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1 INTRODUCTION
Our goal is to design Dependent Haskell, an extension of Haskell with full-spectrum dependent types. The main

feature of Dependent Haskell is that, unlike current Haskell, it makes no distinction between types and terms;

both compile-time and runtime computation share the same syntax and semantics.

For example, in current Haskell,
1

length-indexed vectors may be indexed only by type-level structures. So in

the de�nition below, we say that Vec is a GADT (Cheney and Hinze 2003; Peyton Jones et al. 2006; Vytiniotis

et al. 2011) indexed by the promoted datatype Nat (Yorgey et al. 2012).
2

data Nat :: Type where data Vec :: Type -> Nat -> Type where
O :: Nat Nil :: Vec a O
S :: Nat -> Nat (:>) :: a -> Vec a m -> Vec a (S m)

If we want to compute one of these promoted natural numbers to use as the index of a vector, we must de�ne a

type-level function. Regular Haskell functions are not applicable to type-level data. As a result, programmers

must duplicate their de�nitions if they would like them to be available at both compile-time and runtime.

However, Dependent Haskell makes no such distinctions. In this language, the de�nition of Vec is written

exactly as above—but the meaning is that elements of type Nat are just normal values. As a result, we can use

standard Haskell terms, such as one and plus below, directly in types.

1
Glasgow Haskell Compiler (GHC), version 8.0.1, with extensions

2
In this version of GHC, the kind of ordinary types can be written Type as well as *. We prefer the new spelling.
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one :: Nat plus :: Nat -> Nat -> Nat
one = S O plus O y = y

plus (S x) y = S (plus x y)

example :: Vec Char (one `plus` one `plus` one)
example = 'G' :> 'H' :> 'C' :> Nil

Dependent Haskell is a planned extension of the Glasgow Haskell Compiler (GHC). GHC is an ideal vehicle

for type system research. Not only is it a mature implementation with an industrial-strength optimizer, but the

design of the compiler itself is well suited to experimentation. In particular, GHC’s front-end elaborates source

Haskell programs to an explicitly typed core language, called FC (Sulzmann et al. 2007). As a result, researchers

can explore semantic consequences of their designs independent of interactions with type inference. However,

because FC de�nes the semantics of the Haskell language as implemented by GHC, all type system extensions

must �rst be realized in FC.

The FC language is based on an explicitly typed variant of System F (Girard 1971; Reynolds 1974) with

type equality coercions. These coercions provide evidence for type equalities, necessary to support type-level

computation (Schrijvers et al. 2008) and GADTs. The presence of explicit types and type equality evidence means

that FC has a decidable, syntax-directed type checking algorithm.

This paper de�nes the semantics of Dependent Haskell by developing a dependently typed replace-
ment for FC that we call System DC. This version of the core language retains FC’s explicit coercion proofs

but replaces System F with a calculus with full-spectrum dependent types. The result is a calculus with a rich,

decidable type system that can serve as a basis for the extension of Haskell with dependent types while still

supporting existing Haskell programs.

The key idea that makes this work is the observation that we can replace FC in a backwards compatible way

as long as the dependently-typed core language supports irrelevant quanti�cation (Barras and Bernardo 2008;

Miquel 2001; Pfenning 2001). Haskell is an e�cient language because (among many other optimizations) GHC

erases types during compilation. Even though we con�ate types and terms in DC, we must retain the ability

to perform this erasure. Therefore, DC disentangles the notion of “type” from that of “erasable component”.

Irrelevant quanti�cation marks all terms (whether they are types or not) as erasable as long as they can be safely

removed without changing the behavior of a program.

Our design of DC is strongly based on two recent dissertations that combine type equality coercions and

irrelevant quanti�cation in dependently-typed core calculi (Eisenberg 2016; Gundry 2013) as well as an extension

of FC with kind equalities (Weirich et al. 2013). Although DC is inspired by this prior work, we make several

improvements to these designs (see Section 8.1). The most important change is that we show that homogeneous
equality is compatible with explicit coercion proofs. Prior work bases equality coercions on heterogeneous
equality (McBride 2000), where terms are not required to have related types in an equality proposition. However,

homogeneous equality is the most standard design: it is commonly used in dependent type systems that do not

employ explicit coercions. By changing our treatment of equality, we are able to make simpli�cations both to the

language semantics and the proofs of its metatheoretic properties (see Section 6.1). This change, however, makes

the language no less expressive.

A second signi�cant contribution of our work is that, in parallel with DC, we develop SystemD, an implicitly
typed version of DC. D is a Curry-style language that does not support decidable type checking, similar to

implicit System F
3
. However, D is otherwise equivalent to DC; we show that these languages type related programs

and that those related programs have the same runtime behavior. In particular, any program in DC can be erased

3
We use the words type checking and type inference interchangeably—they are equivalent in this setting and both problems are undecid-

able (Pfenning 1992; Wells 1999).
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to a well-typed program in D, and for any typing derivation in D, there exists a well-typed program in DC that

erases to it (see Section 5).

The design of D exchanges decidable type checking for a simpler speci�cation, as we show in Sections 3 and 5.

This calculus is simpler than DC because it does not need to do as much bookkeeping; only computationally

relevant information appears in D terms. As a result, the proofs of key metatheoretic properties, such as

the consistency of de�nitional equality, are also simpler in D. This has the bene�t that we can avoid some

complications in reasoning about DC by appealing to analogous results about D.

It is also the case that D is more canonical than DC. There are many ways to annotate terms in support of

decidable type checking. There are accordingly many variants of DC that we can prove equivalent (through

erasure) to D. We propose one such variant in this paper. We believe that we have chosen a design for DC that

can be fully integrated into GHC. Some of our design choices are in support of that implementation. However,

we discuss alternatives in Section 6.3.

Finally, D itself serves as an inspiration for type inference in the source language. Although type checking

is undecidable, it serves as an “ideal” that clever inference algorithms can approximate. This process has

already happened for the System FC-based core language: some GHC extensions augment Damas-Milner type

inference (Damas and Milner 1982) with features of System F, such as �rst-class polymorphism (Peyton Jones

et al. 2007; Vytiniotis et al. 2008) and visible type applications (Eisenberg et al. 2016).

Our �nal contribution is a mechanization of all of the metatheory of this paper using the Coq proof

assistant (Coq development team 2004). This contribution is signi�cant because these proofs require a careful

analysis of the allowable interactions between dependent types, coercion abstraction, nontermination and

irrelevance. This combination is hard to get right and at least two previous e�orts have su�ered from errors, as

we describe in Section 7.2. Furthermore, many of our own initial designs of the two languages did not work, in

intricate, hard-to-spot ways. Formalizing all the proofs in Coq provides a level of con�dence about our results

that we could not possibly achieve otherwise. Moreover, these results are available for further extension.

This paper concludes with a discussion that relates our work to the large �eld of research in this area (Section 8).

In particular, we provide a close comparison of DC to prior extensions of FC with dependent types (Eisenberg

2016; Gundry 2013; Weirich et al. 2013) and with existing dependently-typed calculi and languages.

2 SYSTEM D, SYSTEM DC AND THE DESIGN OF DEPENDENT HASKELL
One purpose of GHC’s core language is to give a semantics to Haskell programs in a manner that is independent

of type inference. This division is important: it allows language designers to experiment with various type

inference algorithms, while still preserving the semantics of their program. It also inspires Haskell source

language extensions with features that do not admit e�ective type inference, through the use of type annotations.

Below, we give an example that illustrates the key features of DC and D, by showing how source-level

Dependent Haskell expressions can be elaborated into an explicitly typed core. Note that the DC and D calculi

that we de�ne in this paper are designed to investigate the interaction between dependent types, coercion

abstraction, irrelevant arguments and nontermination. The examples below demonstrate how these features

interact in an implementation, like GHC, that includes primitive datatypes and pattern matching. For simplicity,

DC and D do not include these as primitive, but can encode these examples using standard techniques.
4

Consider the zip function, which combines two equal-length vectors into a vector of pairs, using the datatypes

Nat and Vec from the introduction.

zip :: forall n a b. Vec a n -> Vec b n -> Vec (a,b) n
zip Nil Nil = Nil
zip (x :> xs) (y :> ys) = (x, y) :> zip xs ys

4
Such as a Scott encoding (see page 504 of Curry et al. (1972)).
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The type of zip is dependent because the �rst argument (a natural number) appears later in the type. For

e�ciency, we also do not want this argument around at runtime, so we mark it as erasable by using the “forall n”

quanti�er. The similarity between this code and current Haskell is intentional. In fact, this program already

compiles with GHC 8.0. However, the meaning of this program is di�erent here—remember that n is an invisible

and irrelevant term argument in Dependent Haskell, not a promoted datatype.

The zip function type-checks because in the �rst branch n is equal to zero, so Nil has a type equal to Vec a n.

In the second branch, when n is equal to S m, then the result of the recursive call has type Vec a m, so the result

type of the branch is Vec a (S m), also equal to Vec a n. This pattern matching is exhaustive because the two

vectors have the same length; the two remaining patterns are not consistent with the annotated type.

In an explicitly-typed core language, such as DC, we use typing annotations to justify this reasoning. First,

consider the elaborated version of the Vec datatype de�nition shown below. This de�nition explicitly binds the

argument m to the (:>) constructor, using forall to note that the argument need not be stored at runtime. Fur-

thermore, the type of each data constructor includes a context of equality constraints, describing the information

gained during pattern matching.

data Vec (a :: Type) (n :: Nat) :: Type where
Nil :: (n ~ 0) => Vec a n
(:>) :: forall (m :: Nat). (n ~ S m) => a -> Vec a m -> Vec a n

The core language version of zip, shown below, uses the binder \- to abstract irrelevant arguments and the

binder /\ to abstraction coercions. Each branch of a case quanti�es over the corresponding arguments to the

data constructor according to the types above, including the coercions (n ~ 0) and (n ~ S m).

zip = \-n:Nat. \-a:Type. \-b:Type. \xs:Vec a n. \ys:Vec a n. case xs of
Nil -> /\c1:(n ~ 0). case ys of

Nil -> /\c2:(n ~ 0). Nil [a][n][c1]
(:>) -> \-m:Nat. /\c2:(n ~ S m). \y:b. \ys:Vec b m. absurd [sym c1; c2]

(:>) -> \m:Nat. /\c1:(n ~ S m). \x:a. \xs:Vec a m. case ys of
Nil -> /\c2:(n ~ 0). absurd [sym c1; c2]
(:>) -> \-m:Nat. /\c2:(n ~ S m). \y:b. \ys:Vec b m.

(:>) [a][n][m][c1] ((,) [a][b] x y) (zip [m][a][b] xs ys)

The core language zip function must provide all arguments to data constructors and functions, even those

that are inferred in the source language. Arguments that are not relevant to computation are marked with square

brackets. These arguments include the datatype parameters (n and a) as well as explicit proofs for the equality

constraints (c1). This example also shows how the elaborator compiles away nested pattern matching and

requires cases for every data constructor. The impossible cases are marked with explicit proofs of contradiction,

in this case that (O ~ S m).

Although the explicit arguments and coercions simplify type checking, they obscure the meaning of terms like

zip. Furthermore, there are many possible ways of annotating programs in support of decidable type checking—it

would be good to know that the choice of annotation does not a�ect the meaning of a particular program. For

example, the Nil [a][n][c1] case above could be replaced with Nil [a][n][c2] instead, because both c1 and

c2 are proofs of the same equality. We would like to know that making this change does not a�ect the de�nition

of zip.

To better understand zip, we can erase these annotations, as in System D.

zip = \-n. \-a. \-b. \xs. \ys. case xs of
Nil -> /\c1. case ys of

Nil -> /\c2. Nil [][][]
(:>) -> \-m. /\c2. \y. \ys. absurd []

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.
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D DC

Typing Γ � a : A Γ ` a : A
Proposition well-formedness Γ � ϕ ok Γ ` ϕ ok
De�nitional equality (terms) Γ;∆ � a ≡ b : A Γ;∆ ` γ : a ∼ b
De�nitional equality (props) Γ;∆ � ϕ1 ≡ ϕ2 Γ;∆ ` γ : ϕ1 ∼ ϕ2

Context well-formedness � Γ ` Γ
Signature well-formedness � Σ ` Σ

Primitive reduction � a > b
One-step reduction � a { b Γ ` a { b

Fig. 1. Summary of judgment forms

terms, types a,b,A,B ::= ? | x | F | λρx .b | a bρ | �
| Π

ρx :A→ B | Λc.a | a[γ ] | ∀c :ϕ .A
propositions ϕ ::= a ∼A b
relevance ρ ::= + | −
coercions γ ::= •

values v ::= λ+x .a | λ−x .v | Λc.a | ? | Πρx :A→ B | ∀c :ϕ .A

contexts Γ ::= ∅ | Γ, x : A | Γ, c : ϕ
available set ∆ ::= ∅ | ∆, c
signature Σ ::= ∅ | Σ ∪ {F ∼ a : A}

Fig. 2. Syntax of D

Cons -> \m. /\c1. \x. \xs. case ys of
Nil -> /\c2. absurd []
(:>) -> \-m. /\c2. \y. \ys.

(:>) [][][][] ((,) [][] x y) (zip [][][] xs ys)

Besides being more similar to the source, this version captures exactly what this code does at runtime. It also

justi�es equating the two di�erently annotated versions in the type system. Because they erase to the same term,

we know that the annotations chosen by the type inferencer do not a�ect the runtime behavior of the program.

3 SYSTEM D: A LANGUAGE WITH IMPLICIT EQUALITY PROOFS
We now make the de�nitions of the two languages of this paper precise. These two languages share parallel

structure in their de�nitions. This is no coincidence. The annotated language DC is, in some sense, a rei�cation
of the implicit language derivations in D. To emphasize this connection, we reuse the same metavariables for

analogous syntax in both languages.
5

The judgment forms for both languages are summarized in Figure 1.

The syntax of D, the implicit language, is shown in Figure 2. This language, inspired by pure type sys-

tems (Barendregt 1991), uses a shared syntax for terms and types. The language includes

5
In fact, our Coq development uses the same syntax both languages, and relies on the judgment forms to identify the pertinent set of

constructs.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.



1:6 • Stephanie Weirich, Antoine Voizard, Pedro Henrique Azevedo de Amorim, and Richard Eisenberg

• a single sort (?) for classifying types,

• functions (λ+x .a) with dependent types (Π
+x :A→ B), and their associated application forms (a b+),

• functions with irrelevant arguments (λ−x .a), their types (Π
−x :A→ B), and instantiations (a �−),

• coercion abstractions (Λc.a), their types (∀c :ϕ .B), and instantiations (a[•]),
• and top-level recursive de�nitions (F ).

In this syntax, term and type variables x are bound in the bodies of functions and their types. Similarly,

coercion variables c are bound in the bodies of coercion abstractions and their types. (Technically, irrelevant

variables and coercion variables are prevented by the typing rules from actually appearing in the bodies of their

respective abstractions.) We use the same syntax for relevant and irrelevant functions, marking which one we

mean with a relevance annotation ρ. We sometimes omit relevance annotations ρ from applications a bρ when

they are clear from context. We also write nondependent types Π
+x :A→ B as A→ B, when x does not appear

free in B, and write nondependent coercion abstraction types ∀c :ϕ .A as ϕ ⇒ A, when c does not appear free in A.

3.1 Evaluation
The call-by-name small-step evaluation rules for D are shown below. The �rst three rules are primitive reductions—

if a term steps using one of these �rst three rules only, then we use the notation � a > b. The primitive reductions

include call-by-name β-reduction of abstractions, β-reduction of coercion abstractions, and unfolding of top-level

de�nitions.

E-AppAbs

� (λρx .b) aρ { b{a/x}
E-CAppCAbs

� (Λc.b)[γ ] { b{γ/c}

E-Axiom

F ∼ a : A ∈ Σ0

� F { a

E-AbsTerm

� a { a′

� λ−x .a { λ−x .a′

E-AppLeft

� a { a′

� a bρ { a′ bρ

E-CAppLeft

� a { a′

� a[γ ] { a′[γ ]

The second three rules extend primitive reduction into a deterministic reduction relation, called one-step
reduction, and written � a { b. When iterated, this relation models the operational semantics of core Haskell by

reducing expressions to their weak-head form.

The only unusual rule of this relation is rule E-AbsTerm that allows reduction to continue underneath an

irrelevant abstraction. (Analogously, an implicit abstraction is a value only when its body is also a value.) This

rule means that D models the behavior of source Haskell when it comes to polymorphism—type generalization

via implicit abstraction does not delay computation and so has no computational e�ect. This rule compensates for

the fact that we do not erase implicit generalizations and instantiations completely in D; although the arguments

are not present, the locations are still marked in the term. We choose this design to simplify the metatheory of D,

as we discuss further in Section 6.2.

3.2 Typing
The typing rules, shown in Figure 3, are based on a dependent type theory with ? : ?, as shown in the �rst rule

in the �gure (rule E-Star). Although this rule is known to violate logical consistency, it is not problematic in

this context. Haskell already has unbound recursion (both at runtime and at compile-time), and thus is already

logically inconsistent. Therefore, we avoid the complications that come from the strati�ed universe hierarchy

needed to ensure termination in dependently-typed languages.

The next �ve rules describe relevant and irrelevant abstractions. D includes irrelevant abstractions to support

parametric polymorphism—irrelevant arguments are not present in the term. Lambda expressions (and their

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.
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Γ � a : A

E-Star

� Γ

Γ � ? : ?

E-Var

� Γ x : A ∈ Γ

Γ � x : A

E-Pi

Γ, x : A � B : ?

Γ � Π
ρx :A→ B : ?

E-Abs

Γ, x : A � a : B ρ ∨ x < a
Γ � λρx .a : Π

ρx :A→ B

E-App

Γ � b : Π
+x :A→ B

Γ � a : A

Γ � b a+ : B{a/x}

E-IApp

Γ � b : Π
−x :A→ B

Γ � a : A

Γ � b �− : B{a/x}

E-Conv

Γ � a : A
Γ; Γ̃ � A ≡ B : ?

Γ � a : B

E-Fam

� Γ F ∼ a : A ∈ Σ0

Γ � F : A

E-CPi

Γ, c : ϕ � B : ?

Γ � ∀c :ϕ .B : ?

E-CAbs

Γ, c : ϕ � a : B

Γ � Λc.a : ∀c :ϕ .B

E-CApp

Γ � a1 : ∀c : (a ∼A b).B1 Γ; Γ̃ � a ≡ b : A

Γ � a1[•] : B1{•/c}

Γ � ϕ ok ρ ∨ x < A
E-Wff

Γ � a : A Γ � b : A

Γ � a ∼A b ok

Rho-Rel

+ ∨ x < A

Rho-IrrRel

x < fvA

− ∨ x < A

� Σ

Sig-Empty

� ∅

Sig-ConsAx

� Σ F ∼ a : A ∈ Σ0 ∅ � A : ? ∅ � a : A F < dom Σ

� Σ ∪ {F ∼ a : A}
Fig. 3. D Type system

types) are marked by a relevance �ag, ρ, indicating whether the type-or-term argument may be used in the body

of the abstraction (+) or must be parametric (−). This usage is checked by the premise ρ ∨ x < a. If the argument

must be parametric, then it cannot appear anywhere in the body of the expression. This approach to irrelevant

abstractions is directly inspired by ICC (Miquel 2001). Irrelevant applications mark missing arguments with �.

This is the only place that the typing rules allow the � term.

The next rule, rule E-Conv, is conversion. This type system assigns types up to de�nitional equality, de�ned

by the judgment Γ;∆ � a ≡ b : A shown in Figure 4. This judgment is indexed by ∆, a set of available variables.
For technical reasons that we return to in Section 4.2, we must restrict the coercion assumptions that are available

in proofs of de�nitional equality to those in this set. When de�nitional equality is used in the typing judgment, as

it is in rule E-Conv, all in-scope coercion variables are available. We use the notation Γ̃ for the set of all coercion

variables in the domain of Γ.

This language is parameterized by a set of recursive de�nitions F , speci�ed by a toplevel signature. We assume

that there exists some toplevel signature Σ0 that is well-formed according to the rules presented at the bottom of

Figure 3. In particular, note that rule Sig-ConsAx refers to Σ0 in its second premise, not the smaller Σ. The other

typing premises—like all other typing derivations—are implicitly parameterized with respect to this signature Σ0,

as long as it is well-formed.

For example, we can declare a standard, polymorphic recursive �xpoint operator Fix in the signature as

� Fix ∼ λ−x .λ+y.(y (Fix�y)) : Π
−x :?→ (x → x) → x

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.
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and show that it is well-formed. Because D is a full-spectrum language, Fix can be used to de�ne recursive

functions and recursive datatypes. Alternatively, recursive de�nitions can be directly de�ned as part of the

top-level signature. Because there is no inherent ordering on signatures, recursive de�nitions may be mutually

de�ned and may be induction-recursive (Dybjer and Setzer 1999).

To support GADTs this language includes coercion abstractions, written Λc.a. This term provides the ability for

an expression a to be parameterized over a type equality assumption c, which is evidence proving an equality

proposition ϕ. The assumed equality is stored in the context during type checking and is made available to

de�nitional equality. In D, coercion assumptions are discharged in rule E-CApp by •, a trivial proof that marks

the provability of an assumed equality.

Propositions ϕ, written a ∼A b, are statements of equality between terms/types. The two terms a and b must

have the same type A for this statement to be well-formed, as shown in rule E-Wff. In other words, equality

propositions are homogeneous. We cannot talk about equality between terms unless we know that their types

are equal.

3.3 Definitional equality
The most delicate part in the design of a dependently-typed language is the de�nition of the equality used in the

conversion rule. This relation, Γ;∆ � a ≡ b : A de�nes when two terms a and b are indistinguishable. The rules

in Figure 4 de�ne this relation for D.

As in most dependently-typed languages, this de�nition of equality is an equivalence relation (see the �rst

three rules of the �gure) and a congruence relation (see all rules ending with Cong). Similarly, equality contains

the reduction relation (rule E-Beta). Because evaluation may not terminate, this de�nition of equality is not a

decidable relation.

Furthermore, this relation is (homogeneously) typed—two terms a and b are related at a particular type A (and

at all types equal to A, via rule E-EqConv). In other words, this system has the following property:

Lemma 3.1 (DefEq regularity). If Γ;∆ � a ≡ b : A then Γ � a : A and Γ � b : A.

So far, these rules are similar to most judgmental treatments of de�nitional equality in intensional type theory,

such as that shown in Aspinall and Ho�man (2005). However, this de�nition di�ers from that used in most other

dependently-typed languages through the inclusion of the rule E-Assn. This rule says that assumed propositions

can be used directly, as long as they are in the available set.

The assumption rule strengthens this de�nition of equality considerably compared to intensional type theory.

Indeed, it re�ects the equality propositions into the de�nitional equality, as in extensional type theory (Martin-Löf

1984). However, D should not be considered an extensional type theory because our equality propositions are

not the same as “propositional equality” found in other type theories—equality propositions are kept separate

from types. Coercion abstraction is not the same as normal abstraction, and can only be justi�ed by equality

derivations, not by arbitrary terms. This means that all equality assumptions must eventually be justi�ed by

some derivation of de�nitional equality, not by computation. Because we cannot use a term to justify an assumed

equality, this language remains type sound in the presence of nontermination.

3.4 Equality propositions are not types
Our languages �rmly distinguish between types (which are all inhabited by terms) and equality propositions

(which may or may not be provable using the rules in Figure 4). Propositions are checked for well-formedness

with the judgment Γ � ϕ ok (Figure 3). However, because propositions appear in types, we also need to de�ne

when two propositions are equal. We do so with the judgment Γ;∆ � ϕ1 ≡ ϕ2 at the bottom of (Figure 4) and call

this relation prop equality.
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Γ;∆ � a ≡ b : A (De�nitional equality)

E-Refl

Γ � a : A

Γ;∆ � a ≡ a : A

E-Sym

Γ;∆ � b ≡ a : A

Γ;∆ � a ≡ b : A

E-Trans

Γ;∆ � a ≡ a1 : A
Γ;∆ � a1 ≡ b : A

Γ;∆ � a ≡ b : A

E-PiCong

Γ;∆ � A1 ≡ A2 : ?
Γ, x : A1;∆ � B1 ≡ B2 : ?

Γ;∆ � (Πρx :A1 → B1) ≡ (Πρx :A2 → B2) : ?

E-AbsCong

Γ, x : A1;∆ � b1 ≡ b2 : B
ρ ∨ x < b1 ρ ∨ x < b2

Γ;∆ � (λρx .b1) ≡ (λρx .b2) : Π
ρx :A1 → B

E-AppCong

Γ;∆ � a1 ≡ b1 : Π
+x :A→ B

Γ;∆ � a2 ≡ b2 : A

Γ;∆ � a1 a2

+ ≡ b1 b2

+
: B{a2/x}

E-IAppCong

Γ;∆ � a1 ≡ b1 : Π
−x :A→ B

Γ � a : A

Γ;∆ � a1 �
− ≡ b1 �

−
: B{a/x}

E-CPiCong

Γ;∆ � ϕ1 ≡ ϕ2

Γ, c : ϕ1;∆ � A ≡ B : ?

Γ;∆ � ∀c :ϕ1.A ≡ ∀c :ϕ2.B : ?

E-CAbsCong

Γ, c : ϕ1;∆ � a ≡ b : B

Γ;∆ � (Λc.a) ≡ (Λc.b) : ∀c :ϕ1.B

E-CAppCong

Γ;∆ � a1 ≡ b1 : ∀c : (a ∼A b).B
Γ; Γ̃ � a ≡ b : A

Γ;∆ � a1[•] ≡ b1[•] : B{•/c}

E-Beta

Γ � a1 : B
Γ � a2 : B � a1 > a2

Γ;∆ � a1 ≡ a2 : B

E-Assn

� Γ
c : a ∼A b ∈ Γ c ∈ ∆

Γ;∆ � a ≡ b : A

E-PiFst

Γ;∆ � Π
ρx :A1 → B1 ≡ Π

ρx :A2 → B2 : ?

Γ;∆ � A1 ≡ A2 : ?

E-PiSnd

Γ;∆ � Π
ρx :A1 → B1 ≡ Π

ρx :A2 → B2 : ?
Γ;∆ � a1 ≡ a2 : A1

Γ;∆ � B1{a1/x} ≡ B2{a2/x} : ?

E-CPiFst

Γ;∆ � ∀c :ϕ1.B1 ≡ ∀c :ϕ2.B2 : ?

Γ;∆ � ϕ1 ≡ ϕ2

E-CPiSnd

Γ;∆ � ∀c : (a1 ∼A a2).B1 ≡ ∀c : (a′
1
∼A′ a′2).B2 : ?

Γ; Γ̃ � a1 ≡ a2 : A
Γ; Γ̃ � a′

1
≡ a′

2
: A′

Γ;∆ � B1{•/c} ≡ B2{•/c} : ?

E-IsoSnd

Γ;∆ � a ∼A b ≡ a′ ∼A′ b′

Γ;∆ � A ≡ A′ : ?

E-Cast

Γ;∆ � a ≡ b : A
Γ;∆ � a ∼A b ≡ a′ ∼A′ b′

Γ;∆ � a′ ≡ b′ : A′

E-EqConv

Γ;∆ � a ≡ b : A
Γ; Γ̃ � A ≡ B : ?

Γ;∆ � a ≡ b : B

Γ;∆ � ϕ1 ≡ ϕ2 (De�nitional prop equality)

E-PropCong

Γ;∆ � A1 ≡ A2 : A
Γ;∆ � B1 ≡ B2 : A

Γ;∆ � A1 ∼A B1 ≡ A2 ∼A B2

E-IsoConv

Γ;∆ � A ≡ B : ?
Γ � A1 ∼A A2 ok
Γ � A1 ∼B A2 ok

Γ;∆ � A1 ∼A A2 ≡ A1 ∼B A2

E-CPiFst

Γ;∆ � ∀c :ϕ1.B1 ≡ ∀c :ϕ2.B2 : ?

Γ;∆ � ϕ1 ≡ ϕ2

Fig. 4. Definitional equality for implicit language
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We use prop equality in two places in the de�nition of term/type equality. Prop equality is necessary in

the congruence rule for coercion types (rule E-CPiCong). It also may be used to change the conclusion of the

de�nitional equality judgment to an equivalent equality proposition (rule E-Cast).

Two propositions are equal when their corresponding terms are equal (rule E-PropCong) or when their

corresponding types are equal (rule E-IsoConv). Furthermore, if two coercion abstraction types are equivalent

then the injectivity of these types means that we can extract an equivalence of the propositions (rule E-CPiFst).

Although the type system does not explicitly include rules for re�exivity, symmetry and transitivity, these

operations are derivable from the analogous rules for de�nitional equality and rule E-CPiFst.

One di�erence between term/type and prop equality is that type forms are injective everywhere (see rules E-

PiFst and E-CPiFst for example) but the constructor ∼ is injective in only the types of the equated terms, not in

the two terms themselves. For example, if we have a prop equality a1 ∼A a2 ≡ b1 ∼B b2, we can derive A ≡ B : ?,

using rule E-EqConv, but we cannot derive a1 ≡ b1 : A or a2 ≡ b2 : A.

Prior work includes this sort of injectivity by default, but we introduce prop equality separate from type

equality speci�cally so that we can leave it out of the language de�nition. The reason for this omission is twofold.

First, unlike rule E-PiFst, for example, this injectivity not forced by the rest of the system. In contrast, the

preservation theorem requires rule E-PiFst, as we describe below. Second, this omission leaves the system open

for a more extensional de�nition of prop equality, which we hope to explore in future work (see Section 9).

4 TYPE SOUNDNESS FOR SYSTEM D
The previous section completely speci�es the operational and static semantics of the D language. Next, we

turn to its metatheoretic properties. In this section, we show that the language is type sound by proving the

usual preservation and progress lemmas. Note that although we are working with a dependent type system, the

structure of the proof below directly follows related results about FC (Breitner et al. 2014; Weirich et al. 2013). In

particular, because this language (like Fω ) has a nontrivial de�nitional equality, we must show that this equality

is consistent before proving the progress lemma. We view the fact that current proof techniques extend to this

full spectrum language as a positive feature of this design—the adoption of dependent types has not forced us to

abandon existing methods for reasoning about the language. The contributions of this paper are in the design of

the system itself, not in structure of the proof of its type soundness property. Therefore, we do not describe these

arguments in great detail below.

4.1 Preservation and parallel reduction
We have de�ned three di�erent reduction relations for the implicit language. Two we have seen already: primitive

reduction and one-step reduction. The third relation, which subsumes the other two, is parallel reduction written

� a⇒ b. We de�ne this relation in support of our proof technique only; it is not part of the speci�cation of D.

For reasons of space, this relation appears only in Appendix C.3. This relation is a strongly con�uent, but not

necessarily terminating, rewrite relation on terms.

Theorem 4.1 (Confluence). If � a⇒ a1 and � a⇒ a2 then there exists b, such that � a1 ⇒ b and � a2 ⇒ b.

We prove the preservation theorem for parallel reduction only, as it contains the other two reduction relations.

Theorem 4.2 (Preservation). If Γ � a : A and � a⇒ a′ then Γ � a′ : A.

Simultaneously, we must prove that parallel reduction is also contained in de�nitional equality.

Lemma 4.3 (ParDefEq). If � a⇒ a′ and Γ � a : A then Γ;∅ � a ≡ a′ : A.

The proofs of these theorems are straightforward, but do require several inversion lemmas for the typing

relation. Because of implicit conversion (rule E-Conv), inversion of the typing judgment produces types that
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are de�nitionally equal but not syntactically equal to the given type. For example, the inversion rule for term

abstractions reads

Lemma 4.4 (Inversion for abstraction). If Γ � λρx :A0.b0 : A then there exists some A1 and B1 such that
Γ; Γ̃ � A ≡ Π

ρx :A1 → B1 : ? and Γ, x : A1 ` b0 : B1 and Γ, x : A1 ` B1 : ? and Γ ` A1 : ?.

As a result of this inversion lemma, the case for rule E-Beta in the preservation proof requires injectivity for

function types (rules E-PiFst and E-PiSnd) in de�nitional equality. Similarly, rule E-CBeta requires rules E-CPiFst

and E-CPiSnd.

4.2 Progress and consistency
An important step for the proof of the progress lemma is to show the consistency of de�nitional equality.

Consistency means that in certain contexts, the system cannot derive an equality between types that have

di�erent head forms. We write “consistentAB” when A and B are consistent—i.e. when it is not the case that

they are types with con�icting heads.

We show consistency in two steps, using an auxiliary relation called joinability. Two types are joinable when

they reduce to some common term using any number of steps of parallel reduction. Our consistency proof thus

�rst shows that joinable types are consistent and then that de�nitionally equal types are joinable.

Definition 4.5 (Joinable). Two types are joinable, written ` a1 ⇔ a2, when there exists some b such that
` a1 ⇒∗ b and ` a2 ⇒∗ b.

Theorem 4.6 (Joinability implies consistency). If ` A⇔ B then consistentAB.

Only some de�nitionally equal types are joinable. Because our consistency proof is based on parallel reduction,

and because parallel reduction ignores assumed equality propositions, we need to restrict the propositions that

can be used in equality derivations. In particular, all available coercion assumptions must be between types that

are already joinable. When a context and available set satisfy this restriction, we call it Good.

Definition 4.7 (Good). We write Good Γ ∆ when c : a ∼A b ∈ Γ and c ∈ ∆ implies ` a⇔ b.

Theorem 4.8 (Eqality implies Joinability). If Good Γ ∆ and Γ;∆ � a ≡ b : A then ` a⇔ b

The Good Γ ∆ property is required because the type system places no restrictions on propositions in coercion

abstractions. It does not rule out a clearly bogus assumption, such as Int ∼? Bool. As a result, we cannot prove

that only consistent types are de�nitionally equal in a context that includes such an assumption.

A consequence of our joinability-based proof of consistency is that there are some equalities that may be safe

but we cannot allow the type system to derive. For example, we cannot allow the congruence rule for coercion

abstraction types (rule E-CPiCong) to derive this equality.

∅;∅ � ∀c : (Int ∼? Bool).Int ≡ ∀c : (Int ∼? Bool).Bool : ?

The problem is that we don’t know how to show that this equality consistent—these two terms are not joinable.

We prevent rule E-CPiCong from deriving this equality by not adding the assumption c to the available set ∆
when showing the equality for Int and Bool. The rest of the rules preserve this restriction in the parts of the

derivation that are necessary to show terms equivalent. Note that we can sometimes weaken the restriction in

derivations: For example in rule E-CAppCong, the premise that shows a ≡ b is to make sure that the terms a1[•]
and b1[•] type check. It is not part of the equality proof, so we can use the full context at that point.

One may worry that with this restriction, our de�nitional equality might not admit the substitutivity property

stated below.
6

This lemma states that in any context (i.e. a term with a free variable) we can lift an equality

through that context.

6
This lemma is called the “lifting lemma” in prior work (Sulzmann et al. 2007; Weirich et al. 2013).
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terms, types a,b,A,B ::= ? | x | F | λρx :A.b | a bρ | Πρx :A→ B
| Λc :ϕ .a | a[γ ] | ∀c :ϕ .A | a . γ

coercions (excerpt) γ ::= c | re� a | re� (a ∼γ b) | symγ | γ1;γ2 | red a b | Πρx :γ1.γ2 | . . .

Fig. 5. Syntax of DC, the explicit language

Lemma 4.9 (Substitutivity). If Γ1, x : A, Γ2 � b : B and Γ1;∆ � a1 ≡ a2 : A then Γ1, (Γ2{a1/x});∆ � b{a1/x} ≡
b{a2/x} : B{a1/x}.

Indeed, Eisenberg (2016) could not prove this property about his language because his treatment of coercion

variables in the rule was too restrictive. However, this result is provable in our system because our restriction via

available sets precisely characterizes what it means to “use” a coercion variable.

The consistency result allows us to prove the progress lemma for D. This progress lemma is stated with respect

to the one-step reduction relation and the de�nition of value given in Figure 2.

Lemma 4.10 (Progress). If Γ � a : A and Good Γ Γ̃ and no term variable x in the domain of Γ occurs free in a,
then either a is a value or there exists some a′ such that � a { a′.

5 SYSTEM DC: AN EXPLICITLY-TYPED LANGUAGE
We now turn to the explicit language, DC, which adds syntactic forms for type annotations and explicit coercions

to make type checking unique and decidable. The syntax of DC is shown in Figure 5. The new syntactic form

a . γ marks type coercions with explicit proofs γ . Furthermore, the syntax also includes the types of variables in

term and coercion abstractions (λx :A.a and Λc :ϕ .a). To require explicit terms in instantiations, the term (�) and

the trivial coercion (•) are missing from this syntax.

The main judgment forms of this language correspond exactly to the implicit language judgments, as shown in

Figure 1.

We can connect DC terms to D terms through an erasure operation, written |a |, that translates annotated

terms to their implicit counterparts. This de�nition is a structural recursion over the syntax, removing irrelevant

information.

Definition 5.1 (Annotation erasure).

| ? | = ?
|x | = x
|F | = F
|λρx :A.a| = λρx .|a|
|a b+ | = |a| |b|+

|a b− | = |a| �−
|Πρx :A→ B| = Π

ρx : |A| → |B|
|Λc :ϕ .a| = Λc.|a|
|a[γ ]| = |a|[•]
|∀c :a0 ∼A a1.b| = ∀c : |a0 | ∼ |A | |a1 |.|b|
|a . γ | = a

We start our discussion by summarizing the properties that guide the design of DC and its connection to D.

For brevity, we state these properties only about the typing judgment below, but analogues hold for the �rst six

judgment forms shown in Figure 1.

First, typing is decidable in DC, and annotations nail down all sources of ambiguity in the typing relation,

making type-checking fully syntax directed.

Lemma 5.2 (Decidable typing). Given Γ and a, it is decidable whether there exists some A such that Γ ` a : A.

Lemma 5.3 (Uniqeness of typing). If Γ ` a : A1 and Γ ` a : A2 then A1 = A2.
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Γ ` a : A (Typing)
An-Star

` Γ
Γ ` ? : ?

An-Var

` Γ x : A ∈ Γ

Γ ` x : A

An-Pi

Γ, x : A ` B : ?

Γ ` Π
ρx :A→ B : ?

An-Abs

Γ, x : A ` a : B ρ ∨ x < |a|
Γ ` λρx :A.a : Π

ρx :A→ B

An-App

Γ ` b : Π
ρx :A→ B

Γ ` a : A

Γ ` b aρ : B{a/x}

An-Conv

Γ ` a : A
Γ; Γ̃ ` γ : A ∼ B Γ ` B : ?

Γ ` a . γ : B

An-Fam

` Γ F ∼ a : A ∈ Σ1

Γ ` F : A

An-CPi

Γ, c : ϕ ` B : ?

Γ ` ∀c :ϕ .B : ?

An-CAbs

Γ, c : ϕ ` a : B

Γ ` Λc :ϕ .a : ∀c :ϕ .B

An-CApp

Γ ` a1 : ∀c :a ∼A1
b.B Γ; Γ̃ ` γ : a ∼ b

Γ ` a1[γ ] : B{γ/c}

Fig. 6. Typing rules for DC

Next, the two languages are strongly related via this erasure operation, in the following way. We can always

erase DC typing derivations to produce D derivations. Furthermore, given D derivations we can always produce

annotated terms and derivations in DC that erase to them.

Lemma 5.4 (Erasure). If Γ ` a : A then |Γ | � |a| : |A|.

Lemma 5.5 (Annotation). If Γ � a : A then, for all Γ0 such that |Γ0 | = Γ, there exists some a0 and A0, such that
Γ0 ` a0 : A0 where |a0 | = a and |A0 | = A.

5.1 The design of DC
Designing a language that has decidable type checking, unique types, and corresponds exactly to D requires

the addition of a number of annotations to the syntax of D, reifying the information contained in the typing

derivation. In this section, we discuss some of the constraints on our designs and their e�ects on the rules for

typing terms (Figure 6) and checking coercion proofs (Figures 7 and 8). Overall, the typing rules for DC are no

more complex than their D counterparts. However, the rules for coercions require much more bookkeeping in

DC than the corresponding rules in D. For example, compare rule E-CAbsCong with rule An-CAbsCong.

The most important change for the explicit language is the addition of explicit coercion proof terms for type

conversion in rule An-Conv. Because the de�nitional equality relation is undecidable, we cannot ask the type

checker to determine whether two types are equal in a conversion. Instead, this language includes an explicit

proof γ of the equality that the DC type checker is only required to verify. We describe this judgment in the next

subsection.

Other rules of the type system also add annotations to make type checking syntax directed. For example,

consider the typing rules for abstractions (rule An-Abs) and applications (rule An-App). We have two new

annotations in these two rules. Abstractions include the types of bound variables and irrelevant applications

use their actual arguments instead of using �. As a positive result of this change, we need only one rule for

typing applications, not two as applications must always include their arguments, even when those arguments

are irrelevant. Furthermore, because terms now include irrelevant variables in these annotations, irrelevant

abstractions check relevance against the body after erasure, following ICC* (Barras and Bernardo 2008).
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Similarly, coercion abstraction and instantiation require annotations for the abstracted proposition and the

evidence that the equality is satis�ed. See rules An-CAbs and An-CApp. All other rules of the typing judgment

are the same as D.

5.2 Explicit equality proofs
Figure 5 includes some of the syntax of the coercion proof terms that are available in DC. The syntax �gure does

not include all of the coercions because their syntax makes little sense out of the context of the rules that check

them. Indeed, these proof terms merely record information found in the rules of the analogous D judgments

for type and prop equality. In other words, γ in the coercion judgment Γ;∆ ` γ : a ∼ b records the information

contained in a derivation of a type equality Γ;∆ � a ≡ b : A.

However, there is some �exibility in the design of the judgment Γ;∆ ` γ : a ∼ b. First, observe that the syntax

of the judgment does not include a component that corresponds to A, the type of a and b in the implicit system.

We do not include this type because it is unnecessary. In DC, a and b have unique types. If we ever need to know

what their types are, we can always recover them directly from the context and the terms. (This choice mirrors

the current implementation of GHC.)

Furthermore, we have �exibility in the relationship between the types of the terms in the coercion judgment.

Suppose we have Γ;∆ ` γ : a ∼ b and Γ ` a : A and Γ ` b : B. Then there are three possible ways we could have

designed the judgment with respect to the types A and B. The judgment could require

(1) that A = B, i.e. that the types must be α−equivalent, or

(2) that |A| = |B|, i.e. that the types must be equal up to erasure, or

(3) that there must exist some coercion Γ;∆ ` γ0 : A ∼ B that relates them.

There is also a fourth option—not enforcing any relationship between A and B to hold. While previous work (Eisen-

berg 2016; Gundry 2013; Weirich et al. 2013), allowed such heterogeneous equality, we cannot do so here and still

connect to the homogeneous equality of D.

At �rst glance, the �rst option might seem the closest to D. After all, in that language, the two terms must

type check with exactly the same type. However, given that D includes implicit coercion, that choice is overly

restrictive—the two terms will also type check with de�nitionally equal types too. The second option relaxes that

restriction, but the third is the closest to D.

Therefore, our system admits the following property of the coercion judgment.

Lemma 5.6 (Coercion regularity). If Γ;∆ ` γ : a ∼ b then there exists some A, B and γ0, such that Γ ` a : A
and Γ ` b : B and Γ; Γ̃ ` γ0 : A ∼ B.

Furthermore, allowing the two terms to have provably equal types leads to more compositional rules than the

�rst two options. For example, consider the application congruence rule, rule An-AppCong. Due to dependency,

the types of the two terms in the conclusion of this rule may not be α-equivalent. If we had chosen the �rst

option above, we would have to use the rule below instead, which includes a coercion around one of the terms to

make their types line up. In DC, that coercion is unnecessary and the rule is symmetric.

AltAn-AppCongEq

Γ;∆ ` γ1 : a1 ∼ b1 Γ;∆ ` γ2 : a2 ∼ b2 Γ ` a1 a2

ρ
: A Γ ` b1 b2

ρ
: B Γ;∆ ` γ : B ∼ A

Γ;∆ ` (γ1 γ
ρ
2
. γ ) : (a1 a2

ρ ) ∼ (b1 b2

ρ . γ )

On the other hand, we follow Eisenberg (2016) and allow some asymmetry in the congruence rules for syntactic

forms with binders. For example, consider rule An-PiCong for showing two Π-types equal via congruence (this

rule is analogous to rule E-PiCong of the implicit system). Note the asymmetry—the rule requires that the bodies

of the Π-types be shown equivalent using a single variable x of type A1. However, in the conclusion, we would
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Γ;∆ ` γ : a ∼ b (Type equality)

An-Refl

Γ ` a : A

Γ;∆ ` re� a : a ∼ a

An-Sym

Γ ` b : B Γ ` a : A
Γ;∆ ` γ : b ∼ a

Γ;∆ ` symγ : a ∼ b

An-Trans

Γ;∆ ` γ1 : a ∼ a1

Γ;∆ ` γ2 : a1 ∼ b

Γ;∆ ` (γ1;γ2) : a ∼ b

An-PiCong

Γ;∆ ` γ1 : A1 ∼ A2 Γ, x : A1;∆ ` γ2 : B1 ∼ B2

B3 = B2{x . symγ1/x} Γ ` Π
ρx :A1 → B1 : ?

Γ ` Π
ρx :A2 → B3 : ?

Γ;∆ ` Π
ρx :γ1.γ2 : (Πρx :A1 → B1) ∼ (Πρx :A2 → B3)

An-AbsCong

Γ;∆ ` γ1 : A1 ∼ A2 Γ, x : A1;∆ ` γ2 : b1 ∼ b2

b3 = b2{x . symγ1/x}
Γ ` A2 : ? ρ ∨ x < |b1 | ρ ∨ x < |b3 |

Γ;∆ ` (λρx :γ1.γ2) : (λρx :A1.b1) ∼ (λρx :A2.b3)

An-AppCong

Γ;∆ ` γ1 : a1 ∼ b1 Γ;∆ ` γ2 : a2 ∼ b2

Γ ` a1 a2

ρ
: A Γ ` b1 b2

ρ
: B

Γ;∆ ` γ1 γ
ρ
2

: a1 a2

ρ ∼ b1 b2

ρ

An-CPiCong

Γ;∆ ` γ1 : ϕ1 ∼ ϕ2 Γ, c : ϕ1;∆ ` γ3 : B1 ∼ B2

B3 = B2{c . symγ1/c}
Γ ` ∀c :ϕ1.B1 : ? Γ ` ∀c :ϕ2.B3 : ?

Γ;∆ ` (∀c :γ1.γ3) : (∀c :ϕ1.B1) ∼ (∀c :ϕ2.B3)

An-CAbsCong

Γ;∆ ` γ1 : ϕ1 ∼ ϕ2

Γ, c : ϕ1;∆ ` γ3 : a1 ∼ a2 a3 = a2{c . symγ1/c}
Γ ` (Λc :ϕ1.a1) : ∀c :ϕ1.B1 Γ ` (Λc :ϕ2.a3) : ∀c :ϕ2.B2

Γ; Γ̃ ` γ4 : ∀c :ϕ1.B1 ∼ ∀c :ϕ2.B2

Γ;∆ ` (λc :γ1.γ3@γ4) : (Λc :ϕ1.a1) ∼ (Λc :ϕ2.a3)

An-CAppCong

Γ;∆ ` γ1 : a1 ∼ b1

Γ; Γ̃ ` γ2 : a2 ∼ b2

Γ; Γ̃ ` γ3 : a3 ∼ b3

Γ ` a1[γ2] : A Γ ` b1[γ3] : B

Γ;∆ ` γ1(γ2,γ3) : a1[γ2] ∼ b1[γ3]

An-Beta

Γ ` a1 : B0 Γ ` a2 : B1

|B0 | = |B1 | � |a1 | > |a2 |
Γ;∆ ` red a1 a2 : a1 ∼ a2

An-Assn

` Γ
c : a ∼A b ∈ Γ c ∈ ∆

Γ;∆ ` c : a ∼ b

An-PiFst

Γ;∆ ` γ : Π
ρx :A1 → B1 ∼ Π

ρx :A2 → B2

Γ;∆ ` piFstγ : A1 ∼ A2

An-PiSnd

Γ;∆ ` γ1 : Π
ρx :A1 → B1 ∼ Π

ρx :A2 → B2

Γ;∆ ` γ2 : a1 ∼ a2 Γ ` a1 : A1 Γ ` a2 : A2

Γ;∆ ` γ1@γ2 : B1{a1/x} ∼ B2{a2/x}

An-CPiFst

Γ;∆ ` γ : ∀c :ϕ1.A2 ∼ ∀c :ϕ2.B2

Γ;∆ ` cpiFstγ : ϕ1 ∼ ϕ2

An-CPiSnd

Γ;∆ ` γ1 : (∀c1 :a ∼A a′.B1) ∼ (∀c2 :b ∼B b′.B2)
Γ; Γ̃ ` γ2 : a ∼ a′ Γ; Γ̃ ` γ3 : b ∼ b′

Γ;∆ ` γ1@(γ2 ∼ γ3) : B1{γ2/c1} ∼ B2{γ3/c2}

An-Cast

Γ;∆ ` γ1 : a ∼ a′

Γ;∆ ` γ2 : a ∼A a′ ∼ b ∼B b′

Γ;∆ ` γ1 . γ2 : b ∼ b′

An-IsoSnd

Γ;∆ ` γ : (a ∼A a′) ∼ (b ∼B b′)
Γ;∆ ` typeInjγ : A ∼ B

An-Refl2

Γ ` a : A Γ ` b : B |a| = |b| Γ; Γ̃ ` γ : A ∼ B

Γ;∆ ` re� (a ∼γ b) : a ∼ b

Fig. 7. Type equality for DC
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Γ;∆ ` γ : ϕ1 ∼ ϕ2 (Prop equality)

An-PropCong

Γ;∆ ` γ1 : A1 ∼ A2 Γ;∆ ` γ2 : B1 ∼ B2

Γ ` A1 ∼A B1 ok Γ ` A2 ∼A B2 ok

Γ;∆ ` (γ1 ∼A γ2) : (A1 ∼A B1) ∼ (A2 ∼A B2)

An-IsoConv

Γ;∆ ` γ : A ∼ B Γ ` a1 ∼A a2 ok
Γ ` a′

1
∼B a′

2
ok |a1 | = |a′1 | |a2 | = |a′2 |

Γ;∆ ` conv (a1 ∼A a2) ∼γ (a′1 ∼B a′
2
) : (a1 ∼A a2) ∼ (a′1 ∼B a′

2
)

An-CPiFst

Γ;∆ ` γ : ∀c :ϕ1.A2 ∼ ∀c :ϕ2.B2

Γ;∆ ` cpiFstγ : ϕ1 ∼ ϕ2

An-IsoSym

Γ;∆ ` γ : ϕ1 ∼ ϕ2

Γ;∆ ` symγ : ϕ2 ∼ ϕ1

Fig. 8. Prop equality for DC

like to create a proof of equivalence for a Π-type where the bound variable has type A2. Therefore, the resulting

right-hand-side type must use a substitution to change the type of the bound variable.

Prior work (Gundry 2013; Weirich et al. 2013) included a symmetric rule instead of this one because of concern

that this rule would be di�cult to implement in GHC. Eisenberg (2016) reports that the opposite is true from

his experience with GHC 8.0. The symmetric rule requires binding three variables instead of one, while the

substitution in the asymmetric version proved no di�culty.

The congruence rule for coercion abstraction types, rule An-CPiCong is similarly asymmetric. This rule

motivates the inclusion of rule An-IsoSym, a symmetry coercion between props. As in D, this rule (like re�exivity

and transitivity) is derivable from the analogous rules for type equality. However, we need to refer to symmetry

coercions in rules An-CPiCong and An-CAbsCong so it is convenient to have syntax for it available. Note that

this rule is somewhat di�erent from prior work because we lack injectivity for equated types in propositions.

However, our version is more in line with rules rules An-PiCong and An-AbsCong.

There is also a subtle issue related to rule An-CAbsCong, the congruence rule for coercion abstractions, that

we discovered in the process of proving the erasure theorem (5.4). In the case for this rule, the premise that the

types of the two abstractions are equal is not implied by regularity (3.1). Instead, regularity gives us a coercion

between B1 and B2 that could rely on c. However, the congruence rule for coercion abstraction types does not

allow this dependence, so the rule requires an additional coercion γ4 to be equivalent to rule E-CAbsCong.

Figure 4 includes a rule not found in the implicit system, rule An-Refl2. We call this rule a form of “re�exivity”

because, according to D, the two terms a and b are the same, i.e. they erase to the same result. However, the

coercions from these terms mean that they (probably) do not have α-equivalent types in DC. However, as long as

their types are coercible we should be able to equate them. (Remember that we do not want to equate terms such

as λ+x : Int.x and λ+x :Bool.x that are erasure equivalent but do not have coercible types.)

Rule An-Refl2 provides coherence for our language—uses of coercion proofs (i.e. a . γ ) do not interfere with

equality. Prior work also include similar reasoning (Gundry 2013; Weirich et al. 2013), but only allowed one

coercion proof to be eliminated at a time. In contrast, when viewed through the comparison with re�exivity in

the implicit language, we can derive a much more e�cient way of stating coherence. Proofs using this proof rule

may be smaller than in the prior system.

5.3 Coercion props and coercion abstraction
DC uses the same syntax for equality props (a ∼A b) as D, where A is the type of the term a. The A annotation is

not actually needed for decidable type checking in DC as that type can easily be recovered from a. However, we

include this annotation in the prop to simplify the de�nition of the erasure operation, shown in de�nition 5.1.
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Γ ` a { b (DC reduction)

An-AppAbs

Γ ` (λρx :A.b) aρ { b{a/x}

An-CAppCAbs

Γ ` (Λc :ϕ .b)[γ ] { b{γ/c}

An-Axiom

F ∼ a : A ∈ Σ1

Γ ` F { a

An-AbsTerm

Γ ` A : ? Γ, x : A ` b { b′

Γ ` (λ−x :A.b) { (λ−x :A.b′)

An-Combine

Γ ` (v . γ1) . γ2 { v . (γ1;γ2)

An-Push

Γ; Γ̃ ` γ : Π
ρx1 :A1 → B1 ∼ Π

ρx2 :A2 → B2

a1 = a{x2 . sym (piFstγ )/x1}
γ2 = γ@re� (x2 . sym (piFstγ ) ∼piFstγ x2)

Γ ` ((λρx1 :A1.a) . γ ) bρ { (λρx2 :A2.(a1 . γ2)) bρ

An-CPush

Γ; Γ̃ ` γ : ∀c1 :ϕ1.A1 ∼ ∀c2 :ϕ2.A2

a1 = a{c2 . cpiFst (symγ )/c1}
γ2 = γ@(c2 . cpiFst (symγ ) ∼ c2)

Γ ` ((Λc1 :ϕ1.a) . γ )[γ1] { (Λc2 :ϕ2.(a1 . γ2))[γ1]

Fig. 9. DC single-step reduction (excerpt)

When are props (a ∼A b) well formed in DC? To make this question decidable, we place stronger restrictions

on the types of a and b in equality propositions than we do in the coercion judgment. In the latter case, we know

that a derivation of Γ;∆ ` γ : a ∼ b means that there must exist some coercion between the types of the two

terms. This coercion is not stored in the proof γ itself, but it can be recovered via Lemma 5.6.

In contrast, to support decidable typechecking, the DC typing rules require two terms in a prop to have erasure
equivalent types.

An-Wff

Γ ` a : A Γ ` b : B |A| = |B|
Γ ` a ∼A b ok

Given a, b and A, we can easily access the type of b and determine whether A and B are equal after erasure.

However, we cannot necessarily determine whether there exists some coercion that equatesA and B, as de�nitional

equality is undecidable.

This stronger restriction for props is not problematic. Even with this restriction we can annotate all valid

derivations in D. In the case that the types are not erasure-equivalent in some proposition in a derivation, we can

always use a cast to make the two terms have erasure-equivalent types. In other words, if we want to form a

proposition that a : A and b : B are equal, where we have some γ : A ∼? B, we can use the proposition (a .γ ) ∼B b.

Alternatively, we could weaken this restriction by annotating γ in DC equality propositions (in addition to A).

However, we see no need for this modi�cation.

5.4 Preservation and Progress for DC
The DC language also supports a preservation theorem for an annotated single-step reduction relation (some

rules appear in Figure 9, the full relation is shown in Appendix C.4). This reduction uses a typing context (Γ) to

propagate annotations during evaluation. However, these propagated annotations are irrelevant. The relation

erases to the single-step relation for D which does not require type information.

Lemma 5.7 (DC reduction erasure). If Γ ` a { b and Γ ` a : A then � |a| { |b| or |a| = |b|.
The assumption in this lemma that the expression a type checks is required because of irrelevant applications.

In the β-reduction rule of DC, we always substitute the argument into the body of an abstraction. However, in D,
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the analogous rule does not have an argument to substitute. In the proof, we need to require that the term type

checks to be sure that the argument truly is erasable.

We proved the preservation lemma for DC (shown below) directly. The lemma shown below is stronger than

the one we can derive from composing the erasure and annotation theorems with the D preservation result.

That version of the lemma does not preserve the type A through reduction. Instead it produces a type B that is

erasure-equivalent to A. However, our evaluation rules always maintain α-equivalent types.

Lemma 5.8 (Preservation for DC). If Γ ` a : A and Γ ` a { a′ then Γ ` a′ : A.

However, there are properties that we can lift from D through the annotation and erasure lemmas. For example,

substitutivity and consistency directly carry over.

Lemma 5.9 (Substitutivity). If Γ1, x : A, Γ2 ` b : B and Γ1 ` a1 : A and Γ1 ` a2 : A and Γ1;∆ ` γ : a1 ∼ a2 then
there exists a γ ′ such that Γ1, (Γ2{a1/x});∆ ` γ ′ : b{a1/x} ∼ b{a2/x}.

Lemma 5.10 (Consistency). If Γ;∆ ` γ : a ∼ b and Good |Γ | ∆ then consistent |a| |b|.

In fact, this consistency result is also the key to the progress lemma for the annotated language. Before we can

state that lemma, we must �rst de�ne the analogue to values for the annotated language. Values allow explicit

type coercions at top level and in the bodies of irrelevant abstractions.

Definition 5.11 (Coerced values and Annotated values).

coerced values w ::= v | v . γ
annotated values v ::= λ+x :A.b | λ−x :A.w | Λc :ϕ .a

| ? | Πρx :A→ B | ∀c :ϕ .A

Lemma 5.12 (Progress for DC). If Γ ` a : A and Good |Γ | ∆, then either a is a coerced value, or there exists some
a′ such that Γ ` a { a′.

6 DESIGN DISCUSSION
We have mentioned some of the factors underlying our designs of D and DC in the prior sections. Here, we

discuss some of these design choices in more detail.

6.1 Heterogeneous vs. homogeneous equality
A homogeneous equality proposition is a four-place relation a : A ∼ b : B, where the equated terms a and b
are required to have de�nitionally equivalent types (A and B) for this proposition to be well-formed. Because

A and B are required to be equal, this relation is almost always written as a three-place relation. In contrast,

a heterogeneous equality proposition is a four place relation a : A ∼ b : B, where the types of the equated

terms may be unrelated. A heterogeneous equality proposition is usually provable only when A and B are equal

types (McBride 2000). However, some settings do allow terms with unequal types to be equated (Casinghino et al.

2014; Kimmel et al. 2013).

In the implicit language D, equality propositions are clearly homogeneous. But what about the annotated

language? The only equality de�ned for this language is α-equivalence. There is no conversion rule. As a result,

it may seem like we have neither homogeneous equality nor heterogeneous equality, as we require the two

types to be related, but not with the “de�nitional equality” of that language. However, we claim that because DC

is an annotation of D, the semantics of the equality proposition in DC is the same as that in D. So we use the

terminology “homogeneous equality” to refer to equality propositions in both languages.

Homogeneous equality is a natural �t for D. In this language we are required to include the type of the terms

in the judgment so we can know at what type they should be compared. To have heterogeneous equality in that
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context, we would need two di�erent types in equality propositions, i.e. they would be (a : A ∼ b : B). We would

also need a rule that allows us to extract equalities between A and B.

EA-Kind

c : (a : A ∼ b : B) ∈ Γ

Γ � A : ? ≡ B : ?

Once we had set up D with homogeneous equality, we were inspired to make it also compatible with DC.

In contrast, prior work uses heterogeneous equality (Eisenberg 2016; Gundry 2013; Weirich et al. 2013). As a

result, these languages also include a “kind coercion” which extracts a proof of type equality from a proof of

term equality.
7

In DC, such a coercion is unnecessary.

However, there is no drawback to using homogeneous equality in D and DC. In these languages, we can

de�ne a heterogeneous equality proposition by sequencing homogeneous equalities. For example, consider the

following de�nition, where the proposition a ~ b is well-formed only because it is preceded by the proposition

k1 ~ k2.

data Heq (a :: k1) (b :: k2) where
HRefl :: (k1 ~ k2, a ~ b) => Heq a b

With this encoding, we do not need a the kind coercion, or any special rules or axioms. Pattern matching for

this datatype makes the kind equality available.

One motivation for heterogeneous equality is to support programming with dependently-typed data struc-

tures in intensional type theories (McBride 2000). In fact, the Idris language includes heterogeneous equality

primitively (Brady 2013). In this setting, heterogeneous equality is necessary to reason about equality between

terms whose types are provably equivalent, but not de�nitionally equivalent. However, in D and DC, we re�ect

equality propositions into de�nitional equality so heterogeneous equality is not required for those examples.

Why did prior work use heterogeneous equality in the �rst place? Part of the reason was to design compositional

rules for type coercions, such as rule An-AppCong (and the symmetric version of rule An-AbsCong). However,

this work shows that we can have compositional congruence rules in the presence of homogeneous equality.

Another goal was to simplify the implementation of type inference in GHC 8.0 which must emit constraints

between types and their kinds. A heterogeneous equality represents both of these at once, whereas two constraints

are required with homogeneous equality. However, in terms of constraint generation in GHC, it turns out that

generating two propositions was simpler anyways. GHC’s solver uses a set of equalities on type variables as a

substitution. For this induced substitution to be type-correct, each equality in the set must be homogeneous.

6.2 Can we erase more?
Irrelevant abstractions do not completely disappear from our implicit calculus. Even though evaluation continues

under irrelevant abstractions, their locations are marked in D. In contrast, a Curry-style presentations of System

F would allow generalization at any point.

We could imagine replacing our rules for irrelevant argument introduction and elimination with the following

alternatives, as is the case in ICC (Miquel 2001).

EA-IrrelAbs

Γ � A : ? Γ, x : A |= a : B

Γ |= a : Π
−x :A→ B

7
This coercion is similar to Coq’s JMeq_eq axiom that converts a heterogeneous proposition (JMeq (a :: k) (b :: k)) to a homogeneous

proposition.
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EA-IrrelApp

Γ � a : Π
−x :A→ B Γ � b : A

Γ |= a : B{b/x}
Adding these rules does not require us to change the annotated language DC. Instead, we would only need

to modify the erasure operation to completely remove such abstractions and applications. Furthermore, this

modi�cation would strengthen the equational theory of the language.

However, this change complicates the metareasoning of D as Π− quanti�ers can appear anywhere in a derivation.

For example, the inversion lemma 4.4 would allow the type A to be headed by any number of implicit binders

before the explicit one. This seems possible, but intricate, so we decided to forgo this extension for a simpler

system. We may revisit this decision in future work.

On the other hand, while we can contemplate this change for irrelevant quanti�cation, we de�nitely can-

not make an analogous change for coercion abstraction while preserving type safety. In particular, coercion

abstractions can assume bogus equalities (like one between Int and Bool) and these equalities can be used to

type check a stuck program. Precisely because of the possible of hypothetical bogus equalities, we must suspend

computation at coercion abstractions.

Previous work by Cretin (2014) and Cretin and Rémy (2014) introduced a calculus built around consistent
coercion abstraction. Their mechanism allows implicit abstraction over coercions, provided those coercions are

shown instantiable. However, unlike the coercion abstraction used here, consistent coercion abstraction cannot

be used to implement GADTs. Furthermore, GHC is careful during type inference to only introduce coercion

abstraction at points where computation is already suspended, such as in the branches of case analysis.

6.3 Variations on the annotated language
The annotated language, DC, that we have developed in this paper is only one possible way of annotating D terms

to form an equivalent decidable, syntax-directed system. We have already discussed some alternative designs in

Section 5.2. However, there are two more variants that are worth further exploration.

First, consider a version of the annotated language that calculates unique types, but only up to erasure-

equivalence. This version is equivalent to adding the following conversion rule to DC, which allows any type to

be replaced by one that is erasure equivalent.

AltAn-Conv

Γ ` a : A |A| = |B|
Γ ` a : B

Because of this built-in treatment of coherence, this version of the language provides a more e�cient implemen-

tation. In particular, the types of arguments do not necessarily need to be identical to the types that functions

expect; they need only erase to the same result. Thus terms require fewer explicit coercions. Eisenberg reported

that a related variant of this system was simpler to implement in GHC 8.0. He also explored a variant of this

system in his dissertation (see Appendix F).

Second, note that we have made no e�orts to compress the annotations required by DC. It is likely that

there are versions of the language that can omit some of these annotations. In particular, bidirectional type
checking (Pierce and Turner 2000) often requires fewer annotations for terms in normal form. Here, the balance

is between code size and simplicity. GHC’s optimizer must manipulate these typed terms; having simpler rules

about where annotations are required makes this job easier. On the other hand, there are known situations where

type annotations cause a signi�cant blow up in code size, so it is worth exploring other options, such as rules

proposed by Jay and Peyton Jones (2008).

Overall, even though DC may vary, none of these changes will a�ect D; indeed we should be able to prove

analogous erasure and annotation theorems for each of these versions. The ability to contemplate these alternate
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versions is an argument in favor of the design of D; by rooting ourselves to the simpler language D, we can

consider a variety of concrete implementable languages.

7 MECHANIZED METATHEORY
All of the de�nitions, lemmas and proofs in this paper are mechanized in the Coq proof assistant (Coq development

team 2004), using tactics from the ssre�ect library (Gonthier et al. 2016). We used the Ott tool (Sewell et al.

2010) to generate both the typeset rules in this paper and the Coq de�nitions that were the basis of our proofs.

Our formalization uses a locally nameless representation of terms and variable binding. Some of the proofs

regarding substitution and free variables were automatically generated from our language de�nition via the

LNgen tool (Aydemir and Weirich 2010). Our total development is about 20,000 lines of code, plus another 13,000

lines generated by Ott and LNgen.

7.1 Decidability proof
Most of our Coq development follows standard practice of proofs by induction over derivations represented with

Coq inductive datatypes. Our proof that typechecking DC is decidable required a di�erent style of argument. In

other words, we essentially implemented a type checker for DC as a dependently-typed functional program Coq;

this function returns not only whether the input term type checks, but also a justi�cation of its answer. If the

term type checks, the checking function returns its type as well as an DC derivation for that type. Alternatively,

if the term does not type check, then the checker returns a proof that there is no derivation, for any type. We

used Coq’s Program feature to separate the computation of the type checker from the proof that it returns the

correct result (Sozeau 2008). We took advantage of notations so that the de�nition of type checker more closely

resembles a functional program. This style of proof is convenient because the computation itself naturally drives

the proof �ow—in particular, all the branching is performed in the functions, and thus none of it has to be done

during the proofs. Furthermore, many of the proof obligations could be discharged automatically.

The most di�cult part of this de�nition was showing that the type checking function actually terminates. We

separated this reasoning from the type checker itself by de�ning an inductive datatype representing the “fuel”

required for type checking,and then showed that we could calculate that fuel from the size of the term.

Proving termination was complicated for two reasons. First, the style of de�ning the inference rules so that

the typing context is checked in the leaves of the typing derivation (see, for example, rules An-Var and An-Star)

means that termination metric is not a linear function of the size of the input term. Instead of following the

rules exactly, we programmed the type checker to ensure the validity of the context whenever new assumptions

were added. Second, some typing premises in the rules are merely to access the types of subterms that are

already known to be correct. To simplify the termination argument, we replaced these recursive calls to the

typechecker with calls to an auxiliary function that calculates the type of an annotated term, assuming that the

term has already been checked.Interestingly, these changes not only made the type checker more e�cient and

the termination argument more straightforward, but they also occasionally simpli�ed the correctness argument.

7.2 Why mechanize?
Producing this proof took signi�cant e�ort, much more than if we had produced a paper description of the

results. We undertook this e�ort partly because reasoning about dependently-typed languages in the presence

of nontermination is dangerous. Indeed, including ? : ? leads to inconsistent logics (Martin-Löf 1971), but not

necessarily unsafe languages (Cardelli 1986).

In fact, the consistency proofs that appear in both Weirich et al. (2013) and Gundry (2013) are �awed as reported

by Eisenberg (2016). Eisenberg shows how to repair the consistency proof and does so for his PiCo language.

However, this repair is only relevant to languages with heterogeneous equality.
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Furthermore, DC is an admittedly complex language, especially when it comes to the coercion rules (Figures 7

and 8). In the course of our development, we made many changes to our designs in our e�orts to prove our

desired results. These changes were, of course, motivated by failed proofs due to unexpected interactions in the

subtleties of the system. We are not at all con�dent that we would have seen all of these issues with a purely

paper proof.

At the same time, we found the e�ort in producing a mechanized proof to be more enjoyable than that of

paper proofs. Mechanization turns the proof process into a software engineering e�ort: multiple authors may

work together and always be aware of the status of each other’s work. Furthermore, we expect that our artifact

itself will be useful for future experimentation (perhaps with some of the design variations and extensions that

we describe below). Certainly, we have found it useful for quickly ascertaining the impact of a design change

throughout the development.

8 RELATED WORK

8.1 Prior versions of FC with dependency
The most closely related works to this paper are Weirich et al. (2013), Gundry’s dissertation (2013) and Eisenberg’s

dissertation (2016). The current work is the only version to de�ne an implicitly-typed language in addition

to DC, a language whose design directly in�uenced the design of the more practical DC. Furthermore, as we

have discussed previously, this variant of FC contains several technical distinctions from prior work, which we

summarize here.

We have already discussed in detail the three main di�erences: that this language uses homogeneous equality

instead of heterogeneous equality (Section 6.1), that this system is paired with an implicit language (Section 3),

and that all of our proofs have been formalized in Coq (Section 7).

Other more minor technical improvements include:

• This system admits a substitutivity lemma (Lemma 4.9), which Eisenberg was unable to show. Substitu-

tivity is not necessary for safety, though the computational content of this lemma is useful in GHC for

optimization.

• This system uses an available set (∆) to restrict the use of coercion assumptions in rules E-CAbsCong

and An-CAbsCong. Weirich et al. used an (invalid) check of how the coercion variable was used in the

coercion, and Eisenberg repaired this check with the “almost devoid” relation. However, this approach is

not available for D because it does not include explicit coercions. Instead, we use available sets in both

languages, both simplifying the check and making it more generally applicable.

• This system includes a signature for general recursive de�nitions (Section 3.2), following Gundry. In

contrast, Eisenberg only includes a fix term and Weirich et al. reuses coercion assumptions for recursive

de�nitions. This latter approach causes di�culty in a full-spectrum calculus. For example, whether a

term is a value depends on whether there is some recursive de�nition for it in the context. Similarly, our

de�nition of parallel reduction automatically unfolds recursive de�nitions, but ignores all other coercion

assumptions.

• This system includes a separate de�nition of equality for propositions (unlike all prior work). As a result,

it includes injectivity only where needed (Section 3.4).

• This system includes an asymmetric rule for congruence rules with binders as opposed to the symmetric

rule proposed in Weirich et al. and also used by Gundry (Section 5.2).

8.2 Other related calculi
Geuvers and Wiedijk (2004) and van Doorn et al. (2013) develop variants of pure type systems that replace implicit

conversions with explicit convertibility proofs. Like this work, they show that the system with explicit equalities
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is equivalent to the system with implicit equalities, and include asymmetric rules for congruence with binders.

However, there are several key di�erences. First, their work is based in intensional type theory and does not

include coercion abstractions. Second, they also use heterogeneous equality instead of homogeneous equality.

Finally, their work is based on Pure Type Systems, generalizing over sorts, rules and axioms; whereas we consider

only a single instance here. However, given the context of GHC, this generality is not necessary.

The Trellys project developed novel languages for dependently-typed programming, such as Sep
3

(Kimmel

et al. 2013) and Zombie (Casinghino et al. 2014; Sjöberg and Weirich 2015). As here, these languages include

nontermination, full-spectrum dependent types and irrelevant arguments. Furthermore, the semantics are

speci�ed via paired annotated and erased languages. However, unlike this work, the Trellys project focused

on call-by-value dependently-typed languages with heterogeneous equality, and on the interaction between

terminating and nonterminating computation. In Sep
3

the terminating language is a separate language from the

computation language, whereas in Zombie it is de�ned as a sublanguage of computation via the type system.

Neither language includes a separate abstraction form for equality propositions.

Yang et al. (2016) also develop a full-spectrum dependently-typed calculus with type-in-type and general

recursion. As in this work, they replace implicit conversion with explicit casts to produce a language with

decidable type checking. However, their system is much less expressive: it lacks implicit quanti�cation and any

sort of propositional equality for �rst-class coercions.

8.3 Intensional type theory
The dependent type theory that we develop here is di�erent in many ways from existing type theories, such as

the ones that underlie other dependently-typed languages such as Epigram, Agda, Idris, or Coq. These languages

are founded on intensional type theory (Coquand 1986; Martin-Löf 1975), a consistent foundation for mathematics.

In contrast, Haskell is a nonterminating language, and thus inconsistent when viewed as a logic. Because Haskell

programs do not always terminate, they cannot be used as proofs without running them �rst. As a result, our

language has three major di�erences from existing type theories:

• Type-in-type. Terminating dependently-typed languages require polymorphism to be strati�ed into a

hierarchy of levels, lest they permit an encoding of Girard’s paradox (Girard 1972). This strati�cation

motivates complexities in the design of the language, such as cumulativity (Martin-Löf 1984) or level

polymorphism (Norell 2007). However, because Haskell does not require termination, there is no motiva-

tion for strati�cation. Programmers have a much simpler system when this hierarchy is collapsed into a

single level with the addition of the ? : ? axiom. But, although languages with type-in-type have been

proposed before (Martin-Löf 1971) (and been proven type sound (Cardelli 1986)), there is signi�cantly

less research into their semantics than there is for intensional type theories.

• Syntactic type theory. Type theories are often extended through the use of axioms. For example, adding

the law of the excluded middle produces a classical type theory, whereas adding the univalence axiom

leads to homotopy type theory. We include axioms for type constructor injectivity, which is sometimes

referred to as “syntactic” type theory. However, syntactic, classical and homotopy type theories are

known to be mutually inconsistent: type theories used as logical foundations must choose only one

of these extensions. Historically, syntactic type theories have not been as well studied as classical and

homotopy type theories.

• Separation between terms and coercions. Because the term language may not terminate, DC coercions

come from a separate, consistent language for reasoning about equality in DC. Propositional equalities

are witnessed by coercions instead of computational proofs. This distinction means that coercions are

not relevant at runtime and may be erased. Furthermore, DC’s form of propositional equality has a �avor

of extensional type theory (Martin-Löf 1984)—equality proofs, even assumed ones, can be used without

an elimination form.
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8.4 Other programming languages with dependent types
Our goal is to extend a mature, existing functional programming language with dependent types, in a way that is

compatible with existing programs. However, instead of extending an existing language, other projects seek to

design new dependently-typed languages from scratch.

The Cayenne Language (Augustsson 1998) was an early prototype in this area. This language was a full-

spectrum dependently-typed language, inspired by functional programming. It was implemented as a new

typechecker over an existing Haskell implementation, but unlike Dependent Haskell was not intended to be

backwards compatible with Haskell. Furthermore, with this architecture, dependent types are only available

at the source level—the implementation did not use a strongly typed core language for optimization. The type

system of Cayenne was derived from intensional type theory, so di�ers from that of D and DC. In particular, in

Cayenne the kind ? is strati�ed into a universe hierarchy. This ensures (a) type-level computation terminates

(necessary for soundness) and (b) that types can be erased prior to runtime. No other irrelevant arguments can

be erased.

More recent languages, based on intensional type theory, include Epigram (McBride 2004), Agda (Norell

2007), and Idris (Brady 2013). Of these, Idris is the most advanced current language designed for practical

dependently-typed programming. Because these languages are based on a di�erent foundational type theory,

their type systems di�er from Dependent Haskell, as mentioned above. On the other hand, as practical tools for

programming with dependent types, these tools do support erasure of irrelevant information.

9 CONCLUSIONS AND FUTURE WORK
This paper presents two strongly coupled versions of a full-spectrum core calculus for dependent types including

nontermination, irrelevant arguments and �rst class equality coercions. Although these calculi were designed

with GHC in mind, we �nd their approach exciting in its own right as a new approach to dependently-typed

programming.

In future work, we plan to extend these calculi with more features of GHC, including recursive datatypes and

pattern matching, and type system support for e�cient compilation, such as roles (Breitner et al. 2014), and

levity polymorphism (Eisenberg and Jones 2017). For the former, we may follow prior work and add datatypes as

primitive constructs. However, we are also excited about adopting some of the technology in Cedille (Stump

2016), which would allow us to encode dependent pattern matching with minimal extension.

We also would like to extend the de�nition of type equality in this language. The more terms that are

de�nitionally equal, the more programs that will type check. Some extensions we plan to consider include rules

such as η-equivalence or additional injectivity rules, including those for type families (Stolarek et al. 2015). We

also hope to extend prop equality with more semantic equivalences between propositions.

Finally, because our �rst-class equality is irrelevant we cannot extend this equality directly with ideas from

cubical type theory (Angiuli et al. 2017; Bezem et al. 2014). However, we would also like to explore alternative

treatment of coercions that are not erased, so that we can add higher-inductive types to GHC.
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A COMPLETE SYSTEM SPECIFICATION
The complete type system appears in here including the actual rules that we used, automatically generated by

Ott. For presentation purposes, we have removed some redundant hypotheses from these rules in the main body

of the paper when they were implied via regularity. We have proven (in Coq) that these additional premises

are admissible, so their removal does not change the type system. These redundant hypotheses are marked via

square brackets in the complete system below.

We include these redundant hypotheses in our rules for two reasons. First, sometimes these hypotheses

simplify the reasoning and allow us to prove properties more independently of one another. For example, in the

rule E-Beta rule, we require a2 to have the same type as a1. However, this type system supports the preservation

lemma so this typing premise will always be derivable. But, it is convenient to prove the regularity property

early, so we include that hypothesis.

Another source of redundancy comes from our use of the Coq proof assistant. Some of our proofs require the

use of induction on judgments that are not direct premises, but are derived from other premises via regularity.

These derivations are always the same height or shorter than the original, so this use of induction is justi�ed.

However, while Coq natively supports proofs by induction on derivations, it does not natively support induction

on the heights of derivations. Therefore, to make these induction hypotheses available for reasoning, we include

them as additional premises.

One other minor di�erence is that this speci�cation also allows the toplevel signature to include type constants

T , which must have kind ?. These type constants have little interact with the rest of the language.

B TOPLEVEL SIGNATURES
Our results are proven with respect to the following toplevel signatures:

Σ1 = ∅ ∪ {Fix ∼ λ−x :?.λ+y :x .(y (Fix[x]y)) : Π
−x :?→ (x → x) → x}

Σ0 = |Σ1 |

However, our Coq proofs use these signature de�nitions opaquely. As a result, any pair of toplevel signatures

are compatible with the de�nition of the languages as long as they satisfy the following properties.

(1) � Σ0

(2) ` Σ1

(3) Σ0 = |Σ1 |

C REDUCTION RELATIONS

C.1 Primitive reduction
� a > b (primitive reductions on erased terms)

Beta-AppAbs

� (λρx .a′) bρ > a′{b/x}

Beta-CAppCAbs

� (Λc.a′)[•] > a′{•/c}

Beta-Axiom

F ∼ a : A ∈ Σ0

� F > a
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C.2 Implicit language one-step reduction

� a { b (single-step head reduction for implicit language)

E-AbsTerm

� a { a′

� λ−x .a { λ−x .a′

E-AppLeft

� a { a′

� a bρ { a′ bρ

E-CAppLeft

� a { a′

� a[γ ] { a′[γ ]

E-AppAbs

� (λρx .b) aρ { b{a/x}

E-CAppCAbs

� (Λc.b)[γ ] { b{γ/c}

E-Axiom

F ∼ a : A ∈ Σ0

� F { a

C.3 Parallel reduction
� a⇒ b (parallel reduction (implicit language))

Par-Refl

� a⇒ a

Par-Beta

� a⇒ (λρx .a′) � b⇒ b′

� a bρ ⇒ a′{b′/x}

Par-App

� a⇒ a′ � b⇒ b′

� a bρ ⇒ a′ b′ρ

Par-CBeta

� a⇒ (Λc.a′)
� a[•] ⇒ a′{•/c}

Par-CApp

� a⇒ a′

� a[•] ⇒ a′[•]

Par-Abs

� a⇒ a′

� λρx .a⇒ λρx .a′

Par-Pi

� A⇒ A′ � B⇒ B′

� Π
ρx :A→ B⇒ Π

ρx :A′→ B′

Par-CAbs

� a⇒ a′

� Λc.a⇒ Λc.a′

Par-CPi

� A⇒ A′ � B⇒ B′

� a⇒ a′ � A1 ⇒ A′
1

� ∀c :A ∼A1
B.a⇒ ∀c :A′ ∼A′

1

B′.a′

Par-Axiom

F ∼ a : A ∈ Σ0

� F ⇒ a

C.4 Explicit language one-step reduction

Γ ` a { b (single-step, weak head reduction to values for annotated language)

An-AppLeft

Γ ` a { a′

Γ ` a bρ { a′ bρ

An-AppAbs

Γ ` (λρx :A.b) aρ { b{a/x}

An-CAppLeft

Γ ` a { a′

Γ ` a[γ ] { a′[γ ]

An-CAppCAbs

Γ ` (Λc :ϕ .b)[γ ] { b{γ/c}

An-AbsTerm

Γ ` A : ? Γ, x : A ` b { b′

Γ ` (λ−x :A.b) { (λ−x :A.b′)

An-Axiom

F ∼ a : A ∈ Σ1

Γ ` F { a

An-CastTerm

Γ ` a { a′

Γ ` a . γ { a′ . γ

An-Combine

[Value v]
Γ ` (v . γ1) . γ2 { v . (γ1;γ2)

An-Push

Γ; Γ̃ ` γ : Π
ρx1 :A1 → B1 ∼ Π

ρx2 :A2 → B2

a1 = a{x2 . sym (piFstγ )/x1}
γ2 = γ@re� (x2 . sym (piFstγ ) ∼piFstγ x2)

Γ ` ((λρx1 :A1.a) . γ ) bρ { (λρx2 :A2.(a1 . γ2)) bρ

An-CPush

Γ; Γ̃ ` γ : ∀c1 :ϕ1.A1 ∼ ∀c2 :ϕ2.A2

a1 = a{c2 . cpiFst (symγ )/c1}
γ2 = γ@(c2 . cpiFst (symγ ) ∼ c2)

Γ ` ((Λc1 :ϕ1.a) . γ )[γ1] { (Λc2 :ϕ2.(a1 . γ2))[γ1]
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D FULL SYSTEM SPECIFICATION: IMPLICIT LANGUAGE TYPE SYSTEM
Γ � a : A (typing)

E-Star

� Γ

Γ � ? : ?

E-Var

� Γ x : A ∈ Γ

Γ � x : A

E-Pi

Γ, x : A � B : ? [Γ � A : ?]
Γ � Π

ρx :A→ B : ?

E-Abs

Γ, x : A � a : B
[Γ � A : ?] ρ ∨ x < a
Γ � λρx .a : Π

ρx :A→ B

E-App

Γ � b : Π
+x :A→ B

Γ � a : A

Γ � b a+ : B{a/x}

E-IApp

Γ � b : Π
−x :A→ B

Γ � a : A

Γ � b �− : B{a/x}

E-Conv

Γ � a : A
Γ; Γ̃ � A ≡ B : ? [Γ � B : ?]

Γ � a : B

E-CPi

Γ, c : ϕ � B : ? [Γ � ϕ ok]
Γ � ∀c :ϕ .B : ?

E-CAbs

Γ, c : ϕ � a : B [Γ � ϕ ok]
Γ � Λc.a : ∀c :ϕ .B

E-CApp

Γ � a1 : ∀c : (a ∼A b).B1

Γ; Γ̃ � a ≡ b : A

Γ � a1[•] : B1{•/c}

E-Const

� Γ T : ? ∈ Σ0

Γ � T : ?

E-Fam

� Γ
F ∼ a : A ∈ Σ0 [∅ � A : ?]

Γ � F : A

Γ � ϕ ok (Prop wellformedness)

E-Wff

Γ � a : A
Γ � b : A [Γ � A : ?]

Γ � a ∼A b ok

Γ;∆ � ϕ1 ≡ ϕ2 (prop equality)

E-PropCong

Γ;∆ � A1 ≡ A2 : A
Γ;∆ � B1 ≡ B2 : A

Γ;∆ � A1 ∼A B1 ≡ A2 ∼A B2

E-IsoConv

Γ;∆ � A ≡ B : ?
Γ � A1 ∼A A2 ok
Γ � A1 ∼B A2 ok

Γ;∆ � A1 ∼A A2 ≡ A1 ∼B A2

E-CPiFst

Γ;∆ � ∀c :ϕ1.B1 ≡ ∀c :ϕ2.B2 : ?

Γ;∆ � ϕ1 ≡ ϕ2
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Γ;∆ � a ≡ b : A (de�nitional equality)

E-Assn

� Γ
c : a ∼A b ∈ Γ c ∈ ∆

Γ;∆ � a ≡ b : A

E-Refl

Γ � a : A

Γ;∆ � a ≡ a : A

E-Sym

Γ;∆ � b ≡ a : A

Γ;∆ � a ≡ b : A

E-Trans

Γ;∆ � a ≡ a1 : A
Γ;∆ � a1 ≡ b : A

Γ;∆ � a ≡ b : A

E-Beta

Γ � a1 : B
Γ � a2 : B � a1 > a2

Γ;∆ � a1 ≡ a2 : B

E-PiCong

Γ;∆ � A1 ≡ A2 : ?
Γ, x : A1;∆ � B1 ≡ B2 : ?

[Γ � A1 : ?]
[Γ � Π

ρx :A1 → B1 : ?]
[Γ � Π

ρx :A2 → B2 : ?]
Γ;∆ � (Πρx :A1 → B1) ≡ (Πρx :A2 → B2) : ?

E-AbsCong

Γ, x : A1;∆ � b1 ≡ b2 : B
[Γ � A1 : ?]

ρ ∨ x < b1 ρ ∨ x < b2

Γ;∆ � (λρx .b1) ≡ (λρx .b2) : Π
ρx :A1 → B

E-AppCong

Γ;∆ � a1 ≡ b1 : Π
+x :A→ B

Γ;∆ � a2 ≡ b2 : A

Γ;∆ � a1 a2

+ ≡ b1 b2

+
: B{a2/x}

E-IAppCong

Γ;∆ � a1 ≡ b1 : Π
−x :A→ B

Γ � a : A

Γ;∆ � a1 �
− ≡ b1 �

−
: B{a/x}

E-PiFst

Γ;∆ � Π
ρx :A1 → B1 ≡ Π

ρx :A2 → B2 : ?

Γ;∆ � A1 ≡ A2 : ?

E-PiSnd

Γ;∆ � Π
ρx :A1 → B1 ≡ Π

ρx :A2 → B2 : ?
Γ;∆ � a1 ≡ a2 : A1

Γ;∆ � B1{a1/x} ≡ B2{a2/x} : ?

E-CPiCong

Γ;∆ � ϕ1 ≡ ϕ2

Γ, c : ϕ1;∆ � A ≡ B : ?
[Γ � ϕ1 ok]

[Γ � ∀c :ϕ1.A : ?]
[Γ � ∀c :ϕ2.B : ?]

Γ;∆ � ∀c :ϕ1.A ≡ ∀c :ϕ2.B : ?

E-CAbsCong

Γ, c : ϕ1;∆ � a ≡ b : B
[Γ � ϕ1 ok]

Γ;∆ � (Λc.a) ≡ (Λc.b) : ∀c :ϕ1.B

E-CAppCong

Γ;∆ � a1 ≡ b1 : ∀c : (a ∼A b).B
Γ; Γ̃ � a ≡ b : A

Γ;∆ � a1[•] ≡ b1[•] : B{•/c}
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E-CPiSnd

Γ;∆ � ∀c : (a1 ∼A a2).B1 ≡ ∀c : (a′
1
∼A′ a′2).B2 : ?

Γ; Γ̃ � a1 ≡ a2 : A
Γ; Γ̃ � a′

1
≡ a′

2
: A′

Γ;∆ � B1{•/c} ≡ B2{•/c} : ?

E-Cast

Γ;∆ � a ≡ b : A
Γ;∆ � a ∼A b ≡ a′ ∼A′ b′

Γ;∆ � a′ ≡ b′ : A′

E-EqConv

Γ;∆ � a ≡ b : A
Γ; Γ̃ � A ≡ B : ?

Γ;∆ � a ≡ b : B

E-IsoSnd

Γ;∆ � a ∼A b ≡ a′ ∼A′ b′

Γ;∆ � A ≡ A′ : ?

� Γ (context wellformedness)

E-Empty

� ∅

E-ConsTm

� Γ
Γ � A : ? x < dom Γ

� Γ, x : A

E-ConsCo

� Γ
Γ � ϕ ok c < dom Γ

� Γ, c : ϕ

� Σ (signature wellformedness)

Sig-Empty

� ∅

Sig-ConsCs

� Σ T < dom Σ

� Σ ∪ {T : ?}

Sig-ConsAx

� Σ
F ∼ a : A ∈ Σ0 ∅ � A : ?
∅ � a : A F < dom Σ

� Σ ∪ {F ∼ a : A}

E FULL SYSTEM SPECIFICATION: EXPLICIT LANGUAGE TYPE SYSTEM
Γ ` a : A (typing)

An-Star

` Γ
Γ ` ? : ?

An-Var

` Γ x : A ∈ Γ

Γ ` x : A

An-Pi

Γ, x : A ` B : ? [Γ ` A : ?]
Γ ` Π

ρx :A→ B : ?

An-Abs

[Γ ` A : ?]
Γ, x : A ` a : B ρ ∨ x < |a|
Γ ` λρx :A.a : Π

ρx :A→ B

An-App

Γ ` b : Π
ρx :A→ B

Γ ` a : A

Γ ` b aρ : B{a/x}

An-Conv

Γ ` a : A
Γ; Γ̃ ` γ : A ∼ B Γ ` B : ?

Γ ` a . γ : B

An-CPi

[Γ ` ϕ ok] Γ, c : ϕ ` B : ?

Γ ` ∀c :ϕ .B : ?

An-CAbs

[Γ ` ϕ ok] Γ, c : ϕ ` a : B

Γ ` Λc :ϕ .a : ∀c :ϕ .B

An-CApp

Γ ` a1 : ∀c :a ∼A1
b.B

Γ; Γ̃ ` γ : a ∼ b

Γ ` a1[γ ] : B{γ/c}

An-Const

` Γ T : ? ∈ Σ1

Γ ` T : ?

An-Fam

` Γ
F ∼ a : A ∈ Σ1 [∅ ` A : ?]

Γ ` F : A

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.



1:32 • Stephanie Weirich, Antoine Voizard, Pedro Henrique Azevedo de Amorim, and Richard Eisenberg

Γ ` ϕ ok (prop wellformedness)

An-Wff

Γ ` a : A
Γ ` b : B |A| = |B|

Γ ` a ∼A b ok

Γ;∆ ` γ : ϕ1 ∼ ϕ2 (coercion between props)

An-PropCong

Γ;∆ ` γ1 : A1 ∼ A2

Γ;∆ ` γ2 : B1 ∼ B2

Γ ` A1 ∼A B1 ok
Γ ` A2 ∼A B2 ok

Γ;∆ ` (γ1 ∼A γ2) : (A1 ∼A B1) ∼ (A2 ∼A B2)

An-CPiFst

Γ;∆ ` γ : ∀c :ϕ1.A2 ∼ ∀c :ϕ2.B2

Γ;∆ ` cpiFstγ : ϕ1 ∼ ϕ2

An-IsoSym

Γ;∆ ` γ : ϕ1 ∼ ϕ2

Γ;∆ ` symγ : ϕ2 ∼ ϕ1

An-IsoConv

Γ;∆ ` γ : A ∼ B
Γ ` a1 ∼A a2 ok
Γ ` a′

1
∼B a′

2
ok

|a1 | = |a′1 | |a2 | = |a′2 |
Γ;∆ ` conv (a1 ∼A a2) ∼γ (a′1 ∼B a′

2
) : (a1 ∼A a2) ∼ (a′1 ∼B a′

2
)

Γ;∆ ` γ : A ∼ B (coercion between types)

An-Assn

` Γ
c : a ∼A b ∈ Γ c ∈ ∆

Γ;∆ ` c : a ∼ b

An-Refl

Γ ` a : A

Γ;∆ ` re� a : a ∼ a

An-Refl2

Γ ` a : A Γ ` b : B
|a| = |b| Γ; Γ̃ ` γ : A ∼ B

Γ;∆ ` re� (a ∼γ b) : a ∼ b

An-Sym

Γ ` b : B
Γ ` a : A [Γ; Γ̃ ` γ1 : B ∼ A]

Γ;∆ ` γ : b ∼ a

Γ;∆ ` symγ : a ∼ b

An-Trans

Γ;∆ ` γ1 : a ∼ a1

Γ;∆ ` γ2 : a1 ∼ b
[Γ ` a : A] [Γ ` a1 : A1]
[Γ; Γ̃ ` γ3 : A ∼ A1]
Γ;∆ ` (γ1;γ2) : a ∼ b

An-Beta

Γ ` a1 : B0 Γ ` a2 : B1

|B0 | = |B1 | � |a1 | > |a2 |
Γ;∆ ` red a1 a2 : a1 ∼ a2

An-PiCong

Γ;∆ ` γ1 : A1 ∼ A2

Γ, x : A1;∆ ` γ2 : B1 ∼ B2

B3 = B2{x . symγ1/x}
Γ ` Π

ρx :A1 → B1 : ?
Γ ` Π

ρx :A2 → B3 : ?
[Γ ` (Πρx :A1 → B2) : ?]

Γ;∆ ` Π
ρx :γ1.γ2 : (Πρx :A1 → B1) ∼ (Πρx :A2 → B3)

An-AbsCong

Γ;∆ ` γ1 : A1 ∼ A2

Γ, x : A1;∆ ` γ2 : b1 ∼ b2

b3 = b2{x . symγ1/x}
[Γ ` A1 : ?] Γ ` A2 : ?
ρ ∨ x < |b1 | ρ ∨ x < |b3 |
[Γ ` (λρx :A1.b2) : B]

Γ;∆ ` (λρx :γ1.γ2) : (λρx :A1.b1) ∼ (λρx :A2.b3)
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An-AppCong

Γ;∆ ` γ1 : a1 ∼ b1

Γ;∆ ` γ2 : a2 ∼ b2

Γ ` a1 a2

ρ
: A Γ ` b1 b2

ρ
: B

[Γ; Γ̃ ` γ3 : A ∼ B]
Γ;∆ ` γ1 γ

ρ
2

: a1 a2

ρ ∼ b1 b2

ρ

An-PiFst

Γ;∆ ` γ : Π
ρx :A1 → B1 ∼ Π

ρx :A2 → B2

Γ;∆ ` piFstγ : A1 ∼ A2

An-PiSnd

Γ;∆ ` γ1 : Π
ρx :A1 → B1 ∼ Π

ρx :A2 → B2

Γ;∆ ` γ2 : a1 ∼ a2

Γ ` a1 : A1 Γ ` a2 : A2

Γ;∆ ` γ1@γ2 : B1{a1/x} ∼ B2{a2/x}

An-CPiCong

Γ;∆ ` γ1 : ϕ1 ∼ ϕ2

Γ, c : ϕ1;∆ ` γ3 : B1 ∼ B2

B3 = B2{c . symγ1/c}
Γ ` ∀c :ϕ1.B1 : ?
Γ ` ∀c :ϕ2.B3 : ?
[Γ ` ∀c :ϕ1.B2 : ?]

Γ;∆ ` (∀c :γ1.γ3) : (∀c :ϕ1.B1) ∼ (∀c :ϕ2.B3)

An-CAbsCong

Γ;∆ ` γ1 : ϕ1 ∼ ϕ2

Γ, c : ϕ1;∆ ` γ3 : a1 ∼ a2

a3 = a2{c . symγ1/c}
Γ ` (Λc :ϕ1.a1) : ∀c :ϕ1.B1

Γ ` (Λc :ϕ2.a3) : ∀c :ϕ2.B2

[Γ ` (Λc :ϕ1.a2) : B]
Γ; Γ̃ ` γ4 : ∀c :ϕ1.B1 ∼ ∀c :ϕ2.B2

Γ;∆ ` (λc :γ1.γ3@γ4) : (Λc :ϕ1.a1) ∼ (Λc :ϕ2.a3)

An-CAppCong

Γ;∆ ` γ1 : a1 ∼ b1

Γ; Γ̃ ` γ2 : a2 ∼ b2

Γ; Γ̃ ` γ3 : a3 ∼ b3

Γ ` a1[γ2] : A Γ ` b1[γ3] : B
[Γ; Γ̃ ` γ4 : A ∼ B]

Γ;∆ ` γ1(γ2,γ3) : a1[γ2] ∼ b1[γ3]

An-CPiSnd

Γ;∆ ` γ1 : (∀c1 :a ∼A a′.B1) ∼ (∀c2 :b ∼B b′.B2)
Γ; Γ̃ ` γ2 : a ∼ a′

Γ; Γ̃ ` γ3 : b ∼ b′

Γ;∆ ` γ1@(γ2 ∼ γ3) : B1{γ2/c1} ∼ B2{γ3/c2}

An-Cast

Γ;∆ ` γ1 : a ∼ a′

Γ;∆ ` γ2 : a ∼A a′ ∼ b ∼B b′

Γ;∆ ` γ1 . γ2 : b ∼ b′

An-IsoSnd

Γ;∆ ` γ : (a ∼A a′) ∼ (b ∼B b′)
Γ;∆ ` typeInjγ : A ∼ B

` Γ (context wellformedness)

An-Empty

` ∅

An-ConsTm

` Γ
Γ ` A : ? x < dom Γ

` Γ, x : A

An-ConsCo

` Γ
Γ ` ϕ ok c < dom Γ

` Γ, c : ϕ
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` Σ (signature wellformedness)

An-Sig-Empty

` ∅

An-Sig-ConsCs

` Σ T < dom Σ

` Σ ∪ {T : ?}

An-Sig-ConsAx

` Σ
F ∼ a : A ∈ Σ1 ∅ ` A : ?
∅ ` a : A F < dom Σ

` Σ ∪ {F ∼ a : A}
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