
Dependent Types: Easy as PIE

Work-In-Progress Project Description

Dimitrios Vytiniotis and Stephanie Weirich

University of Pennsylvania

Abstract

Dependent type systems allow for a rich set of program properties to be expressed and
mechanically verified via type checking. However, despite their significant expres-
sive power, dependent types have not yet advanced into mainstream programming
languages. We believe the reason behind this omission is the large design space for
dependently typed functional programming languages, and the consequent lack of ex-
perience in dependently-typed programming and language implementations. In this
newly-started project, we lay out the design considerations for a general-purpose, ef-
fectful, functional, dependently-typed language, called PIE. The goal of this project
is to promote dependently-typed programming to a mainstream practice.

1 INTRODUCTION

The goal of static type systems is to identify programs that contain errors. The
type systems of functional languages, such as ML and Haskell, have been very
successful in this respect. However, these systems can ensure only relatively weak
safety properties—there is a wide range of semantic errors that these systems can-
not eliminate. As a result, there is growing consensus [13, 15, 28, 27, 26, 6, 7, 20,
21, 16, 11, 2, 25, 19, 1, 22] that the right way to make static type systems more
expressive in this respect is to adopt ideas from dependent type theory [12]. Types
in dependent type systems can carry significant information about program values.
For example, a datatype for network packets may describe the internal byte align-
ment of variable-length subfields. In such precise type systems, programmers can
express many of complex properties about programs—e.g. that only packets that
obey the internal alignment will ever be read from the network.

However, day-to-day programming with dependent types has yet to become main-
stream. We think that the problem has been a lack of practical experience in
the design space of such languages. Although there have been many previous
and ongoing efforts in dependently-typed programming language design, none has
stood out. Static type checking and type inference for dependent types is a techni-
cally challenging problem with a large design space that has been only moderately
explored—especially in the context of a general-purpose language.

Our language, called PIE, serves as our vehicle for exploring the design space of
dependently-typed languages. PIE is a general-purpose, functional programming

XVII–1



language with dependent types and dependent pattern matching. Important features
for the design of PIE are:

• A unified term and type language. In PIE, expressions that index types are
written in the computation language. This decision is important for two
reasons: (i) it provides flexibility for programmers as the same expressions
may be used both for dynamic execution and static verification, and (ii) it
provides a uniform view of computation, so that programmers need not learn
a new syntax or computational model to take advantage of expressive type
checking.

• The application of a simple effect-type system [23] to ensure the soundness
of PIE in the presence of computational effects. We intend PIE to be a general
purpose language, but sound and decidable type checking requires that we
restrict the set of terms that may appear in types to those that are effect-free.
This distinction is made by the typing rules of PIE.

• The semi-automatic exploitation of knowledge gained from pattern matching
during type checking. We adapt existing technology used in the implemen-
tations of Generalized Algebraic Datatypes (GADTs) found in ATS, Ωmega
and GHC [26, 21, 17].

• A phase distinction between static and dynamic terms that is separate from
the distinction between computations and types. Distinguishing dynamic
terms (which may affect the final result of the program) from static terms
(which only affect type checking) allows for efficient compilation and proof
irrelevance.

• Aggressive inference, based on a combination of global and local term and
type inference [24, 17]. Inference infers the descriptors of local binders,
implicit arguments, and automatic coercions between types.

The design of the PIE language is still in its early stages. We have settled with
respect to the first three points, and in this paper we report this initial design. How-
ever, we are considering the choices for the last two, and hence present them as
future work here. We intersperse comparisons with related work throughout this
document.

2 DEPENDENT TYPES FOR VERIFIED AND EFFICIENT CODE

Before describing the basic features of PIE (Section 3), we demonstrate some of
the issues that must be considered in the design of a dependently-typed language
with a small example of a scope-safe evaluator for the λ-calculus. This example
is written in PIE, modulo some syntactic conventions. In the following, we as-
sume that readers are familiar with de Bruijn representations of λ-terms. Using
a de Bruijn representation in a typical functional language, an environment-based

XVII–2



data Nat :: * where
Z :: Nat
S :: Nat -> Nat

data Bool :: * where
True :: Bool
False :: Bool

leq :: #Nat -> Nat -> Bool
leq Z _ = True
leq (S x0) Z = False
leq (S x0) (S y0) = leq x0 y0

-- reflexive equality on booleans
data Eq :: Bool => Bool => * where
Refl :: (b :: Bool) -> Eq b b

FIGURE 1: Natural numbers and Booleans

evaluator must perform runtime checks that ensure that indices of variables are not
“out of scope” during execution. Here we demonstrate how dependent types can
ensure that the lexical depth of λ-terms matches the length of the environment dur-
ing evaluation, thus eliminating the need for these runtime checks. Not only does
the scope-safe interpreter run faster, but we can be assured that dynamic failures
will not occur.

Figure 1 displays part of the standard prelude of PIE. There, datatypes Nat and
Bool are the types of natural numbers, and boolean expressions respectively. The
function leq (less than or equal) is defined recursively on its first argument, hence
the indicator # on its type. Eq is a dependent type that is indexed by two boolean
expressions, hence its kind (Bool => Bool => *), inhabited by proofs of
reflexive equality of its indices.

The Term datatype in Figure 2 encodes terms of the object language, so that any
term of type (Term n) may contain only variable references (de Brujn indices)
smaller than n. The Var constructor takes an index m and a proof that m < n,
which is expressed as (Eq (leq (S m) n) True). The constructor Lam
binds a new variable, so the body of the abstraction is one lexical level deeper.

Our evaluator models a call-by-name semantics, so environments Env are lists of
Thunks, Terms paired with the environments they should be evaluated in. En-
vironments are indexed by their size. In this pure λ-calculus, values Val include
only closures, given by pairs of environments and expressions with one free index.

Now, consider the definition of a lookup function that maps a variable in the cur-
rent environment to a suspended computation. Looking up a variable in the envi-
ronment relies on the invariant that the index that we are accessing is less than the
length of the environment (otherwise a match failure results). In ML or Haskell, the
programmer must informally check that this invariant holds, but in a dependently-
typed language she can enforce this invariant with the type of the function. To look

XVII–3



-- Terms indexed by the bound on their free indices
data Term :: Nat => * where
Var :: (m :: Nat) -> (n :: Nat) ->

Eq (leq (S m) n) True -> Term n
Lam :: (n :: Nat) -> Term (S n) -> Term n
App :: (n :: Nat) -> Term n -> Term n -> Term n

-- Suspended computation
type Thunk = {m :: Nat, Term m, Env m}

-- Environments
data Env :: Nat => * where
Nil :: Env Z
Cons :: (n :: Nat) -> Thunk -> Env n -> Env (S n)

-- Values are closures: terms with one free index
data Val :: * where
Closure :: (m :: Nat) -> Env m -> Term (S m) -> Val

FIGURE 2: Scope-safe representation of a λ-calculus

up a variable n in an environment of length m requires a proof that n is less than m.

lkup :: (n :: Nat) -> (m :: Nat) -> Eq (leq (S n) m) True ->
Env m -> Thunk

lkup (Z) _ prf (Cons _ thunk _) = thunk
lkup (S n0) _ prf (Cons m0 _ hs) = lkup n0 m0 prf hs

The lkup function proceeds by case analysis on the environment. However, there
is no case for when the environment is Nil as this branch is inaccessible (it would
mean that m= Z, and (leq (S Z) Z) is convertible to False). In the case of
Cons, we have a further case analysis on n—whether we should return the current
head of the list or another thunk stored in the tail. In the case where n is S n0,
exactly the same proof object prf can be reused. The reason is that

(Eq (leq (S (S n0)) (S m0)) True)

can be converted to be equal to (Eq (leq (S n0) m0) True) by simply
reducing the function leq.

Now, writing an evaluator for the well-scoped representation of λ-terms is simple:

eval :: (n :: Nat) -> Env n -> Term n -> Val
eval n env (Var n0 m0 prf) =

open { n1, t1, env1 } = lkup n0 m0 prf env
in eval n1 env1 t1

eval n env (Lam _ t1) = Closure n env t1
eval n env (App _ t1 t2) =

let thunk = {n, t2, env} in
case eval n env t1 of

Closure n’ env’ t1’ ->
eval (S n’) (Cons n’ thunk env’) t1’

XVII–4



The proof prf that comes packed in variable nodes is passed to lkup. Addition-
ally, note that proof objects prf do not affect the result of the program. Hence,
after type checking we can safely erase them for a more efficient implementation.
Proof objects prf belong to an earlier phase of the computation. We believe that
phase determination should be done manually through programmer annotations,
but have not yet added this feature to PIE. This issue is one part of the design space
that we intend to explore with our implementation.

Post-design-time invariants Above, environments are indexed by their size, but
it is not the case in general that the properties that should be expressed by the de-
pendent types are a priori known to the programmer. For example, when designing
a general-purpose data type for binary trees, what property should index the tree
type? The number or the elements in a tree, or perhaps the depth of the tree?
Something else? Since different applications may require exposure of different
properties, a practical dependently-typed language must also facilitate after-the-
fact enforcing of invariants.

To make the above precise, imagine that the programmer has been given an Env
datatype that is not indexed by size, but he nevertheless wishes to write a verified
version of a lkup function. He may wish to give the function a type that uses an
auxiliary function length to calculate the length of the environment.

lkup :: (n :: Nat) -> (env :: Env) ->
(Eq (leq (S n) (length env)) True) -> Thunk

The function lkup may be now called in the following fashion:

... let env = ... potentially effectful/diverging computation ...
y = length env

in case (leq (S x) y) of
True prf -> lkup x env prf
False _ -> ...

where the variable prf binds to a proof of Eq (leq (S x) y) True and is
part of our extended pattern matching construct that we outline in Section ??.

To facilitate this style of programming not only we need to extend the pattern
matching construct but we have to allow expressions such as env to appear in-
side types. In particular, observe that the type of lkup is now instantiated with
a dependent type containing env, a potentially effectful computation. When the
type checker encounters such effectful expressions during type equivalence check-
ing, it must not reduce them further. In our particular example, if the type checker
attempts to reduce env then it could potentially diverge. Fortunately the solution
is easy: Names of effectful computations can indeed appear inside types if they are
kept abstract. We return to this issue in the next section.

XVII–5



3 TYPE CHECKING IN PIE

A fundamental difficulty in the design of dependently-typed languages is the pres-
ence of computational effects. In the presence of computational effects deciding
type equivalence becomes more complicated. Consider for example the type equiv-
alence problem:

T (y := 0; let z = ref 1 in !z)
?≡ T (y := 1; 1)

It is not clear that it is sound to consider these two types as equivalent. Additionally,
in the presence of the simplest effect, non-termination, type checking can become
undecidable.

To resolve this problem Epigram [13] and the proof assistant Coq [3] completely
disallow any form of effects (including non-termination) from the language and
admit only certain forms of recursive functions—even when these functions are
not indices of some dependent type in the program. Alternatively, Ωmega [21],
ATS [26], and Harper and Licata’s version of DML [11] allow general recursion
by completely separating the term from the type language, and allowing type level
computations to be written in a way that ensures confluence and strong normal-
ization when these type-level functions are viewed as rewrite rules. RSP1 [25]
is the only, to our knowledge, monolithic dependently-typed language that allows
general recursion. RSP1 imposes syntactic restrictions on the terms appearing in
types, so that no reducible terms can appear inside types.

In PIE, we do not wish to sacrifice the possibility for effects and unrestricted re-
cursion for computations, but simultaneously we want to allow (i) effect-free com-
putations to appear inside types and (ii) even names of effectful computations that
are treated opaquely. The last example of the previous section demonstrates the
importance of (ii). We now demonstrate the importance of (i) by exhibiting how
restrictive the language becomes when reducible terms are disallowed from types.
Consider the definition of lkup when leq is not allowed to appear inside types:
instead the programmer must encode a relation Leq as a datatype and pass an
inhabitant of Leq to lkup, as follows:

data Leq :: Nat => Nat => * where
Leq_base :: (n :: Nat) -> Leq Z n
Leq_ind :: (n :: Nat) -> (m :: Nat) ->

Leq n m -> Leq (S n) (S m)

lkup :: (n :: Nat) -> (m :: Nat) -> Leq (S n) m -> Env m -> ...
lkup = ...

This style results in excessive manipulation of proof objects, as it becomes the
user’s responsibility to pattern match against the passed proof terms, and construct
others. Contrast this to the first definition of lkup, where absolutely no user inter-
vention was necessary.

Finally we do not wish to separate the term from the type language because this re-
sults in duplication of (i) semantic rules from the compiler’s side, and (ii) program

XVII–6



logic from the programer’s side. It additionally requires familiarity of program-
mers with two (potentially different) styles of programming for term and type-level
computations.

To satisfy all these requirements, PIE implements a type-based analysis mechanism
to restrict the computations appearing inside types to be effect-free. This analysis
is reminiscent of effect-type systems [23] (also suggested but not explored by the
authors of Epigram [15]). Instead of imposing syntactic restrictions on the indices
of dependent types we propose the usage of a semantic analysis, based on types, to
ensure soundness and decidability of type checking. Our main typing judgement
becomes:

Γ ` e :φ τ

where φ is the effect of the expression e . Effects are propagated up the syntax tree
during type checking and particular type and kind rules ensure that expressions that
produce an effect do not appear inside types.

Variables that are λ-bound are pushed in the environment with the assumption that
they stand for effect-free computations and the effect of a λ-abstraction is simply
the effect of its body. The reason is that we may have to reduce the bodies of λ-
abstractions in order to determine equivalence, and hence we need to know their
effects. Applications at the type and term level are handled as follows:

Γ ` τ : Πx :σ.κ

Γ ` e :ε σ
T-APP

Γ ` τ e : κ{e/x}

Γ ` e1 :φ1 Πx :τ1.τ2
Γ ` e2 :φ2 τ1 Γ ` τ2{e2/x} : ?

APP
Γ ` e1 e2 :φ1tφ2 τ2{e2/x}

where ε indicates the absense of effects. In rule T-APP, an application of a type to
an expression is well-formed only if the expression yields no effect. In rule APP,
the effect of the expression e1 e2 is just the union of the effects of each expres-
sion, denoted with φ1 t φ2. Note that we have to check that the returned type is
well formed. These rules allow a function to be applied to a potentially effectful
argument, as long as that argument does not appear in the return type.

For recursive definitions (such as top-level definitions, or let-bound definitions),
after we type check and produce an effect φ for the body of the definition, if that
effect is ε then we can push the binder and its definition in the environment, so
that the definition may be later used during type equivalence checking. If, on the
contrary, we detect a non-trivial effect φ, we push the binder without its definition,
so that it may still appear inside types, but will be treated opaquely. We thus ensure
sound and decidable type checking.

In what follows we present a specialization of our approach to non-termination
as the sole effect in the language, although the above discussion applies to more
general settings as well.

Staged types and effectful coercions for termination checking In the case where
non-termination is the effect of interest, φ can either be ⇑ or ⇓ (⇓ can be viewed as

XVII–7



equivalent to ε). We indicate with ⇑ the possibility of divergence, while with ⇓ the
provable convergence of a term.

The actual type-based termination checking employed in PIE is based on the work
of Barthe et al. [4]. The key element of termination checking is that types are
internally decorated with stage annotations. Stages s , are constructed from stage
variables ι, a “next-stage” operator s+, and a limit stage ∞. Intuitively, stage
annotations keep track of the approximations of datatypes by their unfoldings, and
give rise to a subsumption relation, for example:

Terms n ≺ Terms+ n and Terms n ≺ Term∞ n

Recursion indicators on types, such as #Nat are used by this termination checking
mechanism. For example, consider again the function leq from the previous sec-
tion. Initially, a fresh stage variable ι is picked and we get the following problem
(non-annotated types enter environment with a stage annotation of ∞):

leq:Natι → Nat∞ → Bool∞ `
\x y.(. . .leq body. . . ) :⇓ Natι+ → Nat∞ → Bool∞

achieving thus an inductive proof of the termination of leq. Pattern matching on x
of type Natι+ in the case of the S constructor, results in x0 getting the type Natι,
and now leq can indeed be called on x0.

Provably terminating programs are those that typecheck without violating the sub-
sumption relation, yielded by the stage ordering. These programs, such as leq
above, produce the ⇓ effect. However, when a stage subsumption is violated, we
can view it as an effectful coercion, which outputs ⇑. Effects produced by stage
subsumption checks are propagated up the syntax tree to our main typing relation.

Soundness and termination checking Soundness, in our setting, implies that no
branch which was statically discovered to be inaccessible may be accessed oper-
ationally. Lack of soundness may result in unpredictable pattern match failures,
and diminishes the value of using dependent types for program verification all-
toghether.

In the presence of general recursion, objects inhabiting types that stand for propo-
sitions may diverge. Hence, if the semantics of our interpreter is call-by-value, we
can only get a soundness modulo-termination guarantee: If a program terminates
then no statically inaccessible branch can be reached.

On the other hand, in a call-by-name semantics “proof objects” may not be evalu-
ated. This results in lack of soundness. For example the following code leads to a
pattern match failure in the definition of lkup:

foo = lkup (S Z) Z diverge Nil

XVII–8



Operationally (in a call-by-name semantics) diverge is not evaluated, but lkup
does not include a case for Nil environments, as that branch is statically inacessi-
ble. Consequently the program crashes with a pattern match failure.

Fortunately termination checking comes to the rescue. We could require in the
definition of lkup that the argument corresponding to the particular equality proof
is terminating, as follows:

lkup :: ... -> Terminating (Eq (leq (S n) m) True) -> ...

The type checker in this case has to enforce that the argument is indeed a terminat-
ing object. This requires an easy modification to the APP rule to enforce the ⇓ effect
when the argument lives in Terminating, but nothing changes in the way that
the body of consumer type checks (as λ-bound variables enter the environment
with the assumption that they terminate anyway). This example also indicates that
a precise annotation of types with effects may be desirable, an issue that we return
to in Section 3.1.

Termination checking alone is not enough to ensure soundness, since in general
soundness must also involve coverage checking when constructing proof terms:
We must ensure that functions that return proof objects cover all possible inputs
and are terminating—only then can such proofs be considered constructively valid.
The following variation of the previous example demonstrates a (slightly contrived)
situation where coverage checking must be applied to ensure soundness:

bogus :: (n,m::#Nat) -> Eq (leq n m) True
bogus = case n of { }

foo = lkup (S Z) Z (bogus (S Z) Z) Nil

Notice that bogus does not cover all its inputs, and a coverage check could have
detected the problem.

3.1 Precise effect analysis

Types such as the improved type of the lkup function above provide a precise
view of the effects of computations. Our current implementation only can assign
types such as

Γ ` e :φ Nat→ Nat

However, a general effect system may have judgements of the form:

Γ ` e :φ (Natφ1 → Natφ2)

with the semantics that, upon evaluation, e produces the effect φ and reduces poten-
tially to a value, which, when it will accept an argument with effect φ1 that reduces
potentially to a Nat value, it will return an expression that upon evaluation will
produce an effect φ2 and yield a Nat value. Contrast this to the first type which
indicates the possibility of generating an effect φ either during evaluation of e or
potential application of e to some argument. Notice that such an elaborate effect

XVII–9



system has to be tied to the operational semantics of choice (and here we assume
call-by-name).

Generalizing this idea, we are considering the trade-offs of introducing a particular
monad Tφ::? → ?, indexed by effects. In the case where the effect of interest is
non-termination, we let the type T⇑ σ be isomorphic to σ, since we wish to write
most of our code without contaminating types with the indexed monad constructor
T. This elaborate analysis would allow programmers to write functions with types
such as:

∀f .Tf Nat→ Tf Nat or T⇑(Nat→ T⇓ Nat)

The first type would be the type of a potentially diverging computation, that, once
evaluated, could accept a Nat with any effect, and return an expression that pro-
duced the same effect. The second type would be the type of a potentially diverging
computation, that, once evaluated, could accept a (potentially diverging) Nat and
return an always terminating Nat (i.e. it could not evaluate its argument).

Our non-standard choice of letting T⇑ σ be isomorphic to σ is driven by practical
considerations. If we were designing a language intended for theorem proving,
we’d prefer to be total and pollute only a few non-pure terms with a partiality
monad. However, in the context of a practical programming language we might
wish to be unrestricted and non-pure, with only the types of total proof terms or
dependent type indices living inside our indexed monad.

3.2 Type equivalence and pattern matching

Type equivalence lies in the core of the type checking engine of every dependently
typed system. In our system it is intimately connected with pattern matching, since
it must take into account the knowledge gained via pattern matching, as the exam-
ples from Section 2 suggest.

Program equivalence, and provable equivalence The notion of type and term
equivalence that we use in PIE is full β-convertibility (also referred to as intensional
equality) taking into account the definitions in the environment. It is an invariant,
due to our effect analysis system (which includes termination checking), that β-
reductions performed at compile time terminate.

However, β-convertibility is often not enough. For example, the type checker can-
not establish the equivalence:

Eq (leq n n) True≡ Eq True True

because leq n n is not convertible to True, although it is provably equal to
True. For such examples we plan to experiment with using proof terms of equiv-
alence as coercions, whenever automatic convertibility fails. Special care has to be
taken to prevent such coercions from having runtime overhead.

XVII–10



Dependent pattern matching The information that we gain from pattern match-
ing should be automatically used when checking the right hand side of pattern
match clauses. This automation is provided in a restricted form in some systems.
For example, Coq does not allow this knowledge gain to be used to refine the
types of pre-existing variables in the environment. For example, the straightfor-
ward translation of the lkup function in the system Coq:

Fixpoint lkup (A:Set) (n:nat) (m:nat) (r:leq (S n) m = true)
(l: List A m) {struct n} :A :=
match (n, l) with
| (O, Cons A x l0) => x
| (S n0, Cons m0 x l0) => lkup n0 r l0
| (n0, Nil) => ...

end.

fails to type check! The error message that Coq provides refers to the second
branch of the pattern match.

The term "r" has type "le (S n) m = true" while it
is expected to have type "le (S n1) ?92 = true"

The reason is that the type of the proof object r has not been appropriately “re-
fined”, as happens in PIE. In Coq, the tactic language makes up for the weak typing
rule for pattern matching. The most efficient way to write lkup is interactively—
but the proof script bears little resemblance to a functional program.

PIE uses ideas originating in Coquand’s pattern matching with dependent types [8],
also found in recent implementations of GADTs in Haskell [17]. In particular, pat-
tern matching a scrutinee against a pattern introduces equalities, which we can
simplify using unification. In the case of higher-order dependently-typed con-
straints [9, 10] we cannot compute most general unifiers. However, it is possi-
ble to get a set of equations in solved form, in the form of a pre-unifier that will
capture all the “easy” constraints. Such easy equations can then be automatically
used during equivalence checking. If no such pre-unifier exists we have detected
an inaccessible branch. A subtle point is that we have to make sure that the sub-
stitutions we create are well-typed in the sense that every variable in the domain
has the same type as its image. In the general case of unification with dependent
types (and especially in our case, where we “skip” hard unification problems) the
process of splitting an equation may create ill-typed terms, as Elliot shows [9].

In the case where a pre-unifier is computed, but a residual set of equalities remains,
the branch may or may not be dead code, but we cannot determine this. In such
a case one can decide to simply reject the program. However, for such cases, PIE
permits the binding of extra pattern variables, representing introduced equalities.
In particular we may have pattern matches of the form:

... case x of
C y1 ... ym crs -> ...

Assuming that x is of type T e1 · · ·en and the constructor C applied to patterns
y1...ym yields T u1 . . .un , the variable crs binds to a term that represents the

XVII–11



equivalence1 xT e1...en ≡ (C y1 . . .ym)T u1...un , and can hence be used in the right-
hand side of the pattern.

A significant difference between pattern matching with GADTs and pattern match-
ing with dependent types is that the equalities introduced by the type of the scruti-
nee compared to the type of the pattern are not enough. For example, typechecking
the lkup function from the introduction crucially relies on refining the argument
n to Z or S n0, and not on refining its type. This is not hard to support, as the ef-
fect analysis comes to the rescue: Any term-level equality can still be used, as long
as the effects of the participating terms are ε. We have noted earlier that λ-bound
variables enter the environment with the assumption that they represent effect-free
computations, and hence in the lkup example n can indeed be refined in the two
cases to either Z or S n0.

4 FUTURE WORK

The PIE language is still in its early stages. We summarize here the areas that we
plan to further investigatge.

Improving termination checking and general effect analysis Although our basic
approach to termination setting is settled, there are many issues to be resolved: For
example, there is no satisfactory treatment in the related work for mutually recur-
sive datatypes or function definitions. Additionally combining stage variables with
polymorphic types and user type annotations is something that needs to be investi-
gated more. Finally we plan to include more general effects, such as references or
I/O, to make PIE more appealing.

Incorporation of provable equality To gain the full power of dependent types,
since type checking automations are resticted by nature, we plan to give the pro-
grammer the ability to construct and decompose (heterogeneous) equality proof
terms. Our intention is to integrate this in a “functional” way to the language,
avoiding the introduction of proof scripts as parts of programs. However we wish
to keep the operational overhead of such functions on proof terms as low as possi-
ble, as the next item indicates.

Erasure of proof terms and indices Proof objects and functions on them (i.e.
proofs) should impose no operational overhead. However, in a language where
ordinary term expressions may index types, the distinction between terms that can
be erased at runtime (static), and terms that should be evaluated (dynamic) may

1This is an example of heterogeneous equality, or McBride’s “John Major” equivalence [14],
where the terms are annotated with their types, which in turn may be different.

XVII–12



be harder to enforce. To circumvent these difficulties, PIE will provide syntax that
allows programmers to specify this distinction. An alternative approach that we
consider is to separate proof terms using a special kind Prop, similarly to the
system Coq, so that all expressions that have types that live in Prop may be erased
at runtime, without affecting the operational behavior of the program. However,
notice that the (static) indices of length-indexed environments, are ordinary Nats
that live in ?, and hence a sub-kinding relation ?v Prop will be required in order
to achieve erasure of such arguments. Term/type inference should be able to infer
some of these static terms, but notice that we should not exclude term inference of
dynamic terms2. We are currently evaluating these possibilities for PIE.

Term and type inference The current implementation of PIE offers only a limited
form of local type inference [18], which relies on user annotations. However, from
the examples of Section 2 we observe that in many cases the indices of datatypes
could be inferred and need not be passed explicitly to constructors such as Cons or
functions. An argument of type Env n is enough to let the type checker reconstruct
the actual index n . However, it may not always be clear which arguments should
be implicit. Therefore, we propose the following distinction, similar to one found
in the Twelf system [?]. In a typing annotation, all variables that are not explicitly
bound are implicit and need not be supplied when the function is called.

Additionally, when we add parametric polymorphism to PIE, we will need to pass
dependent sums and products as first-class values and instantiate polymorphic vari-
ables with such types. Type inference for these features is undecidable, so we en-
vision a mixture of type checking and type inference. Moreover, the type checker
may support some automatic coercions: For example a value of type: List n
could be viewed as a value of the dependent product {n::Nat, List n}.

5 CONCLUSIONS

We have presented the initial considerations for the design and implementation of
a new dependently-typed programming language, PIE. The design space is very
broad, especially with respect to pattern matching and equivalence checking, so
we believe that the experience from our implementation will be essential, both in
identifying new paths to explore, and in evaluating our approach.

2In support for this opinion, observe that, for example, type classes in Haskell are dynamic terms
(dictionaries) but still inferred by the type checker.

XVII–13



REFERENCES

[1] Lars Birkedal Aleksandar Nanevski, Greg Morrisett. Polymorphism and separation
in hoare type theory. In Proceedings of International Conference on Functional Pro-
gramming (ICFP ’06), Portland, Oregon, September 2006.

[2] Lennart Augustsson. Cayenne–a language with dependent types. In Third ACM
SIGPLAN International Conference on Functional Programming (ICFP), pages 239–
250, September 1998.

[3] Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-Christophe
Filliâtre, Eduardo Giménez, Hugo Herbelin, Gérard Huet, César Muñoz, Chetan
Murthy, Catherine Parent, Christine Paulin-Mohring, Amokrane Saı̈bi, and Benjamin
Werner. The Coq proof assistant reference manual: Version 6.1. Technical Report
RT-0203, INRIA-Rocquencourt, CNRS and ENS Lyon, 1997.

[4] G. Barthe, B. Grégoire, and F. Pastawski. Type-based termination of recursive def-
initions in the calculus of inductive constructions. In Proceedings of the 13th Inter-
national Conference on Logic for Programming Artificial Intelligence and Reason-
ing (LPAR’06), Lecture Notes in Artificial Intelligence. Springer-Verlag, November
2006. To appear.

[5] Richard S. Bird and Ross Paterson. De Bruijn notation as a nested datatype. Journal
of Functional Programming, 9(1):77–91, 1999.

[6] Chiyan Chen and Hongwei Xi. Combining programming with theorem proving.
In ACM SIGPLAN International Conference on Functional Programming (ICFP),
Tallinn, Estonia, September 2005. To appear.

[7] James Cheney and Ralf Hinze. First-class phantom types. CUCIS TR2003-1901,
Cornell University, 2003.

[8] Thierry Coquand. Pattern matching with dependent types. In B. Nordstrm, K. Pet-
tersson, and G. Plotkin, editors, Informal Proceedings Workshop on Types for Proofs
and Programs, Bstad, Sweden, 8–12 June 1992, pages 71–84. Dept. of Computing
Science, Chalmers Univ. of Technology and Gteborg Univ., 1992.

[9] C. M. Elliott. Higher-order unification with dependent function types. In RTA-89:
Proceedings of the 3rd international conference on Rewriting Techniques and Ap-
plications, pages 121–136, New York, NY, USA, 1989. Springer-Verlag New York,
Inc.

[10] Gérard P. Huet. Unification in typed lambda calculus. In Proceedings of the Sympo-
sium on Lambda-Calculus and Computer Science Theory, pages 192–212, London,
UK, 1975. Springer-Verlag.

[11] Daniel R. Licata and Robert Harper. A formulation of Dependent ML with explicit
equality proofs. Technical Report CMU-CS-05-178, Carnegie Mellon University
Department of Computer Science, 2005.

[12] Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.
[13] C McBride and J McKinna. The view from the left. Journal of Functional Program-

ming, 14(1):69–111, 2004.
[14] Conor McBride. Elimination with a motive. In TYPES ’00: Selected papers from the

International Workshop on Types for Proofs and Programs, pages 197–216, London,
UK, 2002. Springer-Verlag.

XVII–14



[15] James Mckinna. Why dependent types matter. In POPL ’06: Conference record of the
33rd ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 1–1, New York, NY, USA, 2006. ACM Press.

[16] Emir Pašalić, Jeremy Siek, and Walid Taha. Concoqtion: Mixing de-
pedendent types and Hindley-Milner type inference. Draft available at
http://www.metaocaml.org/concoqtion/, 2006.

[17] Simon L. Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey Wash-
burn. Simple unification-based type inference for GADTs. In International Confer-
ence on Functional Programming (ICFP), Portland, OR, USA, September 2006.

[18] Benjamin C. Pierce and David N. Turner. Local type inference. In Conference Record
of POPL 98: The 25TH ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 252–265, San Diego, CA, 1998.

[19] Carsten Schürmann, Richard Fontana, and Yu Liao. Delphin: Func-
tional programming with deductive systems. Available from http://cs-
www.cs.yale.edu/homes/carsten/papers/delphin.pdf, 2002.

[20] Tim Sheard. Languages of the future. In ACM Conference on Object Orientated
Programming Systems, Languages and Applicatioons (OOPSLA’04), 2004.

[21] Tim Sheard and Emir Pasalic. Meta-programming with built-in type equality. In Proc
4th International Workshop on Logical Frameworks and Meta-languages (LFM’04),
Cork, July 2004.

[22] Martin Sulzmann, Jeremy Wazny, and Peter Stuckey. A framework for extended
algebraic data types. In FLOPS 2006, 2006.

[23] J.-P. Talpin and P. Jouvelot. The type and effect discipline. Information and Compu-
tation, 111(2):245–296, 1994.

[24] Dimitrios Vytiniotis, Stephanie Weirich, and Simon L. Peyton Jones. Boxy type
inference for higher-rank types and impredicativity. In International Conference on
Functional Programming (ICFP), Portland, OR, USA, September 2006.

[25] Edwin Westbrook, Aaron Stump, and Ian Wehrman. A language-based approach
to functionally correct imperative programming. In ICFP ’05: Proceedings of the
tenth ACM SIGPLAN international conference on Functional programming, pages
268–279, New York, NY, USA, 2005. ACM Press.

[26] Hongwei Xi. Dependent types for practical programming via applied type system.
Available from http://www.cs.bu.edu/ hwxi/ATS/ATS.html, September 2004.

[27] Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recursive datatype construc-
tors. In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 224–235. ACM Press, 2003.

[28] Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In
Twenty-Sixth ACMSIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), pages 214–227, San Antonio, Texas, January 1999.

XVII–15


