1, c1).e : (τ1, c1) → (τ2, c2) . c
(x 6∈ Γ)

∆; Γ; c ` e1 : (τ1, c1) → (τ2, c2) . c′
∆; Γ; c′ ` e2 : τ1 . (c1 u 1)

∆; Γ; c ` e1e2 : τ2 . c2

∆; Γ; c ` e : τ . (c1 u c2)

∆; Γ; c ` waste[c1]e : τ . c2

∆; Γ; c ` e1 : τ1 . c1 ∆; Γ; c1 ` e2 : τ2 . c2

∆; Γ; c ` 〈e1, e2〉 : τ1 × τ2 . c2

∆; Γ; c ` e : τ1 × τ2 . c′

∆; Γ; c ` prj1 e : τ1 . c′
∆; Γ; c ` e : τ1 × τ2 . c′

∆; Γ; c ` prj2 e : τ2 . c′

∆; Γ; c ` e : τ1 . c′ ∆ ` τ2 : Type

∆; Γ; c ` inj
τ1+τ2
1 e : τ1 + τ2 . c′

∆; Γ; c ` e : τ2 . c′ ∆ ` τ1 : Type

∆; Γ; c ` inj
τ1+τ2
2 e : τ1 + τ2 . c′

∆; Γ; c ` e : τ1 + τ2 . c′
∆; (Γ, x:τ1); c

′ ` e1 : τ . c′′
∆; (Γ, x:τ2); c

′ ` e2 : τ . c′′

∆; Γ; c ` case(e, x.e1, x.e2) : τ . c′′
(x 6∈ Γ)

(∆, α:k); Γ; c ` v : τ . c ∆ ` k kind

∆; Γ; c ` Λα:k.v : ∀α:k.τ . c
(α 6∈ ∆)

∆; Γ; c1 ` e : ∀α:k.τ . c2 ∆ ` c : k

∆; Γ; c1 ` e[c] : τ [c′/α] . c2

∆; (Γ, f :τ); c ` v : τ . c ∆ ` τ : Type

∆; Γ; c ` fixf :τ.v : τ . c
(f 6∈ Γ and v = Λα1:k1 . . . Λαn:kn.λ(x:τ ′, c′).e′)

∆, α:k ` τ : Type
∆ ` c : k ∆; Γ; c1 ` e : τ [c/α] . c2

∆; Γ; c1 ` pack e as∃α:k.τ hiding c : ∃α:k.τ . c2
(α 6∈ ∆)

∆; Γ; c ` e1 : ∃α:k.τ2 . c′
(∆, α:k); (Γ, x:τ2); c

′ ` e2 : τ1 . c′′

∆; Γ; c ` unpack〈α, x〉 = e1 in e2 : τ1 . c′′

�
α 6∈ ∆, FV (τ)
x 6∈ Γ

�

∆; Γ; c1 ` e : reck(c, c′) . c2

∆; Γ; c1 ` unfold e : c(λα:k.reck(c, α))c′ . c2

14

∆; Γ; c1 ` e : c(λα:k.reck(c, α))c′ . c2
∆ ` reck(c, c′) : Type

∆; Γ; c1 ` foldreck(c,c′) e : reck(c, c′) . c2

∆, β:k1,∆′; Γ[injk1+k2
1 β/α];c1[injk1+k2

1 β/α] `
v[injk1+k2

1 β/α] : void . c′2
∆, β:k2,∆′; Γ[inj

k1+k2
2 β/α];c1[inj

k1+k2
2 β/α] `

e[injk1+k2
2 β/α] : τ [injk1+k2

2 β/α] . c2[inj
k1+k2
2 β/α]

∆, α:k1 + k2,∆′ ` c = α : k1 + k2

∆, α:k1 + k2, ∆′; Γ; c1 ` vcaseτ.c2 (c, β.dead v, β.e) : τ . c2
(β 6∈ ∆)

∆, β:k1, ∆′; Γ[inj
k1+k2
1 β/α];c1[inj

k1+k2
1 β/α] `

e[injk1+k2
1 β/α] : τ [injk1+k2

1 β/α] . c2[injk1+k2
1 β/α]

∆, β:k2, ∆′; Γ[injk1+k2
2 β/α];c1[injk1+k2

2 β/α] `
v[injk1+k2

2 β/α] : void . c′2
∆, α:k1 + k2, ∆′ ` c = α : k1 + k2

∆, α:k1 + k2, ∆′; Γ; c1 ` vcaseτ.c2 (c, β.e, β.deadv) : τ . c2
(β 6∈ ∆)

∆, β:k1, γ:k2, ∆′; Γ[〈β, γ〉/α]; c1[〈β, γ〉/α] `
e[〈β, γ〉/α] : τ [〈β,γ〉/α] . c2[〈β, γ〉/α]

∆, α:k1 × k2, ∆′ ` c = α : k1 × k2

∆, α:k1 × k2,∆′; Γ; c1 ` letτ.c2 〈β,γ〉 = c in e : τ . c2
(β, γ 6∈ ∆)

∆, β:k[µj.k/j],∆′; Γ[foldµj.k β/α] ` c1[foldµj.k β/α] `
e[foldµj.k β/α] : τ [foldµj.k β/α] . c2[foldµj.k β/α]

∆, α:µj.k, ∆′ ` c = α : µj.k

∆, α,∆′:µj.k; Γ; c1 ` letτ.c2(foldµj.k β) = c in e : τ . c2
(β 6∈ ∆)

∆ ` c = inj
k1+k2
1 c′ : k1 + k2 ∆; Γ; c1 ` e1[c

′/α] : τ . c2

∆; Γ; c1 ` vcaseτ.c2(c, α.e1, α.dead v) : τ . c2

∆ ` c = inj
k1+k2
2 c′ : k1 + k2 ∆; Γ; c1 ` e2[c

′/α] : τ . c2

∆; Γ; c1 ` vcaseτ.c2(c, α.dead v, α.e2) : τ . c2

∆ ` c = 〈c′, c′′〉 : k1 × k2 ∆; Γ; c1 ` e[c′, c′′/β, γ] : τ . c2

∆; Γ; c1 ` letτ.c2 〈β, γ〉 = c in e : τ . c2

∆ ` c = foldµj.k(c′) ∆; Γ; c1 ` e[c′/β] : τ . c2

∆; Γ; c1 ` letτ.c2 (foldµj.k β) = c in e : τ . c2

∆; Γ; c1 ` e : τ ′ . c′2 ∆ ` τ = τ ′ : Type ∆ ` c2 = c′2 : Nat

∆; Γ; c1 ` e : τ . c2

B Operational semantics

Value syntax

v ::= ∗ | λ(x:τ,c).e | 〈v1, v2〉 | injτ1+τ2
1 v | injτ1+τ2

2 v
| Λα:k.v | (fixf :τ.v)[c1] · · · [cn] | foldreck(c,c′) v
| packv as ∃α.c1 hiding c2
| x | prj1 v | prj2 v

Evaluation rules

((λ(x:τ,c).e)v, n + 1) 7→ (e[v/x], n) (provided n ≥ 0)

(e1, n) 7→ (e′1, n′)

(e1e2, n) 7→ (e′1e2, n′)

(e2, n) 7→ (e′2, n′)

(ve2, n) 7→ (ve′2, n′)

(e, n) 7→ (e′, n′)
(waste[c]e, n) 7→ (waste[c]e′, n′)

c normalizes to n

(waste[c]v, n + n′) 7→ (v, n′) (provided n′ ≥ 0)

(prj1〈v1, v2〉, n) 7→ (v1, n) (prj2〈v1, v2〉, n) 7→ (v2, n)

(e, n) 7→ (e′, n′)
(prj1 e, n) 7→ (prj1 e′, n′)

(e, n) 7→ (e′, n′)
(prj2 e, n) 7→ (prj2 e′, n′)

(e1, n) 7→ (e′1, n′)

(〈e1, e2〉, n) 7→ (〈e′1, e2〉, n′)

(e2, n) 7→ (e′2, n′)

(〈v, e2〉, n) 7→ (〈v, e′2〉, n′)

(case(injτ1+τ2
1 v, x1.e1, x2.e2), n) 7→ (e1[v/x1], n)

(case(injτ1+τ2
2 v, x1.e1, x2.e2), n) 7→ (e2[v/x2], n)

(e, n) 7→ (e′, n′)

(injτ1+τ2
1 e, n) 7→ (injτ1+τ2

1 e′, n′)

(e, n) 7→ (e′, n′)

(injτ1+τ2
2 e, n) 7→ (injτ1+τ2

2 e′, n′)

(e, n) 7→ (e′, n′)
(case(e, x1.e1, x2.e2), n) 7→ (case(e′, x1.e1, x2.e2), n′)

(Λα:k.v[c], n) 7→ (v[c/α], n)
(e, n) 7→ (e′, n′)

(e[c], n) 7→ (e′[c], n′)

c normalizes to inj1 c′

(vcase(c, α1.e1, α2. deadv), n) 7→ (e1[c
′/α1], n)

c normalizes to inj2 c′

(vcase(c, α1. deadv, α2.e2), n) 7→ (e2[c
′/α2], n)

c normalizes to 〈c1, c2〉
(let〈β, γ〉 = c in e, n) 7→ (e[c1, c2/β, γ], n)

c normalizes to foldµj.k c′

(let(foldµj.k β) = c in e, n) 7→ (e[c′/β], n)

((fixf :τ.v)[c1] · · · [cn]v′, n) 7→ ((v[fixf :τ.v/f])[c1] · · · [cn]v′, n)

(e, n) 7→ (e′, n′)
(packe as∃β.c1 hiding c2, n) 7→ (pack e′ as∃β.c1 hiding c2, n′)

(unpack〈α, x〉 = (packv as τ hiding c)in e, n) 7→ (e[c, v/α, x], n)

(e, n) 7→ (e′, n′)
(unpack〈α,x〉 = e in e2, n) 7→ (unpack 〈α,x〉 = e′ in e2, n′)

(unfold (foldreck(c,c′) v), n) 7→ (v,n)

(e, n) 7→ (e′, n′)
(foldreck(c,c′) e, n) 7→ (foldreck(c,c′) e′, n′)

(e, n) 7→ (e′, n′)
(unfold e, n) 7→ (unfold e′, n′)

15

