
PROGRAMMING WITH TYPES

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Stephanie Claudene Weirich

August 2002

c© Stephanie Claudene Weirich 2002
ALL RIGHTS RESERVED

PROGRAMMING WITH TYPES

Stephanie Claudene Weirich, Ph.D.
Cornell University 2002

Run-time type analysis is an increasingly important linguistic mechanism in
modern programming languages. Language runtime systems use it to implement
services such as accurate garbage collection, serialization, cloning and structural
equality. Component frameworks rely on it to provide reflection mechanisms so
they may discover and interact with program interfaces dynamically. Run-time
type analysis is also crucial for large, distributed systems that must be dynami-
cally extended, because it allows those systems to check program invariants when
new code and new forms of data are added. Finally, many generic user-level al-
gorithms for iteration, pattern matching, and unification can be defined through
type analysis mechanisms.

However, existing frameworks for run-time type analysis were designed for sim-
ple type systems. They do not scale well to the sophisticated type systems of mod-
ern and next-generation programming languages that include complex constructs
such as first-class abstract types, recursive types, objects, and type parameteri-
zation. In addition, facilities to support type analysis often require complicated
language semantics that allow little freedom in their implementation. This dis-
sertation investigates the foundations of run-time type analysis in the context of
statically-typed, polymorphic programming languages. Its goal is to show how
such a language may support type-analyzing operations in a way that balances
expressiveness, safety and simplicity.

BIOGRAPHICAL SKETCH

Stephanie Weirich is from Farmers Branch, Texas. She received a B.A. from Rice
University in 1996 and an M.S. from Cornell University in 2000. Portions of
her graduate studies at Cornell were supported by a National Science Foundation
Fellowship and an Intel Fellowship. She participated in the Distributed Mentorship
Program, sponsored by the Computing Research Association, during Summer 1996
and in the internship program at Bell Labs, Lucent Technologies during Summer
1999.

Stephanie is married to Steve Zdancewic and in Fall 2002 they both will join the
Computer and Information Science Department at the University of Pennsylvania,
in Philadelphia, Pennsylvania.

iii

ACKNOWLEDGEMENTS

This dissertation would not have been written without the support from many
people. First of all my family. My parents Wayne and Charlotte Weirich are my
inspiration. My husband Steve Zdancewic deserves much credit, for reasons too
numerous to list. Steve’s parents Arthur and Deborah Zdancewic have encouraged
me as long as I have known them.

I have received much guidance from my advisors, official and otherwise. Greg
Morrisett and Karl Crary were extremely influential to this dissertation and to my
own professional development. However, I have been getting advice for a long time,
and I am also thankful for the wisdom of Matthias Felleisen, Devika Subramanian,
Keith Cooper, Bob Constable, Dexter Kozen, and John Reppy.

Life in Ithaca would not be fun without a number of people. My officemates
Dave Walker and Nick Howe somehow put up with me for four years. Dan Gross-
man provided me with coffee filters. Mike Hicks taught me everything I know
about dynamic linking. James Cheney, Jim Ezick, Neal Glew, Jason Hickey, Ric-
cardo Pucella, Fred Smith, Yan-ling Wang, and Vicky Weissman made Cornell a
great place to study and discuss programming languages. Jennifer Bishop, Lyn
Millet, Susannah Howe and Amanda Holland-Minkley made Ithaca a great place
to discuss books. I have also been fortunate to share Ithaca with Bert Adams,
Gary Adams, Tuģkan Batu, Adam Florence, Annette Florence, Takako Hickey,
Kim Hicks, Timmy Hicks, Jon Kleinberg, Lillian Lee, Tobias Mayr, Tanya Mor-
risett, Patrick White and Alyson White.

Stephanie Weirich
July, 2002

iv

TABLE OF CONTENTS

1 Introduction 1
1.1 Language support for run-time type analysis 3

1.1.1 Previous approach: Dynamically typed languages 5
1.1.2 Previous approach: Reflecting types as data 6
1.1.3 Previous approach: Dynamic types and typecase 9
1.1.4 Previous approach: Intensional polymorphism 10
1.1.5 Previous approach: Polytypic programming 12

1.2 An ideal language . 13
1.3 Dissertation outline and contributions 16
1.4 Reflection . 18

2 Background: A calculus for dynamic type dispatch 20
2.1 Examples of type analysis . 20

2.1.1 Data representation . 21
2.1.2 Polymorphic equality . 22
2.1.3 Run-time type checking and dynamic types 23
2.1.4 Reflecting functions . 26

2.2 The LI language . 27
2.2.1 LI Syntax . 27
2.2.2 Core language . 28
2.2.3 Operational semantics . 36

2.3 Type analysis operators . 38
2.4 Formalizing the examples . 43
2.5 Typing properties of LI . 46

2.5.1 Decidable type checking . 46
2.5.2 Type soundness . 47

2.6 Discussion and chapter summary 49

v

3 Type analysis without analyzing types 51
3.1 Type-passing vs. type-erasure semantics 51
3.2 Term representations of types . 53

3.2.1 A quick example . 57
3.3 Typing properties of LIR . 57
3.4 Embedding of LI . 61

3.4.1 Properties of the embedding 63
3.5 Discussion and chapter summary 82

4 Type analysis without hard-wired types (I) 84
4.1 Introduction . 84

4.1.1 Type analysis in typed compilation 84
4.1.2 Type analysis as a programming idiom 86
4.1.3 Informal presentation . 86

4.2 A Language for flexible type analysis 88
4.2.1 Kinds and Constructors . 89
4.2.2 Terms . 91
4.2.3 Static semantics . 95
4.2.4 Properties of LX . 101

4.3 Programming type analysis . 103
4.3.1 Types with binding structure 105

4.4 Type erasure . 106
4.4.1 Type soundness of constructor representation 113
4.4.2 Encoding of LIR . 118

4.5 Discussion and chapter summary 122

5 Type analysis without hard-wired types (II) 123
5.1 Eliminating type analysis . 123

5.1.1 Encoding datatypes with polymorphism 123
5.2 Source and target language details 125
5.3 Defining iteration . 131

5.3.1 Properties of the embedding 133
5.4 Discussion . 138

5.4.1 Extension to an R-constructor 138
5.4.2 Extension to primitive recursion 139
5.4.3 Impredicativity and non-termination 140
5.4.4 Related work . 141

vi

6 Higher-order type analysis 142
6.1 Polytypic programming . 142

6.1.1 Higher-order polytypism . 144
6.2 The semantics of higher-order typerec: The LH language 148

6.2.1 Recursive types . 152
6.2.2 F2 polymorphism . 156
6.2.3 Typing properties of LH . 156
6.2.4 Model theoretic properties 160

6.3 Multiplace logical relations . 163
6.3.1 Example: map . 164
6.3.2 Example: typetostring . 165

6.4 Kind polymorphism . 165
6.4.1 Analysis of polymorphic types 168
6.4.2 Example: typetostring . 169

6.5 Related work . 170
6.6 Chapter summary . 171

7 Representing higher-order type analysis 172
7.1 Kind-directed execution: The LK language 172

7.1.1 Typing properties of LK . 174
7.1.2 Correspondence with LH . 175

7.2 Phase-splitting LK . 179
7.2.1 A parameterized representation type 181
7.2.2 Defining term representations of type constructors 182

7.3 The LKR language . 183
7.3.1 Static semantics . 183
7.3.2 Dynamic semantics . 185

7.4 An example . 186
7.5 Typing properties of LKR . 188
7.6 Correctness of the embedding of LK 192

7.6.1 Static correctness . 192
7.6.2 Dynamic correctness . 196

7.7 An alternative version . 203
7.8 Chapter summary . 205

8 Summary and Directions for Future Research 206
8.1 Future directions in type analysis 207

8.1.1 Type-level type analysis . 207
8.1.2 Structural type analysis in practice 208

8.2 Future application areas . 208

vii

8.2.1 Type-based program verification 208
8.2.2 Extension frameworks for statically-typed languages 208

BIBLIOGRAPHY 210

viii

LIST OF TABLES

1.1 Languages described in this dissertation 16

2.1 LI: Syntax . 28
2.2 LI: Judgment forms . 30
2.3 Core language: Static semantics . 31
2.4 Core language: Operational semantics 36
2.5 LI: Operational semantics of typerec 38
2.6 LI: Schema for typerec branches . 39
2.7 LI: Static semantics of typerec . 40
2.8 LI: Static semantics of Typerec . 40
2.9 LI: Constructor reduction . 42

3.1 LIR: Syntax . 54
3.2 LIR: Representation types . 54
3.3 LIR: Operational semantics of typerec 55
3.4 LIR: Static semantics . 56
3.5 Translation of LI types and terms 61
3.6 Translation of LI constructors . 62
3.7 Translation of LI contexts . 63
3.8 Extended representations . 67
3.9 Extended translation . 68

4.1 LX: Syntax for kinds and constructors 89
4.2 LX: Syntax for terms and values 92
4.3 LX: Operational semantics of refinement terms 93
4.4 LX: Static semantics for kinds . 95
4.5 LX: Static semantics for constructor formation 96
4.6 LX: Static semantics for constructor equivalence 98
4.7 LX: Static semantics for expressions 100
4.8 LX: Judgment forms . 102
4.9 LX: Representation types . 106

ix

4.10 LX: Representation terms . 107
4.11 LXR: Static semantics for vcase . 110
4.12 LXR: Operational semantics for vcase 111
4.13 Translation of LX contexts . 114

5.1 Typerecit and typerecit . 126
5.2 LU: Syntax . 127
5.3 LU: Operational semantics . 127
5.4 LU: Static semantics . 127
5.5 Translation of LIR into LU, kinds and constructors 133
5.6 Translation of LIR into LU, types and terms 134

6.1 LH: Syntax . 149
6.2 LH: semantics for higher-order typerec 150
6.3 LH: Semantics for multiplace typerec 163
6.4 LH: Additions for kind polymorphism 166

7.1 Weak-head reduction . 174
7.2 LK: Path evaluation . 175
7.3 LK: Operational semantics . 176
7.4 LKR: Syntax . 179
7.5 Translation of LK to LKR . 179
7.6 Representation of constructor language 182
7.7 LKR: Static semantics . 184
7.8 LKR: Operational semantics for typerec 185
7.9 Type β-equivalence . 196

x

LIST OF FIGURES

2.1 Example: Polymorphic equality . 22
2.2 Example: cast (Version 1) . 24
2.3 Example: cast (Version 2) . 25
2.4 Example: Normalization by evaluation 26

3.1 Example: tostring in LIR . 57

6.1 Example: size in Hinze’s system . 146
6.2 Example: copy . 157

7.1 Example: Erasure version of copy 187
7.2 Example: Alternate erasure version of copy 203

xi

Chapter 1

Introduction

This dissertation is about defining operations with types. More specifically, it
explores how mechanisms to support run-time type analysis may be added to
statically-typed programming languages. In these languages, types describe the
structure of each data value. Types also characterize operations by describing the
types of data on which they may act. Polymorphic operations apply to many types
of data. Some of these operations use type information about their arguments to
guide their execution. Because these operations are defined over metainformation,
they are also called reflective operations. Another term for them is polytypic be-
cause they apply to many types of data. In this work, I use the terms type-indexed
and type-analyzing to describe these operations. Many modern applications and
systems critically rely on these type-indexed operations. For example:

Generic algorithms A number of generic algorithms are defined by type infor-
mation and apply to arbitrary data structures.

• To store a value persistently or to transfer it to another machine, an
application must convert it to some serial form. Serialization converts
any data value into a sequence of bytes suitable for persistent storage
or transmission. The structure of the data value guides this conversion.

• Structural equality determines whether two complex data structures are
equivalent by comparing each component.

• Generalizing structural equality to an ordering relation provides the
ability to store values into a balanced binary tree. This relation is
defined by extending the natural ordering on numbers and characters
lexicographically through aggregate data structures.

• Cloning produces a “deep” or structurally equivalent copy of its argu-
ment, providing a way to duplicate data structures.

1

2

• Generic iterators and maps over data structures are also type-indexed
operations. These iterators provide a common interface for accessing
the elements of the data structure.

• Reductions (also called folds) traverse data structures and aggregate
values from their components. For example, they may return whether
a predicate is true for every value stored in the structure, or may add
together all integers stored in a data structure.

• Zipping combines two data structures into one. For example, two lists
of the same length may be combined into a single list containing pairs
of elements.

• Type-indexed operations may be application specific. For example,
polytypic programming has been used to implement generic pattern
matching [Jeu95], term rewriting [JJ00], unification [JJ98], data com-
pression [JJ99] and genetic algorithms [Ves97].

Extensible Systems If type information is propagated at runtime, running sys-
tems may use it for dynamic update. These systems use metainformation
for two reasons.

• Extensible systems use type information to ensure the stability of the
running system. Newly loaded code must be checked to guarantee that
it satisfies the requirements of the running system and provides the
necessary interfaces. For example, the Common Object Model [COM02]
used pervasively in modern applications, treats objects abstractly and
provides access to clients through one or more interfaces. All objects
must implement the interface IUnknown, which provides the function
QueryInterface, for clients to call at runtime to determine whether
the object implements a particular interface.

• Extensible systems use type information to adapt to new functionality.
The updated service may make new functionality directly available to
principals that must communicate it. The most striking example of
this process is to expose new functionality by automatically updating
the user interface. For example, with JavaBeans [Jav02], a system may
examine the interface of a new component to directly provide user-
interface control of the component in the form of check boxes, selection
lists and buttons.

Garbage collection To implement accurate garbage collection, the run-time sys-
tem for a programming language must determine what parts of memory rep-
resent live data and what parts the collector may reclaim. To accurately

3

trace program data, the collector must know about the types of every data
object in memory–it must know which parts of the data represent point-
ers that refer to other portions of live data. This type information may be
tagged on every data object, or it may be passed to the garbage collector as
additional arguments [Tol94, AFH94, WA99, WA01, MSS01].

Compiling parametric polymorphism For programming languages that sup-
port parametric polymorphism, run-time type analysis is a useful tool for
optimization. It is difficult to compile a polymorphic function, because the
types of some of its arguments are not known at compile time, so the compiler
does not know how much space to allocate. One solution that compilers for
polymorphic languages employ is to specialize polymorphic functions at each
type at which they are used. For example, the MLton compiler [CFJW00]
and templates in C++ [ISO98] implement a version of parametric polymor-
phism in this manner. However, such type specialization is not always de-
sirable and in many cases, such as in the presence of separate compilation,
dynamic loading, or polymorphic recursion, may not be possible.

It is also possible to compile polymorphic code without specializing it. The
standard method is to force all values to be the same size, regardless of their
type. This approach requires that values be fully boxed—if the representation
of a value does not fit into one machine word, a pointer to the value is used.
There are two drawbacks to this strategy. First, because all values must be
boxed, even code that is not polymorphic will run more slowly. Second, it is
not easy for such code to interoperate with other languages. Representation
analysis or compile-time analysis to determine when certain values may be
unboxed eliminates some of this overhead [PL91, Ler92, Pou93]. Extending
this operation to run time, where the compiled program determines the actual
type of polymorphic arguments, allows all boxing to be eliminated [TMC+96,
Tar96, Sha97a, CK02].

1.1 Language support for run-time type analysis

Because type-indexed operations are crucial to modern applications and systems,
language support for these operations has been an active area of research. Any
linguistic mechanism intended to support the definition of these operations must
balance expressiveness, safety and simplicity.

• By expressiveness, I mean that the user should be able to write type-indexed
algorithms in a natural manner. The code should describe concisely (and in
a maintainable manner) how the operation depends on type information.

4

• By safety, I mean that the programming language should help the user write
correct code. As an approximation to correctness, the language should stat-
ically check that programs maintain type invariants—that values are only
used with operations appropriate for their type. It should ensure that struc-
tural information that guides type-directed operations is accurate.

• By simplicity, I mean that the facilities to support type-indexed operations
should not be complicated to use, and should not complicate the implemen-
tation or the semantics of the programming language.

Why should we add new linguistic mechanisms to define these operations in
the first place? The argument for simple programming languages and the fact that
systems have been able to implement many of them in traditional programming
languages seems to imply that no specialized functionality is necessary. However,
traditional languages typically sacrifice either expressiveness or safety in the im-
plementations of these operations.

For example, one implementation of serialization is to create a data structure
to represent type information. The arguments to the serialization function are
both a value to serialize and an element of this type to describe the type of that
value. However, without specialized language support, what ensures that the cor-
rect metainformation has been provided to the serializer? For example, if the type
information claims that the value to serialize is an integer when it really is a string
a run-time error will occur.

Another implementation of serialization may be safe but difficult to use or
maintain. It is possible for the user to write separate serialization routines for
every type of data. Static type checking can ensure that the correct routine is
called. In object-oriented languages, dynamic dispatch even automates the process
of providing the correct serialization routine. However, writing all of these routines
and maintaining them as the types of data evolve places significant burden on the
programmer. Every class must define a serialization method. There is no way to
define serialization once, for all types. Basing the serialization operation on the
structure of its argument simplifies its maintenance by allowing it to automatically
adapt to changes in data representation.

Finally, a third option that is both safe and simple to maintain is for the pro-
gramming language to implement serialization as a primitive operation. For exam-
ple, the Java programming language [GJS96] does so with the method toString

in the Object class. However, in that case, the user lacks control over how serial-
ization operates1 and the ability to define other type-indexed operations.

1Overriding toString gives the user some flexibility, but there is no uniform way to change
how serialization operates.

5

In many cases, an application may need to modify type-indexed operations.
For example, it may wish to employ a method of serialization that better supports
compression, specialized file formatting or encryption. Numerical applications may
wish to treat equality for floating-point numbers differently. Applications also may
need to modify the order that iterators traverse subcomponents in order to more
efficiently use memory caches.

Because there is no expressive, flexible and safe way to implement these oper-
ations using traditional language features, there have been a number of proposals
for language extensions to support the definition of type-indexed operations. In
the following, I discuss a number of these approaches and compare the trade-offs
they have made with respect to expressiveness, safety and simplicity. By analyz-
ing these systems we may determine the characteristics of an ideal language that
supports type-indexed operations. The goal of this dissertation is to determine
how we may combine the advantageous features of these systems and avoid their
deficiencies.

1.1.1 Previous approach: Dynamically typed languages

Dynamically typed languages seem well suited for naturally expressing many re-
flective programs. Languages such as LISP [Ste90], Scheme [KCJR98], and Er-
lang [Arm97] store type information with every data object, permitting easy access
to run-time type information.

For example, writing a serialization function in Scheme is straightforward.
Scheme includes primitive predicates such as boolean?, number?, and char? for
determining the type of each object. The following code fragment implements
the serialization function valtostring that converts any Scheme value to a string
representation.

(define (valtostring obj)

(cond ((null? obj) "()")

((pair? obj) (tostring-list obj))

((boolean? obj) (if obj "#t" "#f"))

((symbol? obj) (symbol->string obj))

((number? obj) (number->string obj))

((string? obj) (string-append "\"" obj "\""))

((vector? obj) (tostring-vector obj))

((procedure? obj) "#<function>")

;; branches for additional types elided
...))

6

The conversions symbol->string and number->string are also primitive to
Scheme, translating Scheme’s internal representation of symbols and numbers to
a readable form. The auxiliary functions tostring-vector and tostring-list

call valtostring for each of the components of the aggregate data structure.
As in most languages, in Scheme there is no way to serialize functions, so this
implementation of valtostring returns "#<function>" in that case.

Even though Scheme provides a natural way of expressing operations such as
valtostring, it does so in a language without the support of static type checking.
Languages such as Haskell [PH99] and Standard ML [MTHM97] use a type system
to describe a class of programs that are guaranteed not to incur certain errors at
run time. These guarantees about statically-typed languages are usually summed
up by Milner’s catch phrase [Mil78]:

“Well-typed programs don’t go wrong.”

This guarantee means that if a program is well typed, then executing the program
will not cause a run-time error. The set of proscribed errors depends on the
language definition. The type system of ML limits how data values may be used
based on their types: for example, programs may not access integers as if they
were aggregate structures, use floating-point numbers as if they were functions, or
call functions with the wrong number arguments. If the type system determines
that a program could do one of these operations, then the ML compiler rejects the
program.

Scheme, on the other hand, allows all programs that are syntactically well-
formed. In order to determine whether Scheme programs are free of these sorts
of errors, developers must exhaustively test them on all possible inputs. In prac-
tice, this exhaustive testing is not always feasible or even possible.2 Therefore, in
terms of software development, static typing is essential. It provides a method for
mechanical verification of basic correctness properties for a given program.

1.1.2 Previous approach: Reflecting types as data

The statically-typed programming language Java [GJS96] provides capabilities
both for determining the run-time class of an object (similar to its type) and

2It is important to note that Scheme is still considered a type-safe language. With dynamic
typing, the assurance the type system provides is fail-stop behavior. Whenever such a run-time
error does occur, the program will immediately halt. In languages that are not type safe (such as
C [KR88, ISO99] or C++ [Str97, ISO98]) the result of these erroneous operations is not defined
and so reasoning about execution is extremely difficult. For example, if a program writes to an
array outside of its bounds there is the possibility of changing the value of some other program
variable.

7

for reflecting the structure of that run-time class. The natural question is whether
these are sufficient for developing the applications discussed earlier.

Run-time type dispatch is a central feature of object-oriented programming.
When an object invokes a method, the identity of the class of the object determines
which version of the method to use. Because of subtyping in Java, the actual class
of an object may not be known at compile time. For example, even though some
variable x is an instance of LinkedList, it might be assigned the class Object.
The instanceOf operator may discover run-time type of x. The cast expression
(LinkedList)x will check the run-time class of x and either do nothing if the cast
succeeds, or raise an exception otherwise.

While these operations add an explicit form of dynamic typing to Java, they
do not provide the facility for implementing the reflective applications mentioned
above. Because this form of run-time type dispatch operates over the names of
the types, operations over type structure can only be implemented if the mapping
between the type name and the type structure is already known. Using Java’s
facilities to implement serialization is inconvenient at best. Each new class must
include a method to implement serialization for that object.

Instead, the approach taken by Java (and previously by other languages such as
Amber [Car86] and Cedar/Mesa [Lam83]) is to reflect type information into a data
structure. The Java Reflection API [Gre98] allows any object to call the method
getClass to retrieve metadata describing the structure of the run-time class. The
returned object supports operations for determining the fields and methods of the
run-time class. For example, a Java serializer implemented with these operations
is below.

String valtostring (Object o) {

String result = "\"";

// determine the fields of this class
Fields[] f = o.getClass().getFields();

for (int i=0; i<f.length; i++) {

Class fc = f[i].getType();

if (fc.isPrimitive()) {

if (fc == Integer.TYPE) {

// access the field of the object,
// make sure it is an integer,
// and then convert it to a string.

result += toStringInt((Integer) f[i].get(o));

} else if (fc == Boolean.TYPE) {

// access the field of the object,
// make sure it is an Boolean,

8

// and then convert it to a string.
result += toStringBoolean((Boolean) f[i].get(o));

} else if ...

// additional cases for other primitive types
} else {

// call function recursively for objects
result += valtostring (f[i].get(o));

}

}

return result + "\"" ;

}

This example relies heavily on Java’s treatment of the type Object as a dynamic
type. With subtype polymorphism, it may be called on any argument. After this
code determines the structure of the run-time class of the argument, it accesses
the fields of o as Objects and then checks them at run time to make sure that
they are of the correct class.

Reflective programming in Java is similar to reflective programming in Scheme.
Even though the user has the ability to determine the run-time class of an object,
that information is not reflected into the type system. Instead, a run-time cast
must be used to explicitly change the type of the object. This run-time cast is a
redundant check that the object is of the correct type.

Integer example (Object x) {

if (x.getClass() == Integer.TYPE) {

return ((Integer)x) + 3;

} else return new Integer(0);

}

However, because Java must rely on these run-time casts to ensure that type
information is used correctly, there is a possibility of a type error at run time.
The ClassCastException is raised if one of these casts should fail. While using
the reflective mechanisms of Java, we have lost the benefits of static type checking
that Java provides. For example, the following Java code is statically type correct,
although executing it will throw the exception ClassCastException.

Integer example (Object x) {

if (x.getClass() == Boolean.TYPE) {

return ((Integer) x) + 3;

} else return new Integer(0);

}

9

The problem with Java’s support with run-time type analysis is that while one
can reflect run-time class information into a data structure in Java, the use of that
data structure is not reflected back into the type system. The type system does not
maintain the connection between that data structure and type that it represents.

1.1.3 Previous approach: Dynamic types and typecase

An alternative to reflecting types as data and then analyzing that data is to
use a specialized expression form to analyze types. In the calculus of Abadi et
al. [ACPP91, ACPR95], a type called Dynamic hides the actual type of a value
in much the same way as the Object type of Java. (Similar functionality ex-
ists in Modula-3 [CDG+89] and in a proposed extension to ML by Leroy and
Mauny [LM91]). However, instead of producing a value to represent the hidden
type (with getClass) this language uses a term called typecase to directly analyze
hidden type information.

Just as any Java value may be coerced to the Object type, in this language
any value v of type t may be coerced to the Dynamic type with the expression
(dynamic v : t). The typecase operator pattern-matches against the type in-
formation stored in a dynamic type, behaving analogously to the pattern-matching
case expression of SML [MTHM97]. During execution, this type argument is com-
pared to various type patterns and the matching branch is selected, binding the
type variables appearing in that pattern within that branch.

For example, using typecase we may write valtostring as follows. This
example is written with a variant of SML syntax. The expression fun defines
the recursive function typetostring with argument dv of type Dynamic and re-
turn type string. Using typecase, the hidden type of this argument is matched
against the types int, string, function types (a->b), product types (a*b), and
type Dynamic. (In this example, the infix function ++ concatenates two strings.)

fun valtostring (dv:Dynamic) : string =

typecase dv of

(v: int) => int2String(v)

| (v: string) => "\"" ++ v ++ "\""

| (v: a -> b) => "#<function>"

| (v: a * b) => "(" ++ valtostring (dynamic fst(v):a) ++ ","

++ valtostring (dynamic snd(v):b) ++ ")"

| (v: Dynamic) => "dynamic " ++ valtostring (v)

In each branch, the dynamic value is rebound to a new variable v whose type
reflects the matching branch. As typecase matches the outermost structure of the

10

type argument, the branches for function types and product types bind the pattern
variables a and b to refer to subcomponents of these types. (In a slight departure
from SML syntax, I use a instead of ’a for type variables. All type variables will
come from the beginning of the alphabet.) For the recursive call to valtostring

in the product branch, these types are necessary to convert the components to the
type Dynamic.

Compared to the Java definition of valtostring, this version does not require
any run-time type casting. In each branch of valtostring, the dynamic value is
rebound with a new type, determined by the type matched by that branch. Each
branch produces a result of type string, so valtostring has type Dynamic ->

string.
In this system, as in Scheme, all type information must be attached to a value

of that type. Unlike the reflective getClass of Java, there is no way to access this
information separately. A direct consequence is that we cannot write a function
to display all types in this language. The best that we can do is below.

fun typetostring (dv:Dynamic) : string =

typecase dv of

(v: int) => "int"

| (v: string) => "string"

| (v: a -> b) => "#<function>"

| (v: a * b) => "(" ++ typetostring (dynamic fst(v):a) ++ "*"

++ typetostring (dynamic snd(v):b) ++ ")"

| (v: Dynamic) => "Dynamic"

The reason is that in order to print a function type a -> b, we must have a
value of type a and a value of type b in order to call typetostring recursively.
However, there is no good way to get a value of either type.

1.1.4 Previous approach: Intensional polymorphism

Intensional polymorphism separates run-time type information from values. In-
stead of analyzing an implicit type stored with a dynamic value, in Harper and
Morrisett’s language λML

i , typecase analyzes an explicit type [HM95].
Because types may be analyzed separately from terms, typetostring has a

very natural implementation. (This example is written in a variant of SML syntax,
where type abstraction and type application are explicitly notated with square
brackets.)

11

fun typetostring [a] : string =

typecase a of

int => "int"

| string => "string"

| (b -> c) => "(" ++ (typetostring [b]) ++ "->"

++ (typetostring [c]) ++ ")"

| (b * c) => "(" ++ (typetostring [b]) ++ "*"

++ (typetostring [c]) ++ ")"

This expression abstracts the type a and returns a string. For example, if the
argument is an integer type, typetostring returns the string "int". For types
composed of other types, such as function types and product types, typetostring
calls itself recursively to produce the strings of those subcomponents.

In λML
i , the implementation of valtostring analyzes the type argument a to

produce a serialization function of type a -> string.

fun valtostring [a] : a -> string =

typecase a of

int => int2string

| string => (fn x:string => "\"" ++ x ++ "\"")

| (b -> c) => (fn x:(b -> c) => "#<function>")

| (b * c) => (fn x:(b * c) =>

"(" ++ valtostring [b] (fst x) ++ ","

++ valtostring [c] (snd x) ++ ")")

The integer branch of valtostring returns the primitive operation for con-
verting integers to strings. If the argument to valtostring is already a string, the
string branch provides a function to wrap the string in quotation marks. When a is
a function type, the serializer produces the string "function". Finally, when the
argument to valtostring is a product type, valtostring calls itself recursively.
In this branch, the type variables b and c are bound to the types of the first and
second components of the product type, which are then used in the recursive call.

Even though this version of typecase does not rebind the type of a dynamic
variable, the implementation of valtostring does not require casting. The typing
rules for typecase allow the types of each of these functions to vary. In this
example, the integer branch is of type int -> string, the string branch is of type
string -> string, the function branch is of type (b->c) -> string and the
product branch is of type (b*c) -> string. Each of these types is an instance of
a -> string, so the type of valtostring is forall a. a -> string.

In this language, an existential type exists a. a is equivalent to type Dynamic.
Almost any example that may be written in the previous language may be written

12

in λML
i . The only limitation is that while it is legal to wrap a dynamic value

twice, i.e. (dynamic v : dynamic), λML
i is based on predicative polymorphism, so

it cannot hide an existential type.3

However, because of the separation between type information and values that
λML

i allows, this typecase is more expressive. This language is built on parametric
polymorphism [Gir72, Rey83], as in Haskell or ML, so it has the ability to express
that types are equal. For example, if x and y both have type a, then we know
that they have the same type even if we do not know what it is. If x and y have
type Dynamic, then their actual types may be unrelated to each other. Because
we can express such type equalities, when the identity of the abstract type a is
determined, the type system may connect that knowledge to all terms of type a.

Other similar frameworks to intensional polymorphism include extensional
polymorphism [DRW95], structural polymorphism [Rue92, Rue98], and type-
parametric programming [She93].

1.1.5 Previous approach: Polytypic programming

The approaches in the preceding sections share one deficiency. Type-indexed op-
erations may be defined only over closed types.

Many type-indexed operations must be defined over parameterized types. For
example, compare the function listlength, of type list a -> int, that counts
the number of a’s occurring in a given list, to the related function treelength, of
type tree a -> int, that counts the number of a’s occurring in a given tree.4 Both
of these functions are instances of a type-indexed function length. This function
length is defined over parameterized types, such as list and tree instead of
closed types, such as list int or tree bool.

Various systems of polytypic or generic programming provide functionality
to define such operations as length. For example, the programming language
Charity [CF92] automatically defines maps and catamorphisms for each user-
defined datatype through a systematic encoding in the polymorphic lambda cal-
culus [BB85]. Jansson and Jeuring’s PolyP extension of Haskell [JJ97, Jan00]
supports a wide variety of operations such as catamorphisms, maps and zip-
ping functions. Bellé, Jay and Moggi’s FML supports functorial polymor-
phism [Jay95, JBM98]. Every parameterized type is one component of a functor.
The other component of this functor is a mapping operation for that parame-
terized type, which may be used to define other polytypic operations. Hinze’s
system defines polytypic functions by interpreting language of types in the term

3An extension of λML
i with a impredicative polymorphism [TSS00] removes this restriction.

4In another departure from SML syntax, I write parameterized types with prefix application.
For example a list of integers has type list int instead of int list.

13

language [Hin00]. Hinze and Peyton Jones use this framework to extend the auto-
matic derivation of Haskell type classes [HJ00]. This framework is also the basis
of the Generic Haskell compiler [CHJ+01].

The chief concern of polytypic programming has been with how to define various
type-indexed operations. Therefore, the implementations of these systems rely on
the compiler to generate specialized code for each type of data, based on these
definitions. None of these systems support run-time type information or analysis.

For a number of reasons, run-time type analysis is an important part of a sys-
tem supporting type-indexed operations. Specializing polytypic functions requires
making a copy of the function for each instantiation, leading to an increase in the
size of the resulting program. Furthermore, in many languages it is not possible
to specialize polytypic functions. Languages that support separate compilation or
dynamic loading cannot specialize polytypic functions, as not all applications of a
function may be known at compile time. Languages that support polymorphic re-
cursion (such as Haskell [PH99]) also cannot specialize polytypic functions because
each recursive call of the function may be instantiated at a new type.

1.2 An ideal language

None of these approaches provides a completely satisfactory system for implement-
ing type-directed operations. However, by examining these previous approaches,
we may identify the important features of a language that supports such opera-
tions.

1. Programs using type information should be statically type checkable. Static
type checking is an essential part of program development. The mechanisms
for defining type-indexed operations should have the same static guarantees
as the rest of the language.

2. The language should be based on the polymorphic lambda calculus. Except
for Scheme, which has no static type system, and Java, all of the previous
approaches in the last section were based around languages with paramet-
ric polymorphism. (Furthermore, there are many proposals to add such
polymorphism to Java [MBL97, AFM97, BOSW98, CS98].) This fact is no
accident—parametric polymorphism, also called generics, is essential to the
expressiveness of a typed programming languages.

The Girard-Reynolds polymorphic lambda calculus [Gir72, Rey83] describes
a very strong form of parametric polymorphism. In the past, various lan-
guages have restricted the polymorphism that it provides for various reasons.

14

For example, λML
i restricts polymorphism to a predicative form [ML75]. Poly-

morphic types do not quantify over other polymorphic types. However, this
restriction forces polymorphic functions and existential packages to become
“second-class citizens”—they may not be used in the same way as other
functions and data structures. Because modern programming paradigms re-
quire that we manipulate abstract data structures, we cannot accept this
restriction.

Language such as ML and Haskell are impredicative but they restrict Girard-
Reynolds polymorphism in other ways in order to support complete type
inference [TU96, Wel99]. This type system, defined by Hindley-Milner type
inference [Mil78], forbids features that cause trouble: first class polymor-
phism, polymorphic recursion and higher-order polymorphism.

• First-class polymorphism means that polymorphic functions and exis-
tential packages may be passed to functions and stored in data struc-
tures. Prohibiting first-class polymorphism means that the type of all
polymorphic functions must have the quantifiers at the top level.

• Higher-order polymorphism means that functions may quantify over
type constructors as well as types. This expressiveness is necessary
to support parameterized data structures.

• Polymorphic recursion means that a recursive polymorphic function
may be instantiated at a different type at its recursive call. Nested
datatypes [BM98, Oka99] and other expressive functional data struc-
tures require polymorphic recursion.

It is rapidly becoming apparent that the expressiveness provided by these
features will be an essential part of next generation programming languages.
Already, many languages compromise full type inference to allow some of
this functionality [OL96, Jon97, PT98]. Furthermore, including all of these
features simplifies the type system of an annotated programming language
because it eliminates restrictions made to support type inference.

3. Type information should exist at run-time. Type-indexed operations should
be available for types that are unknown at compile time so the language may
support separate compilation, dynamic loading and polymorphic recursion.

4. Type information should be independent of values. Dynamic typing systems
such as Java and Scheme (and the type Dynamic calculus to some extent)
require that every value have associated run-time type information. Further-
more, each piece of type information is allowed to describe the type of only

15

one value. This framework makes it difficult to express some type-indexed
operations and makes it difficult to optimize the use of run-time type infor-
mation.

5. Run-time type information should be separate from compile-time type infor-
mation. In a typed programming language, it is customary for types to
describe only terms and for terms to model all computation. Yet, in lan-
guages such as λML

i , computation depends on the type information. This
dependence means that types play two roles—they both describe terms and
they exist at run time. In λML

i these two roles behave similarly as both
are modeled by lambda calculi. However, mechanisms that more precisely
describe computation, such as effect systems and allocation semantics, will
complicate type checking if they must also describe the run-time behavior of
types.

6. The mechanisms for run-time type analysis should be easy to incorporate.
An advantage of the Java approach was that it was easy to incorporate into
the language. In particular, the components for supporting type-indexed op-
erations did not require new typing rules so they did not change the sound-
ness properties of the language. In order for any mechanism that define
type-indexed operations to be successful, it must not require complicated
proofs or implementation.

7. All type information should be analyzable. Many systems do not support
the analysis of types with binding structure (such as polymorphic types).
In order to have a complete and expressive system, it is important that all
types may be examined. Furthermore, many typed programming languages
include language elements in the type system that do not describe terms.
These type constructors, similar to the functions, products and sums of the
term language, describe the relationship between types. Many polytypic
algorithms, such as iterations, maps, reductions and zips must be defined by
such type constructors.

8. It should allow the definition of new types. A programming language may
allow the user to create new types so that compile-time type error messages
can be application specific. With Haskell type classes [WB89, HHJW96], one
can easily extend a type-directed operation with these new types merely by
creating a new instance of that class. This mechanism allows type-indexed
operations to have application specific behavior.

9. It should support type-level type analysis. Because type-directed operations
often require a type translation to describe the result type, there must be

16

Table 1.1: Languages described in this dissertation

Chapter Name Description

2 LI Intensional type analysis, based on λML
i [HM95].

3 LIR Type information fully reflected into term language,
allowing type erasure, based on λR [CWM98].

4 LX Designed to support the compilation of
type-analyzing code [CW99a].

LXR As above, but permits type erasure [CW99a].

5 LU A version of the polymorphic lambda calculus,
derived from Girard’s λU− [Gir72].

6 LH Extends run-time analysis to higher-order types [Wei02].

7 LK An alternate version of LH.
LKR As above, but permits type erasure.

some mechanism at the type level to describe how types depend on other
types. The Typerec type constructor of λML

i is an example of such a facility.5

1.3 Dissertation outline and contributions

Inspired by the features listed in the previous section, I intend this dissertation to
answer the following questions.

1. How can we distinguish between compile-time types and run-time type in-
formation in a type safe manner?

2. What linguistic constructs are necessary in a programming language to sup-
port run-time type analysis?

3. How can we generalize type analysis to include the run-time analysis of all
type information?

5I describe this type constructor in more detail in the next section.

17

In answering these questions, I will present a number of different typed lambda
calculi, each modeling a different form of run-time type analysis. For reference,
Table 1.1 lists the chapters in which each language is described. Why does this
list include so many languages? It is in the comparison between these languages
that the answers to the above questions reside. By bringing them together for the
first time in one work, I hope to make these comparisons more apparent.

To lay the foundations for this work, Chapter 2 starts with a version of Harper
and Morrisett’s λML

i [HM95] that I call LI. The difference between this calculus
and λML

i are minimal. The changes I have made allow a simpler development
of the languages described in later chapters. In this chapter, I also use LI to
demonstrate several concrete examples of the type-directed operations mentioned
earlier. These examples include a description of how to implement dynamic types
in LI that originally appeared in the 2000 International Conference on Functional
Programming [Wei00].

Chapter 3 provides a simple answer the first question by presenting a version
of the λR language of Crary, Weirich and Morrisett [CWM98]. In this chapter,
I describe how type-directed execution may be performed without depending on
type-level information at run time. The key idea is that analysis of types may be
simulated by analysis of terms that stand in for the type arguments. This process
works if these term representations have a form of singleton type that describes
what type they represent. This chapter describes the language LIR that includes
term representations of types and a special type constructor R. I end this chapter
with an embedding of LI to LIR that also appears in the Journal of Functional
Programming [CWM02].

Chapter 4 presents the LX language of Crary and Weirich [CW99a], which
includes functions, products, sums and a restricted form of iteration in the type
constructor language. Instead of determining the identity of an unknown type as
in LI, this language provides an operator to determine the identity of an unknown
constructor sum. With the facility to analyze unknown constructor sums, the LX
language may describe the analysis of a wide variety of static information, and so
provides an initial answer to the third question.

With this new form of analysis, we have more flexibility. In contrast to LI,
where the analyzed type system is specifically hard-wired into the language, in LX,
one may program at the type-level to encode the type system in the constructor
language. An application of this flexibility is in the area of typed compilation.
During the compilation of a type-analyzing language, analysis of high-level types
must be represented in the low-level language. In LX, the high-level types may
be encoded with inductive sums of products. This facility also means that the LX
language is the first to support the type-level analysis of quantified types. Because
the separation in LIR between the static language and the dynamic language is

18

so important, in the second part of this chapter, I describe Crary and Weirich’s
erasure version, which I call LXR, and our translation between LX and LXR. The
LX and LXR languages and the translation between them originally appeared in
the 1999 International Conference on Functional Programming [CW99a].

Inspired by the encoding of type systems with the LX language, Chapter 5
presents an answer to the second question. The LXR language is quite complicated,
with products, sums and inductive types used to encode the type system of a
language like LI. This type system has the structure of an inductive datatype. It
is also possible to encode such datatypes with the polymorphic lambda calculus.
Using this idea, this chapter presents an encoding of LIR into LU, an extension of
Fω with kind polymorphism. Therefore, sophisticated machinery does not need to
be incorporated into the semantics of a language in order to support type-analysis,
only sufficiently rich polymorphism. The translation presented in this chapter
originally appeared in the 2001 European Symposium on Programming [Wei01].

In Chapter 6, I return to the third question and consider type functions. The
facilities of LI cannot be used to define operations over parameterized types, such
as generic iterators. Therefore, this chapter extends LI to the LH language, with
support for lifting type analysis through higher-order types. Furthermore, because
quantified types may be represented with higher-order abstract syntax, this chapter
also provides insight into their analysis. This language was originally published in
the 2002 European Symposium on Programming [Wei02]. Finally, in Chapter 7,
I demonstrate that this functionality is still amenable to development as a type-
erasure language, in the sense of LIR.

1.4 Reflection

Analyzing types at run time is also called reflection because run-time computation
is defined over metainformation: the structure of data values. However, the term
reflection refers to many ideas in many contexts, and so I briefly mention those
alternative meanings in this section. I do not intend to fully cover this broad
and diverse topic—several survey papers [DM95, Har95] provide a more thorough
introduction to this area.

In general, reflection usually refers to a programming language reading and
modifying its current state. Smith’s seminal papers [Smi84, dRS84] on compu-
tational reflection formalized reflection in programming languages with the lan-
guages 2-LISP and 3-LISP. In these languages, reflection was implemented through
an arbitrary number of interpreters each manipulating the code and data of the
language at a different level. Computational reflection has also been studied by
Maes [Mae87] and Wanatabe and Yonezawa [WY88]. The Java Reflection API is

19

the product of a large study of reflection in several object-oriented languages such
as Smalltalk [Coi87] and CLOS [KdRB91]. Current research on Aspect-Oriented
Programming [KLM+97] extends the capabilities of Java reflection.

Even before programming languages, reflection was already studied in the con-
text of logical systems. In logic, reflection refers to a formal system reasoning
about itself. It may do so by encoding the formulas, axioms, inference rules and
proofs of that formal system with its own elements, such as the integers. For ex-
ample, the system might have a map p·q between formulas and integers, and a
proposition proves(p, pφq) which states that p is a proof of the representation of
the formula φ.

Reflection was a key part of Gödel’s incompleteness theorem [Göd31]. By
constructing a formula that asserted its own lack of proof, Gödel was able to show
that no system expressive enough to include reflection could be both complete and
consistent. Because Gödel’s theorem talks about the limitations of formal systems,
it also shows how those formal systems may be strengthened.

Feferman [Fef62] introduced the term reflection principle as “the description of
a procedure for adding to any set of axioms A certain new axioms whose valid-
ity follows from the validity of the axioms A and which formally express, in the
language of A, evident consequences of the assumption that all theorems of A are
valid.” For example, adding a new axiom about the consistency of A produces a
stronger system than before.

Alternatively, reflection may be added to a formal system not to strengthen it,
but to make proofs shorter. It amounts to adding an axiom such as the following
to the formal system, allowing formally proved properties as additional axioms.

` φ if ∃p.proves(p, pφq)

Variants of this reflection rule have been studied in the context of the theorem
prover Nuprl [ACHA90]. Here, this rule says that to prove a goal G under hypoth-
esis H, it suffices to show that a representation of the statement H implies G is
provable. Care must be taken to avoid developing an inconsistent system. In order
to prove the soundness of this rule, one must assume the soundness of Nuprl with
this rule, as it may have been used in the proof of H ` G. However, Nuprl is not
sound unless this rule is sound. The solution is stratification: parameterize this
rule by its reflection level, and require that encoded sequents only use this rule at
a lower level.

Chapter 2

Background: A calculus for
dynamic type dispatch

This chapter presents a slightly modified form of Harper and Morrisett’s λML
i cal-

culus [HM95, Mor95] (called LI) in order to provide an initial framework for inten-
sional type analysis. The λML

i language is quite expressive; it and its derivatives
were used extensively in a number of high-performance ML compilers including
TIL/ML [TMC+96, MTC+96], FLINT [Sha97b] and TILT [PCHS00]. Section 2.1
informally demonstrates the use of type analysis in this language, with the goal
of providing an intuition about how the type-indexed operations described in the
introduction may be expressed. The technical material of this chapter begins in
Section 2.2.2 with a brief explanation of the syntax of LI and a brief catalog of
the elements of the core language. This core language will be the basis of all of
the languages in the following chapters. Section 2.3 covers the semantics of typerec
and Typerec, the specific operators of LI supporting type analysis. Finally, the last
section of the chapter lists several properties of the LI language and sketches their
proofs.

2.1 Examples of type analysis

To begin, I start with a few informal examples of intensionally polymorphic func-
tions. Each of these functions may be expressed in LI, but for initial presenta-
tion, these examples follow in a modified version of Standard ML (SML) syn-
tax [MTHM97].

In SML, the types of each expression may be automatically inferred by the
type checker. To make the examples more clear, however, I annotate each function
with the types of its arguments. Furthermore, although SML does not explicitly

20

21

express type abstraction and instantiation, in these examples, it is important to
know where they occur. In SML, the keyword fun creates a recursive definition,
which may be parameterized by one or more term variables. In the following
examples, I also allow recursive definitions to be parameterized by explicit type
variables, notated with square brackets. Furthermore, all type instantiations will
be explicit, again in square brackets.

2.1.1 Data representation

An important application of type analysis is for efficient data representation by a
typed intermediate language. More examples of these techniques in the domain of
typed-directed compilation appear in the work of Morrisett [Mor95].

Suppose we want to store an array of Boolean values. Most computer architec-
tures require that memory accesses are a word at a time, but it is a waste of space
to store Booleans as integers. A solution is to pack thirty-two Booleans into one
word and use bit manipulations to retrieve the correct value. To subscript from a
packed Boolean array, we might use the following function (with << for shift left,
& for bitwise and, and <> for inequality):

fun bitsub (a:array int, i:int) : bool =

sub(a,i div 32) & (1<<(i mod 32)) <> 0

This function is fine when we know a given array contains Boolean values, but
we would like code polymorphic over all arrays to be able to use this mechanism.
In other words, we would like to write a polymorphic array subscript that employs
bitsub when the array is an array of bits and uses the default subscript operation
on arrays of other types.

fun packedsub[a] =

typecase a of

bool => bitsub

| => sub

But what is the type of packedsub? It is not (array a * int) -> a as we
might expect because the type of bitsub is (array int * int) -> int when a

is bool. Just as the operation of packedsub depends on the type a, the type of
packedsub also depends on the type a. Therefore, we need an additional form of
intensional type analysis to describe this type.

The construct Typecase describes how types can be produced by analysis of
other types. Using Typecase, we can define a type of array (called a PackedArray

below) that will produce an array of integers to hold Booleans and an ordinary
array for other types.

22

type PackedArray[a] =

Typecase a of

bool => array int

| => array a

With this definition, the type of packedsub is (PackedArray a * int) -> a.

2.1.2 Polymorphic equality

type Eq a =

Typecase a of

int => int

| (b -> c) => void

| (b * c) => (Eq b) * (Eq c)

fun eq[a] : Eq a -> Eq a -> bool =

typecase a of

int => primIntEq

| (b -> c) => (fn x => fn y => void)

| (b * c) =>

(fn (x,y) => fn (w,z) =>

eq[b] x w andalso eq[c] y z)

Figure 2.1: Example: Polymorphic equality

Another typical use of Typecase is to restrict the domain that a type-directed
function may be called. This use is analogous to Haskell type classes [WB89],
which define a predicate over types indicating the members of the type class. For
example, in Haskell one would declare that the equality class supports a method
eq implementing polymorphic equality.

class Eq a where

eq :: a -> a -> Bool

Next, one would declare the instances of Eq. Below integers and tuples are members
of the equality class. Instances also include the definition of the member function
at that type.

23

instance Eq Int where

eq = primIntEq

instance (Eq a, Eq b) => Eq (a,b) where

eq (x,y) (w,z) = eq x w andalso eq y z

The lack of an instance declaration for function types means that they are not
part of the class—polymorphic equality is not defined for them. With type anal-
ysis, to restrict the domain of polytypic functions, we use Typecase to write an
almost identity function, replacing types which are not members of the domain
(such as function types) by the type void . As there are no elements of type void ,
polymorphic equality can never be called on function arguments.

2.1.3 Run-time type checking and dynamic types

In order to call the polymorphic equality function of the previous section, we must
show that type of the first argument is an equality type, of the form Eq a. However,
if we cannot prove this fact statically, is there no way that we can call the equality
function? What if all we know is that the two objects are of type a? How can we
determine if a is an equality type?

Because we have the ability to determine the identities of abstract types at run
time, we can compare a with Eq a and determine if they are the same. We can
write a function of type ∀α.∀β.α → β to convert an object of type a to type Eq

a if the types match. By checking the types at run time, we have the ability to
circumvent the type system. Even though there is no way to prove the equivalence
of two types statically, we have the ability to include a dynamic proof. With this
power comes extra responsibility: the dynamic proof could fail. If a is instantiated
with a function type, then Eq a will be void and the cast will fail because the
types do not match. A programmer using this function must handle the error case
and provide an alternative if it should occur.

Below I present two versions of the function cast taken from Weirich [Wei00].
If the type arguments match, cast will just return its term argument at the new
type; otherwise it will raise an exception.1

An initial implementation of cast appears in Figure 2.2. In the first branch of
the typecase, a and b have been determined to both be to int. Casting an int

to an int is just an identity function.
In the second branch of the typecase, both a and b are product types (a1 *

a2 and b1 * b2 respectively). Through recursion, we can cast the subcomponents

1It would also be reasonable to produce a function of type a -> (option b), but checking
the return values of recursive calls for NONE only lengthens the example.

24

fun cast[a][b] : a -> b =

typecase (a,b) of

(int,int) => (fn x => x)

| (a1 * a2, b1 * b2) =>

(fn (x:a1 * a2) =>

(cast[a1][b1] (fst x), cast[a2][b2] (snd x)))

| (a1 -> a2, b1 -> b2) =>

(fn (x:a1 -> a2) =>

cast[a2][b2] o x o cast[b1][a1])

| (,) => error CantCast

Figure 2.2: Example: cast (Version 1)

of the type (a1 to b1 and a2 to b2). Therefore, to cast a product we break it apart,
cast each component separately and then create a new pair.

The code is a little different for the next branch, when a and b are both function
types, due to contravariance. Here, given x, a function from a1 to a2, we want to
return a function from b1 to b2. We can apply cast to a2 and b2 to get a function,
g, that casts the result type, and compose g with the argument x to get a function
from a1 to b2. Then we can compose that resulting function with a reverse cast
from b1 to a1 to get a function from b1 to b2. Finally, if the types do not match
we raise the exception CantCast.

However, there is a problem with this solution. Intuitively, all a cast function
should do at run time is recursively compare the two types. Unfortunately, unless
the types t1 and t2 are both int, the result of cast[t1][t2] does much more.
Every pair in the argument is broken apart and remade, and every function is
wrapped between two instantiations of cast. This operation resembles a virus,
infecting every function it comes in contact with and causing needless work for
every product.

The reason we had to break apart the pair in forming the coercion function
for product types is that all we had available was a function (from a1 -> b1) to
coerce the first component of the pair. If we could somehow create a function that
coerces this component while it was still a part of the pair, we could have applied
it to the pair as a whole. In other words, we want two functions, one from (a1 *

a2) -> (b1 * a2) and one from (b1 * a2) -> (b1 * b2).
Motivated by the last example, we want to write a function that can coerce

the type of part of its argument. This function will allow us to pass the same
value as the x argument for each recursive call and only refine part of its type. We

25

fun cast’[a][b][c] : (c a) -> (c b) =

typecase (a,b) of

(int,int) => (fn x => x)

| (a1 * a2, b1 * b2) =>

(cast’[a1][b1][fn d => c (d * b2)]) o

(cast’[a2][b2][fn d => c (a1 * d)])

| (a1 -> a2, b1 -> b2) =>

(cast’[a1][b1][fn d => c (d -> b2)]) o

(cast’[a2][b2][fn d => c (a1 -> d)])

| (,) => error CantCast

fun cast[a][b] : a -> b =

cast’ [a][b][fn d => d]

Figure 2.3: Example: cast (Version 2)

cannot eliminate x completely, as we are changing its type. Since we want to cast
many parts of the type of x, we need to abstract the relationship between the type
argument to be analyzed and the type of x.

The solution in Figure 2.3 defines a helper function cast’ that abstracts not
just the types a and b for analysis, but an additional type constructor argument
c. When c is applied to the type a we get the type of x, when it is applied to b

we get the return type of the cast. For example, if c is (fn d => d * a2), we get
a function from type a * a2 to b * a2. We initially call cast’ with the identity
function.

With the recursive call to cast’, in the branch for product types we create a
function to cast the first component of the tuple (converting a1 to b1) by supplying
the type constructor (fn d => c (d * a2)) for c. As x is of type c (a1 * a2),
this application results in something of type c (b1 * a2). In the next recursive
call, for the second component of the pair, the first component is already of type
b2, so the type constructor argument reflects that fact.

Surprisingly, the branch for comparing function types is analogous to that of
products. We coerce the argument type of the function in the same manner as we
coerced the first component of the tuple— calling cast’ recursively to produce
a function to cast from type c (a1 -> a2) to type c (b1 -> a2). A second
recursive call handles the result type of the function.

26

2.1.4 Reflecting functions

datatype exp = Var of string (* Variable *)

| Const of int (* Constant *)

| Fun of (string * exp) (* Function *)

| App of (exp * exp) (* Application *)

| Pair of (exp * exp) (* Product *)

| Pi1 of exp (* First projection *)

| Pi2 of exp (* Second projection *)

fun reify[a] : exp -> a =

typecase a of

int => fn (Const i) => i

| (b -> c) =>

(fn f:exp => (reify[c]) o (App f) o (reflect[b]))

| (b * c) =>

(fn p:exp => (reify[b] (Pi1 p), reify[c] (Pi2 p)))

and reflect[a] : a -> exp =

typecase a of

int => Const

| (b -> c) =>

(fn f:(b->c) =>

let s = gensym ()

in Fn (s, reflect[c] (f (reify [b] (Var s)))) end)

| (b * c) =>

(fn p:(b*c) =>

Pair(reflect[b] (fst p), reflect[c] (fst p)))

Figure 2.4: Example: Normalization by evaluation

While the goal of structural reflection is to provide complete access to the state
of the program currently executing, few languages or systems actually provide
mechanisms for reifying functions, or creating a representation of program code.
Representing computations as well as values is a difficult task. Unlike other sorts
of data, such as integers, tuples and arrays where the run-time representation of
the data is easy to understand, most language implement first-class functions as
a pointer to some piece of compiled code. Providing access to this binary data
is in itself not very useful. The translation between this compiled binary and the

27

abstract syntax of the programming language is complicated and not uniform over
various machine architectures.

However, sometimes it is possible to produce a representation of a computation,
if that computation is written in a typed lambda calculus and the type of that
computation is known. Figure 2.4 contains a datatype for representing the abstract
syntax for such a language. The process of producing an element of this datatype
from a first class function is reflection. Translating it back into a term is reification.
This technique is known as normalization by evaluation [BS91] because the reflected
version represents the β-normal, η-long form of the term. For example:

> reify[exp -> exp] (fn x => x)

Fn ("X", Var "X")

> reify[(exp * exp) -> exp] (fn (x,y) => x)

Fn ("X", Pi1 (Var "X")

Because reification followed by reflection computes the normal form of the term,
this technique has been employed in the area of partial evaluation [Dan96]. In this
optimization, if some of the arguments to a multi-argument function are the same
at all uses of the function, it makes sense to optimize a version of the function
specialized to those arguments. The hard part is specializing the function at run
time without the source code. However, applying the function to those arguments
and then normalizing the function will produce such an optimized version.

2.2 The LI language

Type analysis in the LI language is called intensional analysis of type information.
The term intensional analysis refers to the fact that types are analyzed by their
internal structure as opposed to their extensional properties, or with respect to
the terms that they contain. The intensional operators in this language follow
earlier work by Constable [Con82, CZ84]. In this next section, I describe a formal
language containing an operator very similar to typecase.

2.2.1 LI Syntax

The LI language contains four syntactic classes: at the lowest level, terms model
evaluation of the language at run time and are described by types. The language of
type constructors can be used to “compute” types (or express relationships between
types in a functional notation) and are themselves described by kinds much in the
same way that terms are described by types. Certain type constructors (those
of the kind “Type” written ?) correspond exactly to the types and the injection

28

Table 2.1: LI: Syntax

(kinds) κ :: = ? | κ1 → κ2

(constructors) c :: = α | λα:κ.c | c1c2

| int |→| ×
| Typerec c (cint , c→, c×)

(types) σ :: = T (c) | int | σ1 → σ2 | σ1 × σ2

| ∀α:κ.σ | ∃α:κ.σ

(terms) e :: = i | x | λx:σ.e | fix f :σ.v | e1e2 | 〈e1, e2〉 | π1e | π2e
| Λα:κ.e | e[c]
| pack 〈c, e〉 as ∃α:κ.σ | unpack〈α, x〉 = e1 in e2

| typerec[α.σ] c of eint e→ e×

(values) v :: = i | λx:σ.e | fix x:σ.v | 〈v1, v2〉
| Λα:κ.e | pack〈c, v〉 as ∃α:κ.σ

T () witnesses this correspondence. I will use the word “type” to refer to both
the syntactic category of types and to those elements of the type constructor
language of kind ?, when the distinction is unimportant. In later languages of this
dissertation, these two categories will be combined.

The distinguishing features of LI are the type analysis operators Typerec and
typerec in the type constructor and term languages. Typerec describes how a type
may depend on another type, while typerec describes how a term may depend on
a type. This language is stratified so that the quantified types ∀α:κ.σ and ∃α:κ.σ
range only over type constructors. Because no type constructors correspond to
these quantified types, LI has a predicative form of polymorphism [ML75]. This
stratification also serves another purpose: it ensures that the arguments to Typerec
and typerec are inductive. Closed type constructors will always be equivalent to
one of the monotypes, int , arrow or product types.

2.2.2 Core language

As a gentle introduction to the notations employed in this work, I will first describe
the elements of the core language of LI (those not involved in type analysis) and

29

define their static and dynamic semantics. Those readers familiar with typed
languages and their semantics may wish to skip ahead to Subsection 2.3, where
I describe the semantics of the type analysis operators of LI. While the notation
used in this section is slightly non-standard, the elements described are common to
many typed programming languages. Background material on this core language
may be found in a number of sources [Bar92, Mit96, Har01, Pie02].

Table 2.2.1 shows the abstract syntax of LI, listing its four syntactic classes.
For the purposes of substitution, it is important to distinguish between free and
bound variables. In type constructors, the variable α is bound within c in the
form λα:κ.c. In the types, α is bound within σ in ∀α:κ.σ and ∃α:κ.σ. Finally,
in terms, x is bound within e in λx:σ.e, α is bound within e in Λα:κ.e, α and
x are bound within e2 in unpack〈α, x〉 = e1 in e2 and α is bound within σ in
typerec[α.σ] c of eint e→ e×. All variables that are not bound are considered free.
The notation c1[c2/α] refers to the capture-avoiding substitution of c2 for the free
variable α in the constructor c1, likewise e1[c1/x] is capture-avoiding substitution
in terms. In this substitution, if a free variable in c2 has the same name as a
bound variable in c1, it is possible that substitution could incorrectly bind that free
variable. Therefore, during substitution, the bound variables of c1 must be renamed
so they do not conflict with the free variables of c2. We adopt the Barandregt
variable convention [Bar84], identifying all terms that are α-equivalent. Two terms
are α-equivalent if they differ only in the names of their bound variables.

With the exception of the kinds, not all productions from this context-free
grammar are meaningful. Therefore, to decide what constructors, types or terms
are well formed, we use a set of typing judgments, or relations between the syntactic
classes that declare when an expression of the abstract syntax is well formed. For
each of these judgments, there is a set of inference rules allowing one to conclude
that judgment. Some of these inference rules have no preconditions: these are the
axioms. For example, the judgment ∆ ` c : κ reads “in context ∆, the constructor
c is well formed and of kind κ.” The axiom

∆ ` int : ?

declares that we may always derive that the constructor int is well formed and of
kind ? in any context. For the other rules, the judgments in the precondition of
the rule (above the horizontal line) must be derived before the judgments below
the lines may be concluded. In this way, we may produce a derivation that an ex-
pression is well formed. For example, the following derivation that the constructor
(×) int int is well formed uses several rules from Table 2.3. (This constructor is

30

Table 2.2: LI: Judgment forms

Judgment Meaning

∆ ` c : κ c is a valid constructor of kind κ
∆ ` σ σ is a valid type
∆ ` c1 = c2 : κ c1 and c2 are equal constructors
∆ ` σ1 = σ2 σ1 and σ2 are equal types
∆; Γ ` e : σ e is a term of type σ

equivalent to the type int × int .)

∆ ` × : ? → ? → ? ∆ ` int : ?
∆ ` (×) int : ? → ? ∆ ` int : ?

∆ ` (×) int int : ?

For readability, I will write application of the constructors → and × using infix
notation, when applied to two arguments (as will almost always be the case). For
example, instead of writing × int int , I will write int × int .

The forms of the static judgments are shown in Table 2.2. Because I will cover
a number of languages with similar judgment forms, I will use `i to indicate that
the judgment (or rule) is specifically for the LI language when it is not clear from
context. All of these judgments include the presence of a context ∆ or context
∆; Γ. The context ∆ is finite map between type constructor variables, α, and
their kinds, and Γ is a finite map from term variables, x, and their types. The
syntax ∆(α) and Γ(x) retrieves the associated kind or type. A map ∆ or Γ may
be extended with new mappings by the notations ∆, α:κ or Γ, x:σ. In all cases,
we assume that the new variable is not already in the domain of the map. The
notation Γ[α/c] denotes the (capture-avoiding) substitution of the constructor c
for each occurrence of α in the types of the term variables in Γ. The symbol ∅
explicitly refers to an empty context, but is often omitted.

The core type constructor language is the simply-typed lambda calculus, aug-
mented with a number of constants used to form types. The formation rules for
constructors (Table 2.3) are standard. Variables must appear in the enclosing con-
text. Constructor functions λα:κ.c may be created if their bodies are well formed
under a context extended with the bound variable. Constructors may be applied
if they are of function kind (κ1 → κ2) and the actual argument kind matches
the kind of formal argument κ2, producing a constructor of the result kind κ2.

31

The rules for type constructor equivalence create a congruent equivalence relation
augmented with the β and η rules.

The formation and equivalence rules for types (in Table 2.3) are similar to
those for constructors, except that as there are no type functions, no kinding is
required. Only constructors of kind ? may be converted to types with the injection
T (). How this conversion happens is defined by the type equivalence rules. For
example, the rule (tyeq-int) states that the type T (int) is equal to the type int .
Again for readability in the examples, I will often omit the injection T () when its
use is apparent from context. For example, instead of T (α)→int , sometimes I will
write the type as α → int .

Table 2.3: Core language: Static semantics

∆ ` c : κ Constructor Formation

[c-var]
∆ ` α : κ

(∆(α) = κ)

[c-fn]
∆, α:κ1 ` c : κ2

∆ ` λα:κ1.c : κ1 → κ2
(α 6∈ Dom(∆))

[c-app] ∆ ` c1 : κ1 → κ2 ∆ ` c2 : κ1

∆ ` c1c2 : κ2

[c-int-type]
∆ ` int : ?

[c-arr-type]
∆ `→: ? → ? → ?

[c-prod-type]
∆ ` × : ? → ? → ?

∆ ` c1 = c2 : κ Constructor Equivalence

[ceq-β]
∆, α:κ′ ` c1 : κ ∆ ` c2 : κ′

∆ ` (λα:κ′.c1)c2 = c1[c2/α] : κ
(α 6∈ Dom(∆))

32

Table 2.3 (Continued)

[ceq-η] ∆ ` c : κ1 → κ2

∆ ` λα:κ1.c α = c : κ1 → κ2
(α 6∈ Dom(∆))

[ceq-cong1]
∆, α:κ ` c = c′ : κ′

∆ ` λα:κ.c = λα:κ.c′ : κ → κ′

[ceq-cong2]
∆ ` c1 = c′1 : κ′ → κ ∆ ` c2 = c′2 : κ′

∆ ` c1c2 = c′1c
′
2 : κ

[ceq-ref]
∆ ` c = c : κ

[ceq-sym] ∆ ` c′ = c : κ
∆ ` c = c′ : κ

[ceq-trans] ∆ ` c = c′ : κ ∆ ` c′ = c′′ : κ
∆ ` c = c′′ : κ

∆ ` σ Type Formation

[t-con] ∆ ` c : ?
∆ ` T (c)

[t-int]
∆ ` int

[t-arrow] ∆ ` σ1 ∆ ` σ2

∆ ` σ1 → σ2

[t-prod] ∆ ` σ1 ∆ ` σ2

∆ ` σ1 × σ2

[t-all]
∆, α:κ ` σ

∆ ` ∀α:κ.σ
(α 6∈ Dom(∆))

33

Table 2.3 (Continued)

[t-ex]
∆, α:κ ` σ

∆ ` ∃α:κ.σ
(α 6∈ Dom(∆))

∆ ` σ1 = σ2 Type Equivalence

[te-con]
∆ ` c1 = c2 : κ

∆ ` T (c1) = T (c2)

[te-int]
∆ ` T (int) = int

[te-arrow]
∆ ` T (→ c1c2) = T (c1) → T (c2)

[te-prod]
∆ ` T (×c1c2) = T (c1)× T (c2)

[te-cong1]
∆ ` σ1 = σ′

1 ∆ ` σ2 = σ′
2

∆ ` σ1 → σ2 = σ′
1 → σ′

2

[te-cong2]
∆ ` σ1 = σ′

1 ∆ ` σ2 = σ′
2

∆ ` σ1 × σ2 = σ′
1 × σ′

2

[te-cong3]
∆, α:κ ` σ = σ′

∆ ` ∀α:κ.σ = ∀α:κ.σ′

[te-cong4]
∆, α:κ ` σ = σ′

∆ ` ∃α:κ.σ = ∃α:κ.σ′

[te-ref]
∆ ` σ = σ

[te-sym] ∆ ` σ′ = σ
∆ ` σ = σ′

34

Table 2.3 (Continued)

[te-trans] ∆ ` σ = σ′ ∆ ` σ′ = σ′′

∆ ` σ = σ′′

∆; Γ ` e : σ Term Formation

[e-int]
∆; Γ ` i : int

[e-var]
∆; Γ ` x : σ

(Γ(x) = σ)

[e-fn]
∆; Γ, x:σ2 ` e : σ1 ∆ ` σ2

∆; Γ ` λx:σ2.e : σ2 → σ1
(x 6∈ Dom(Γ))

[e-app]
∆; Γ ` e1 : σ2 → σ1 ∆; Γ ` e2 : σ2

∆; Γ ` e1e2 : σ1

[e-fix]
∆; Γ, f :σ ` e : σ ∆ ` σ

∆; Γ ` fix f :σ. e : σ

(
σ ≡ ∀α:κ.σ′ or σ ≡ σ1 → σ2

)
[e-pair]

∆; Γ ` e1 : σ1 ∆; Γ ` e2 : σ2

∆; Γ ` 〈e1, e2〉 : σ1 × σ2

[e-pi1]
∆; Γ ` e : σ1 × σ2

∆; Γ ` π1e : σ1

[e-pi2]
∆; Γ ` e : σ1 × σ2

∆; Γ ` π2e : σ2

[e-tapp]
∆; Γ ` e : ∀α:κ.σ ∆ ` c : κ

∆; Γ ` e[c] : σ[c/α]

[e-tfn]
∆, α:κ; Γ ` e : σ

∆; Γ ` Λα:κ.e : ∀α:κ.σ
(α 6∈ Dom(∆))

35

Table 2.3 (Continued)

[e-pack]

∆, α:κ ` σ ∆ ` c : κ
∆; Γ ` e : σ[c/α]

∆; Γ ` pack〈c, e〉 as ∃α:κ.σ : ∃α:κ.σ
(α 6∈ Dom(∆))

[e-unpack]

∆; Γ ` e1 : ∃α:κ.σ2

∆, α:κ; Γ, x:σ2 ` e2 : σ1

∆; Γ ` unpack〈α, x〉 = e1 in e2 : σ1
(α, x 6∈ Dom(∆; Γ))

[e-equiv]
∆; Γ ` e : σ2 ∆ ` σ1 = σ2

∆; Γ ` e : σ1

Finally, the terms of LI are similar to those of other typed lambda calculi in
formation (see Table 2.3) and behavior (see Table 2.4). Like the type constructor
language, the term level also includes functions λx:σ.e of function type (σ → σ′).
Additionally, the term level includes integer constants, pairs, two forms of type
abstraction and a way to define recursive functions, listed in detail below.

Constants The integers 1, 2, 3, . . . (represented by the metavariable i) are all of
type int .

Products Product types σ1 × σ2 are created by pairing an expression e1 of type
σ1 with an expression e2 of type σ2. The first and second components of a
pair are projected with π1 and π2 respectively.

Universal types Terms may abstract type constructors of any kind, with Λα:κ.e.
The type variable α is bound within e. This form explicitly supports poly-
morphism. The type variable α may be instantiated with any type. During
execution, a type application e[c], substitutes the type argument c for the
bound variable.

Existential types Terms may also hide the identity of a type constructor within
an existential package, of type ∃α:κ.σ. This form is the dual to universal
types above. If a term e has type σ[c/α], then the term pack 〈c, e〉 as ∃α:κ.σ,
creates such an existential package, hiding the type constructor c. Terms of
existential type must be opened before they are used, though the hidden
type remains abstract. The term let 〈α, y〉 = e1 in e2 opens the package e1

36

inside the term e2, binding the constructor variable α to the hidden type c
and the term variable y to the packed term e. Without type analysis, the
identity of the type constructor α must remain unknown [MP88]. However,
in languages (such as LI) that support type analysis, this hidden type may
be determined.

Recursion The fixed points of recursive terms are created with the term fix .
This term is well formed if the type of the bound variable (the fixed point)
is the same as the type of the entire expression. This type must either be a
polymorphic or function type.

2.2.3 Operational semantics

Table 2.4: Core language: Operational semantics

[ev-β]
(λx:σ.e)v 7→ e[v/x]

[ev-ty-β]
(Λα:κ.e)[c] 7→ e[c/α]

[ev-tapp]
(fix f :σ.e)v 7→ (e[fix f :σ.e/f])v

[ev-fix]
(fix f :σ.e)[c] 7→ (e[fix f :σ.e/f])[c]

[ev-pi1]
π1〈v1, v2〉 7→ v1

[ev-pi2]
π2〈v1, v2〉 7→ v2

[ev-unpack]
unpack〈α, x〉 = (pack v as ∃β.σ1 hiding σ2) in e2 7→ e2[σ2/α, v/x]

[ev-app1]
e1 7→ e′1

e1e2 7→ e′1e2

37

Table 2.4 (Continued)

[ev-app2] e 7→ e′

ve 7→ ve′

[ev-tapp] e 7→ e′

e[c] 7→ e′[c]

[ev-pi] e 7→ e′

πie 7→ πie
′

[ev-pair1]
e1 7→ e′1

〈e1, e2〉 7→ 〈e′1, e2〉

[ev-pair2] e 7→ e′

〈v, e〉 7→ 〈v, e′〉

[ev-pack] e 7→ e′

pack〈c, e〉 as ∃β.σ 7→ pack〈c, e′〉 as ∃β.σ

[ev-unpack2] e 7→ e′

unpack〈α, x〉 = e in e2 7→ unpack〈α, x〉 = e′ in e2

Harper and Morrisett designed LI to be an intermediate language for a high-
performance ML compiler. Therefore, they formalized its computational behavior
with a small-step, call-by-value operational semantics. This semantics defines the
evaluation of an expression with the transition relation e 7→ e′. (This notation will
be the evaluation relation for all languages of this dissertation. I will use 7→i to
refer only to LI evaluation, when it is not clear from context.) This relation states
that the term e evaluates in one step to the term e′. The transitive closure of this
relation (notated 7→∗) describes the execution sequences of the term language.

The choice of call-by-value is not an important decision in the design of type-
analyzing languages. Lazy versions of LI may also be defined. However, as LI
evaluation is call-by-value (also known as eager evaluation), the arguments to LI
functions must be fully evaluated before the functions are applied to them (refer to
rule ev-β in Table 2.4). The closed forms of LI (those that are well formed in the
empty context) that furthermore do not step to any other terms are called values.

38

Table 2.5: LI: Operational semantics of typerec

[ev-trec-int] c normalizes to int
typerec[α.σ] c (eint , e→, e×) 7→i eint

[ev-trec-arrow]
c normalizes to (c1 → c2)

typerec[α.σ] c (eint , e→, e×) 7→i

e→[c1] (typerec[α.σ] c1 (eint , e→, e×))
[c2] (typerec[α.σ] c2 (eint , e→, e×))

[ev-trec-prod]
c normalizes to (c1 × c2)

typerec[α.σ] c (eint , e→, e×) 7→i

e×[c1] (typerec[α.σ] c1 (eint , e→, e×))
[c2] (typerec[α.σ] c2 (eint , e→, e×))

They may be described by the abstract syntax in Table 2.2.1. By examination of
the evaluation rules, we see that none of these terms steps to any others. Later I
will discuss a proof that this syntax describes all of the closed terms for which no
reduction rules apply. Additionally, products in LI are also treated eagerly, both
components must be fully evaluated before projection. Following Harper [Har01],
fix x : σ.e is a value that unfolds itself when applied to type or term arguments.
Therefore, the type of the expression e must be a polymorphic or function type.

If e is closed and well typed, a series of these steps will either eventually diverge
or produce a value. This property is the principle of type soundness, discussed in
Section 2.5.

2.3 Type analysis operators

The important additions to LI are the type analysis operators that analyze type
constructors of kind ?: typerec produces terms and Typerec produces other type
constructors. Morrisett, in his dissertation [Mor95], describes these operations as
folds over an inductively defined data-structure, the kind ?:

The typerec and Typerec forms give us the ability to define both
constructors and terms by structural induction on monotypes. The
typerec and Typerec forms may be thought of as elimination forms for
the kind ? at the constructor and term level respectively. The intro-
ductory forms at the constructor level are the constructors of kind ?;

39

Table 2.6: LI: Schema for typerec branches

[α.σ]〈c : ?〉 = σ[c/α]
[α.σ]〈c : κ1 → κ2〉 = ∀α:κ1.[α.σ]〈α : κ1〉 → [α.σ]〈(cα) : κ2〉

there are no introductory forms at the term level to preserve the phase
distinction. In effect, Typerec and typerec let us fold some computation
over a monotype. Limiting this computation to a fold, instead of some
general recursion, ensures that the computation terminates—a crucial
property at the constructor level. However many useful operations, in-
cluding pattern matching, iterators, maps and reductions can be coded
using folds.

We see the truth in this description in the operational semantics for typerec
(Table 2.5) and in the rules describing the equational theory of Typerec (Table 2.8).
These operators, when given an argument type constructor c, dispatch to one of
their branches based on whether c normalizes to int , a function type or a product
type. The definition of constructor normalization (the transitive closure of the
constructor reduction relation in Table 2.9) is based on the equality relation
and is described in more detail below.

Furthermore, typerec and Typerec iteratively continue through the subcompo-
nents of the argument type constructor. For example, the term (where the notation
[α.σ] is for type checking and e abbreviates (eint , e→, e×))

typerec[α.σ] (int → (int × int)) e

steps to

e→ [int] (typerec[α.σ] int e) [int × int] (typerec[α.σ] (int × int) e)

Above, the arrow branch is applied to the first constructor argument, the term
argument that represent iteration over that constructor, the second constructor
argument and the term argument that represent iteration over that constructor.
This pattern of operation over an inductive datatype is known as a paramor-
phism [Mee92] or primitive recursion: each branch receives the subcomponents of
the type as well as the continuation of iteration.

When are typerec terms well formed? The annotation [α.σ] permits syntax-
directed type-checking of typerec terms. This annotation expresses the relationship

40

Table 2.7: LI: Static semantics of typerec

[e-trec]

∆ ` c : ?
∆, α:? ` σ

∆; Γ ` eint : [α.σ]〈int : ?〉
∆; Γ ` e→ : [α.σ]〈→: ? → ? → ?〉
∆; Γ ` e× : [α.σ]〈× : ? → ? → ?〉

∆; Γ ` typerec[α.σ] c (eint , e→, e×) : σ[c/α]

between the analyzed type and the return type of the term and allows us to describe
the appropriate types of the branches of the typerec. We use the schema [α.σ]〈c : κ〉
to represent the result of a branch on constructor c of kind κ. This schema is defined
in Table 2.6 by induction on κ.

Using this schema, we represent the branch type indexed by the kind of the
constructor c. If that kind is ?, then we just substitute c for α in σ. For example,
the type of the eint branch is σ[int /α], which reflects that in that branch we may
assume the argument constructor is int . If the constructor is of a higher kind, it is
parameterized by other types, and so the branch for that constructor must use the
result of the induction on the subcomponents in computing the branch for that
type. For example, the type of the branch e→ is [α.σ]〈→: ? → ? → ?〉 which is
equivalent to ∀β: ? .σ[β/α] → ∀γ: ? .σ[γ/α] → σ[(β → γ)/α]. Because the types
of the branches are represented with this schema, it is easy to extend typerec with
branches for other type constructor constants (such as unit , bool , or +).

Table 2.8: LI: Static semantics of Typerec

∆ ` c : κ

[c-trec]

∆ ` c : ?
∆ ` cint : κ〈?〉

∆ ` c→ : κ〈? → ? → ?〉
∆ ` c× : κ〈? → ? → ?〉

∆ ` Typerec c (cint , c→, c×) : κ

41

Table 2.8 (Continued)

∆ ` c = c′ : κ

[ceq-trec-int]
∆ ` Typerec int (cint , c→, c×) : κ

∆ ` Typerec int (cint , c→, c×) = cint : κ

[ceq-trec-arrow]
∆ ` Typerec (→ c1c2) (cint , c→, c×) : κ

∆ ` Typerec (→ c1c2) (cint , c→, c×) =
c→ c1 (Typerec c1 (cint , c→, c×))

c2 (Typerec c2 (cint , c→, c×)) : κ

[ceq-trec-prod]
∆ ` Typerec (×c1c2) (cint , c→, c×) : κ

∆ ` Typerec (×c1c2) (cint , c→, c×) =
c× c1 (Typerec c1 (cint , c→, c×))

c2 (Typerec c2 (cint , c→, c×)) : κ

[ceq-trec-cong]

∆ ` c = c′ : ?
∆ ` cint = c ′int : κ〈?〉

∆ ` c→ = c ′→ : κ〈? → ? → ?〉
∆ ` c× = c′× : κ〈? → ? → ?〉

∆ ` Typerec c (cint , c→, c×) = Typerec c′ (c ′int , c
′
→, c ′×) : κ

42

Table 2.9: LI: Constructor reduction

c1 c2

[cn-β]
(λα:κ′.c1)c2 c1[c2/α]

[cn-η]
λα:κ1.c α c

[cn-cong1] c c′

λα:κ.c λα:κ.c′

[cn-cong2]
c1 c′1 c2 c′2

c1c2 c′1c
′
2

[cn-trec-int]
Typerec int (cint , c→, c×) cint

[cn-trec-arrow]
Typerec (→ c1c2) (cint , c→, c×)

c→ c1 (Typerec c1 (cint , c→, c×))
c2 (Typerec c2 (cint , c→, c×))

[cn-trec-prod]
Typerec (×c1c2) (cint , c→, c×)

c× c1 (Typerec c1 (cint , c→, c×))
c2 (Typerec c2 (cint , c→, c×))

[cn-trec-cong]
c c′ cint c ′int c→ c ′→ c× c ′×
Typerec c (cint , c→, c×) Typerec c′ (c ′int , c

′
→, c ′×)

The kinding rule for Typerec is natural. To compute a constructor of kind
κ, present a type argument and three branches that when fully applied return
κ constructors. Again, the kinding of each branch depends on the kind of the
constructor matched. We use the notation κ〈κ′〉 to describe the kind of a branch
matching a constructor of kind κ′ in a Typerec expression producing kind κ.
Because Typerec computes a paramorphic fold over its argument, the branches for
constructors of higher kinds require both the subcomponent of the constructor and

43

the result of analysis of the subcomponent of the constructor. For example, for
the arrow branch, κ〈? → ? → ?〉 is equivalent to ? → κ → ? → κ → κ.

κ〈?〉 = κ
κ〈κ1 → κ2〉 = κ1 → κ〈κ1〉 → κ〈κ2〉

The equivalence rules for Typerec are similar to the operational semantics of
typerec. The equivalence of constructors also derives the constructor reduction
relation in Table 2.9. Each constructor that matches the expression on the left
hand side of the rule, is rewritten to the constructor that matches the right hand
side. For example, the constructor Typerec int (cint , c→, c×) reduces to cint .

2.4 Formalizing the examples

Now that we have fully defined the LI language, we may formalize the examples of
the first section. However, for each example, we need new forms of types and terms
that we have not included in the core language. For example, in order to implement
polymorphic equality in LI, we need to add Boolean values, logical operations over
Booleans, a primitive equality function for integers and a void type.

With these additions, we may formalize polymorphic equality example as fol-
lows.

Eq
def
= λα: ? .Typerec α of

int ⇒ int
→ ⇒ λβ1: ? .λβ2: ? .λγ1: ? .λγ2: ? . void
× ⇒ λβ1: ? .λβ2: ? .λγ1: ? .λγ2: ? .β2 × γ2

eq : ∀α: ? .Eq α → Eq α → bool

eq
def
= Λα: ? . typerec[α.Eq α → Eq α → bool] α of
int ⇒ primIntEq
→ ⇒ Λβ: ? .λrβ.Λγ: ? .λrγ.

λx: void .λy: void . true
× ⇒ Λβ: ? .λrβ: Eq β → Eq β → bool .

Λγ: ? .λrγ: Eq γ → Eq γ → bool .
λx: Eq(β × γ).λy: Eq(β × γ).

rβ(π1x)(π1y) && rγ(π2x)(π2y)

For the other examples in the beginning of this chapter, other forms of types and
terms are also necessary. I have omitted these forms from the formal language not
because they are difficult to model, but because the semantics of these terms are
closely related to that of the terms previously described. Their addition does not

44

change the properties of LI (or any of the subsequent languages of this dissertation)
in relation to type analysis. In these examples, the typerec and Typerec terms may
also be extended with new branches for the new type forms.

Because these additional forms will also be necessary for future examples, I
describe them in more detail below.

Void The type void contains no values. Any expression of this type must diverge.

Unit The type unit contains the single value ().

Bool The type bool contains two values, true and false.

String The type string contains string constants such as "hello", "peripatetic"
and the empty string "". Terms that operate over strings include string
concatenation (++) and string equality (==).

Arrays Arrays are of type array α where α is the type of the array elements.
They may be accessed with the subscript operator sub : array α × int → α
and updated with the operator set : array α× int ×α → unit .

Sums (co-products) Disjoint sums, σ1 + σ2 are created by using either the first
or second injection (inj 1 and inj 2) with a term of type σ1 or of type σ2

respectively. They are eliminated by case analysis. If e is of type σ1 + σ2, e1

of type σ1 → σ3, and e2 of type σ2 → σ3 then the term case e e1 e2 is of type
σ3. However, to enhance the readability of the examples, I will also use the
pattern matching syntax of ML [MTHM97] for the creation and elimination
of sums.

Static semantics

[e-inj1]
∆; Γ ` e : σ1 ∆ ` σ2

∆; Γ ` inj σ1+σ2
1 e : σ1 + σ2

[e-inj2]
∆; Γ ` e : σ2 ∆ ` σ1

∆; Γ ` inj σ1+σ2
2 e : σ1 + σ2

[e-case]
∆; Γ ` e : σ1 + σ2 ∆; Γ ` e1 : σ1 → σ ∆; Γ ` e2 : σ2 → σ

∆; Γ ` case e e1 e2 : σ

45

Dynamic semantics

[ev-inj 1] case(inj σ1+σ2
1 v) e1 e2 7→ e1v

[ev-inj 2] case(inj σ1+σ2
2 v) e1 e2 7→ e2 v

[ev-cong-inj1] e 7→ e′

inj σ1+σ2
1 e 7→ inj σ1+σ2

1 e′

[ev-cong-inj2] e 7→ e′

inj σ1+σ2
2 e 7→ inj σ1+σ2

2 e′

[ev-cong-case] e 7→ e′

case e e1 e2 7→ case e′ e1 e2

Recursive types Parameterized recursive types are written µk(c1, c2), where k
is the parameter kind and c1 is a type constructor with kind (k → ?) →
(k → ?). Intuitively, c1 recursively defines a type constructor with kind
k → ?, which is then instantiated with the parameter c2 (having kind k).
Thus, members of µk(c1, c2) unfold into the type c1(λα:κ.µk(c1, α))c2 and fold
the opposite way. The special case of non-parameterized recursive types are
defined as µα.σ = µ1(λϕ:1 → ?. λβ:1. σ[ϕ(∗)/α], ∗).

Because recursive types bind a type variable, they cannot be described by
an inductive type constructor as the other types can. Therefore, in LI, they
must only be added to the type language, and not represented by the type
constructor language. In Chapters 4 and 6, I will go into detail about the
inclusion of such quantified types in the analyzable part of the language.

Static semantics

[e-unroll]
∆; Γ ` e : µk(c, c′)

∆; Γ ` unroll e : c(λα:k.µk(c, α))c′

[e-roll]

∆; Γ ` e : c(λα:k.µk(c, α))c′

∆ ` µk(c, c′) : ?

∆; Γ ` rollµk(c,c′) e : µk(c, c′)

46

Dynamic semantics

[ev-roll -β]
unroll(rollµk(c,c′) v) 7→ v

[ev-cong-roll] e 7→ e′

rollµk(c,c′) e 7→ rollµk(c,c′) e′

[ev-cong-unroll] e 7→ e′

unroll e 7→ unroll e′

2.5 Typing properties of LI

Morrisett [Mor95] proves several theorems about the properties of well-formed
terms of the LI language. The two most important are that type checking LI
terms is decidable and that the type system is sound with respect to the operational
semantics. These properties are essential for any typed calculus. The first means
that for any expression we can effectively tell whether there exists a derivation
that the expression is well formed. The second, known as type soundness means
that as the program executes, type errors will not occur.

The changes that I have made to the language in this chapter (mostly dealing
with the operational semantics and the addition of a few new term forms) do
not invalidate those theorems. Furthermore, these properties are also true of the
languages I will describe in later chapters. In those chapters, I will prove that
these properties hold with the same techniques that Morrisett employed for LI.
Therefore, as an introduction to these proof techniques, I will give a quick overview
of proofs of those theorems and the key lemmas that support them.

2.5.1 Decidable type checking

The proof of the decidability of type checking in LI is complicated by the term
formation rule (e-equiv) that allows the replacement of a term’s type with any
other equivalent type at any point in the derivation. All other term formation
rules require the derivation of well formedness for some subterm of the conclusion,
therefore, the syntax of the term guides the search for the derivation. However,
this equivalence rule requires the derivation of well formedness of the same term
at a new type. Therefore, type checking is not syntax directed.

To solve this dilemma, Morrisett proved that every type has a unique normal
form. Then, he defines the notion of a normal derivation. A derivation is normal if
at every step the type of the right side of the “:” is replaced with its normal form.
Deciding if a term has a normal derivation is entirely syntax directed, because

47

we know where to employ e-equiv. Furthermore, every term is well formed (has a
derivation ascribing some type), if and only if it has a normal derivation. Therefore,
type-checking reduces to verifying the existence of a normal derivation.

A large part of this is determining the normal form for type constructors. Fol-
lowing standard techniques [Gan86, Tai67], Morrisett develops a set of reduction
rules (Table 2.9) that may be used to convert a constructor to its normal form.
Using these rules, Morrisett proved the following properties about LI type con-
structors:

Theorem 2.5.1 (Morrisett) 1. Every constructor has a unique normal form.

2. If a constructor is well formed, there is an algorithm to calculate its normal
form.

3. Equivalence of well-formed constructors is decidable.

Normal forms for LI types are a direct extension for normal forms for LI con-
structors. The algorithm to produce the normal form for a type is to normalize
any constructor components and recursively replace T (int) with int , T (c1 → c2)
with T (c1) → T (c2) and T (c1 × c2) with T (c1)× T (c2).

Using the normal form for types and the algorithm described above Morrisett
proves the theorem:

Theorem 2.5.2 (Decidability of LI type checking) Given well-formed ∆; Γ
and expression e, there is an algorithm to determine whether there exists a σ such
that ∆; Γ ` e : σ is derivable in LI.

2.5.2 Type soundness

Morrisett proves type soundness for LI syntactically, in the style of Wright and
Felleisen [WF94]. This proof essentially shows that if a term type checks, then the
operational semantics will not get stuck. A term is considered stuck if it is not a
value and no rule of the operational semantics applies to it.

The proof of type soundness requires a number of technical lemmas. First, we
must show that substitution does not destroy the well formedness of expressions.

Lemma 2.5.3 (Substitution) 1. If ∆, α:κ′ ` c : κ and ∆ ` c′ : κ′ then
∆[c′/α] ` c[c′/α] : κ.

2. If ∆, α:κ′ ` c1 = c2 : κ and ∆ ` c′ : κ′ then ∆[c′/α] ` c1[c
′/α] = c2[c

′/α] : κ.

3. If ∆, α:κ ` σ and ∆ ` c : κ then ∆[c/α] ` σ[c/α].

48

4. If ∆, α:κ ` σ = σ′ and ∆ ` c : κ then ∆[c/α] ` σ[c/α] = σ′[c/α].

5. If ∆, α:κ; Γ ` e : σ and ∅; ∅ ` c : κ then ∆; Γ[c/α] ` e[c/α] : σ[c/α].

6. If ∆; Γ, x:σ′ ` e : σ and ∅; ∅ ` e′ : σ′ then ∆; Γ ` e[e′/x] : σ.

Substitution

Proofs of these lemmas appear in Morrisett [Mor95]. �

These substitution lemmas are a large part of the proof of Subject Reduction
Lemma below (also called Type Preservation). This lemma states that if a term is
well formed and steps to another term in the operational semantics, the resulting
term is also well formed at the same type.

Lemma 2.5.4 (Subject Reduction) If ∅ ` e : σ and e 7→ e′ then ∅ ` e′ : σ.

Proof

Proof is by induction on the evaluation relation e 7→ e′. �

The next lemma states that the forms of closed values can be determined by
their types.

Lemma 2.5.5 (Canonical Forms) If ∅ ` v : σ then

1. If ∅ ` σ = int then v is i.

2. If ∅ ` σ = σ1 → σ2 then v is either λx:σ1.e or (fix f :(σ1 → σ2).v
′)[c1] · · · [cn].

3. If ∅ ` σ = σ1 × σ2 then v is of the form 〈v1, v2〉.

4. If ∅ ` σ = ∀α:κ.σ1 then v is either Λα:κ.v′ or (fix f :(α:κ.σ1).v
′)[c1] · · · [cn].

5. If ∅ ` σ = ∃α:κ.σ1 then v is pack〈c, v′〉 as ∃α.σ1.

Proof

Proof follows from examination of the normal derivations that produce values (in
Morrisett [Mor95]). �

Because I have written the operational semantics differently than Morrisett, in
order to prove Progress for the typerec rules presented here I must prove that all
closed constructors are equivalent to a constructor of an appropriate form.

49

Lemma 2.5.6 (Closed Normal Forms) If ∅ ` c : ? and c is in normal form
then either

1. c = int

2. c =→ c1c2, for some c1 and c1

3. c = ×c1c2, for some c1 and c1

Proof

Proof is by induction on the derivation ∅ ` c : ?, noting that when c is not of one
of these forms, then by induction, a reduction rule applies to c. �

The Progress Lemma below states that a well-typed term is either a value or
able to take a step in the operational semantics.

Lemma 2.5.7 (Progress) If ∅ ` e : σ and e is not a value then there exists an
e′ such that e 7→ e′.

Putting the above lemmas together, we may finally prove Type Soundness (also
known as Type Safety) for LI.

Theorem 2.5.8 (Type Soundness) If ∅ ` e : σ and e 7→∗ e′ then e′ is not stuck.

Proof

By induction on n, the number of steps in the evaluation of e 7→∗ e′. If n is zero,
then Progress (2.5.7) states that e is not stuck. Otherwise, e 7→ e′′ 7→n−1 e′. By
Subject Reduction (2.5.4) we can say that ∅ ` e′′ : σ and then apply the inductive
hypothesis to conclude that e′ is not stuck. �

2.6 Discussion and chapter summary

The LI language provides a good basis for simply modeling run-time type anal-
ysis. With its type-passing operational semantics, the mechanisms necessary to
support type dispatch are included in the single term typerec. Furthermore, the
type constructor Typerec allows many uses of typerec to be assigned types. In
a rich language, these operators can support a number of motivating examples
of non-parametric programming. This chapter includes formalization of dynamic
typing, type directed partial evaluation, polymorphic equality and flexible data
representation within LI.

50

An additional purpose of this chapter is to provide background for the rest of
the dissertation. This chapter describes a standard formalization of a core typed
language. The terms of this language, including integers, products, functions,
universally and existentially polymorphic terms, appear in many of languages of
the subsequent chapters. It also briefly describes how to prove the two most
important properties of this language. First, LI has decidable type checking. For
any term, there is an effective procedure to determine if there is a derivation that
it is well typed. Second, LI, is type sound. During execution of any well-typed LI
term, it will either produce a value or run forever. These properties will also be
shown for the subsequent languages.

Chapter 3

Type analysis without analyzing
types

3.1 Type-passing vs. type-erasure semantics

In LI, there is no distinction between the use of constructors at compile time and
run time. The consequence is that LI has a type-passing interpretation. Execution
of LI programs depends on the typing annotations through the type constructor
arguments to typerec.

This semantics is different from that of most conventional statically-typed lan-
guages. In a type-erasure semantics, run-time execution is modeled entirely by the
term language. These languages have the property that execution will be the same
even if all type information (such as the bindings for function arguments, type
abstraction and type applications) is removed. This separation between compile-
time computation (the equational theory at the type level) and run-time execution
is known as a phase distinction. Typechecking a term does not depend on its
run-time behavior1, and the run-time behavior of a term does not depend on its
compile-time type. Consequently, it is not obvious how to implement run-time
type analysis in a language with a type-erasure semantics as types are not allowed
to affect run-time execution.

However, although a type-passing semantics provides a concise and elegant way
to specify run-time type analysis it is undesirable for two reasons.

First, the operational semantics of LI always constructs and passes type infor-
mation to polymorphic functions, even when it is not necessary or desirable. Pass-
ing type information at run time incurs a run-time cost. A type-passing framework

1Dependently typed languages [Aug98, Bar92, BBC+97, CAB+86] are an example where
typechecking a term may depend on its run-time value.

51

52

cannot express the optimization of eliminating unexamined types in order to im-
prove performance. In addition, for reasons of modularity, it may be desirable to
withhold run-time type information from a function to enforce type abstraction. In
conventional type systems, abstraction may be implemented by hiding the identity
of types either through parametric polymorphism [Rey83] or through existential
types [MP88]. However, when types may be analyzed, the identity of types cannot
be hidden so abstraction is impossible. For example, consider the type ∃α.α. In LI,
this type implements a dynamic type; an expression of this type provides an object
of some unknown type, and that unknown type’s identity can be determined at
run time by analyzing α, as in the cast example of Section 2.1.3. In a type-erasure
system, ∃α.α implements a useless abstract type because the identity of α cannot
be determined.

Furthermore, the goal of typed low-level languages is to describe precisely the
operation of real machines [MWCG99]. For example, a low-level language may
describe the allocation behavior of the program or make register usage explicit.
However, with the lack of phase distinction, both terms and type constructors de-
scribe run-time execution. Therefore, the semantics of the language must duplicate
language constructs that describe low-level execution. For example, in a semantics
that makes memory allocation explicit [MFH95, MH97], all data must be stored
in an explicit heap. A type passing semantics must include forms for storing and
retrieving types as well as terms from memory. Another particularly important
example that occurs during type-directed compilation is closure conversion. As
described by Morrisett et al. [MWCG99], in a type-erasure language, the partial
application of a polymorphic function to a type may be considered a value as the
application has no run-time significance. Therefore, closed code may simply be
instantiated with its type environment when a closure is created. However, in a
type-passing framework, the instantiation with a type environment can have some
run-time effect. Therefore, in the result of closure conversion in the context of a
type-passing language [MMH96], this type application must be delayed until the
function is invoked. Describing this delay requires the addition of complicated
mechanisms (including abstract kinds and translucent types) to create a closure’s
type environment.

A possible solution to the first problem (but not the second) would be to in-
troduce a phase distinction between type constructors: Those purely necessary for
type checking would be marked static and the remainder dynamic, with restrictions
prohibiting dynamic type information from depending on static type constructors.2

A possible solution to the second problem (but not the first) would be to combine

2A framework of how to construct such a language appears in the DCC work of Abadi et
al. [ABHR99] or in the two-level type systems supporting partial evaluation [NN92].

53

the type and term languages together in the same syntactic class, as in Pure Type
Systems [Bar92]. However, then the constructs used to describe run-time execution
would also complicate (and likely prevent the decidability of [Aug98]) compile-time
type checking.

In typed compilation, we need a language with a type-erasure semantics. In
this chapter, I describe how type analysis may be modeled by the language λR of
Crary, Weirich and Morrisett [CWM02]. This language implements type analysis
by introducing special terms that represent the run-time types. I also describe the
process of phase splitting or separating the compile-time objects from those at run
time, by providing an embedding of LI into the type-erasure language LIR.

3.2 Term representations of types

For comparison, I present the LIR language as an extension of LI and focus on
the differences. The principal difference between the two languages is the intro-
duction of terms that represent types and the restriction of type analysis to those
types for which representations are provided. This change does not diminish the
expressiveness of LIR; LI may be translated in a straightforward manner into LIR,
described in Section 3.4.

As an extension of LI, the LIR language is defined by the same judgments
for the static and operational semantics. To emphasize that a typing judgment
is specifically for the LIR language, we use `R when it is not clear from context.
Also, the notation 7→R refers to the operational semantics of LIR.

The new and modified syntactic forms of LIR are shaded in Table 3.1. The
kind and constructor language of LIR is identical to that of LI. The key additions
to the term language of LIR are representations of the basic type constructors. For
example, the constructors int and → are represented by the new terms Rint and
R→ . We can create representations of any type-constructor using these terms: for
example, int → int is represented by the term

(((R→[int]) Rint)[int]) Rint = R→[int] Rint [int] Rint .

So that we may know what type constructor a term represents, the constructor
is part of the term’s type. The LIR language includes a new type R(τ) to describe
the representation of the constructor τ . The types of the representations depend
on the kinds of the constructors they represent, in a schema similar to that of the
last section in Table 2.6. The representation of a constructor c of kind κ has a
type inductively defined by κ, shown in Table 3.2. For example, the constant Rint

has type R〈int : ?〉 = R(int), and the constant R→ has type

R〈→: ? → ? → ?〉 = ∀α: ? .R(α) → ∀β: ? .R(β) → R(α → β)

54

Table 3.1: LIR: Syntax

(kinds) κ ::= ? | κ1 → κ2

(con’s) c ::= α | λα:κ.c | c1c2 | int |→| ×
| Typerec c (cint , c→, c×)

(types) σ ::= T (c) | σ1 → σ2 | σ1 × σ2 | ∀α:κ.σ | ∃α:κ.σ

| R(c)

(terms) e ::= i | x | λx:σ.e | fix f :σ.e | e1e2

| 〈e1, e2〉 | π1e | π2e

| Λα:κ.v | e[c]
| pack 〈c, e〉 as ∃α:κ.σ | unpack〈α, x〉 = e1 in e2

|
| Rint | R→ | R× | typerec[α.σ] e e

(representation values) vr ::= Rint | R→ | R× | vr[c] | vr v
(values) v ::= i | λx:σ.e | fix f :σ.v | 〈v1, v2〉

| Λα:κ.v | (fix f :σ.v)[c1] . . . [cn]

| pack〈c, v〉 as ∃α:κ.σ
| vr

Table 3.2: LIR: Representation types

R〈τ : ?〉 = R(τ)
R〈c : κ1 → κ2〉 = ∀α:κ1.R〈α : k1〉 → R〈cα : κ2〉

This representation of the arrow constructor guarantees that if e1 and e2 repre-
sent constructors c1 and c2, then the term R→[c1]e1[c2]e2 will represent the type
constructor c1 → c2.

In LIR, representations are analyzed instead of actual type constructors. That
way, we are free to erase the type constructors before execution. The intuition is
that whenever a type constructor is used, a corresponding type representation is

55

Table 3.3: LIR: Operational semantics of typerec

[ev-trec-int]
typerec[α.σ] Rint e 7→R eint

[ev-trec-arrow]
typerec[α.σ] (R→[c1] v1 [c2] v2) e 7→R

e→[c1] v1 (typerec[α.σ] v1 e) [c2] v2 (typerec[α.σ] v2 e)

[ev-trec-prod]
typerec[α.σ](R×[c1]v1[c2]v2) e 7→R

e×[c1] v1 (typerec[α.σ] v1 e) [c2] v2 (typerec[α.σ] v2 e)

[ev-trec-cong]
e 7→R e′

typerec[α.σ] e e 7→R typerec[α.σ] e′ e

also supplied. Accordingly, the argument to the term level typerec is a term (repre-
senting some type constructor). For example, a typerec on the term R→[c1] v1 [c2] v2

will step to the R→ branch, providing that branch with not only the type argu-
ments c1 and c2 (as in LI), but also the representations of those arguments v1

and v2. This operation is part of the rules of the dynamic semantics, which ap-
pear in Table 3.3. Note that unlike LI, the rules (ev-trec-int), (ev-trec-arrow), and
(ev-trec-prod) do not depend on the identity of types.

Because the type constructor represented by the argument is known during type
checking, we can use it in the formation rules for typerec and typecase. However,
the branches to typerec require more arguments. Therefore, we need a new schema
to describe their types, notated by |[α.σ]〈c : κ〉|.

|[α.σ]〈c : ?〉| = σ[c/α]
|[α.σ]〈c : κ1 → κ2〉| = ∀α:κ1.R〈α : κ1〉 → |[α.σ]〈α : κ1〉| → |[α.σ]〈cα : κ2〉|

With this schema, the typing judgment for LIR’s typerec is only a small modifica-
tion to that of LI: We replace typerec’s argument c by its representation (which is
of type R(c)). This judgment appears in Table 3.4.

The most important property of the dynamic semantics of LIR is that it permits
type erasure. As types cannot influence run-time computation, implementers of
are free to replace LIR with an analogous language, without typing annotations.
To provide this erasure property, LIR must impose a value restriction on type
abstractions. Without this restriction, a type abstraction (necessarily a value)

56

could erase to a non-value, and then the erased language would not correctly
simulate LIR. Furthermore, we must change the operational semantics of fix . If
(fix f :σ.v)[c] stepped to v[fixf :σ.v/f][c] (as in LI), then a term in LIR would take
a step, where its erasure (fix f :σ.v) would not. For this reason (fix f :σ.v)[c] is
a value in LIR. An alternative would be to define the erasure of LIR such that
type abstractions “erase” to value abstractions, and type applications erase to
applications to the term unit. However, since it introduces computation, this
unorthodox type erasure does not faithfully model the run-time execution.

Table 3.4: LIR: Static semantics

∆ ` σ Type Formation

[ty-rep]
∆ `R c : ?

∆ `R R(c)

∆ ` σ = σ′ Type Equivalence

[tyeq-rep]
∆ `R c = c′ : ?

∆ `R R(c) = R(c′)

∆; Γ ` e : σ Term Formation

[e-rint]
∆; Γ `R Rint : R〈int : ?〉

[e-rarr]
∆; Γ `R R→ : R〈→: ? → ? → ?〉

[e-rprod]
∆; Γ `R R× : R〈int : ? → ? → ?〉

[e-tcase]

∆ `R c : ?
∆; Γ `R e : R(c)

∆, α:? `R σ
∆; Γ `R eint : |[α.σ]〈int : ?〉|

∆; Γ `R e→ : |[α.σ]〈→: ? → ? → ?〉|
∆; Γ `R e× : |[α.σ]〈× : ? → ? → ?〉|

∆; Γ `R typerec[α.σ] e (eint , e→, e×) : σ[c/α]

57

3.2.1 A quick example

As an example of the use of LIR, we translate the tostring function from the pre-
vious section by requiring it to take an additional term argument, xα, the repre-
sentation of the argument type, α. The typecase term analyzes this representation
instead of α, but otherwise, the function is the same.

fix tostring : (∀α: ? . R(α) → α → string).

Λα: ? . λxα:R(α) .

typecase[λα: ? .α → string] xα of
Rint ⇒ int2string

R→ ⇒ Λβ. λxβ:R(β) .Λγ. λxγ:R(γ) .

λobj :β → γ. ”function”

R× ⇒ Λβ. λxβ:R(β) .Λγ. λxγ:R(γ) .

λobj :β × γ.
"<"^(tostring [β] xβ (π1 obj))^

","^(tostring [γ] xγ (π2 obj))^">"

Figure 3.1: Example: tostring in LIR

3.3 Typing properties of LIR

Like the language LI, the LIR language possesses a number of important properties
including decidability of type checking and type safety. In this section, I briefly
cover the proofs of these properties. These proofs are not at all difficult to establish:
each is an extension of the proof of the same property for LI.

Theorem 3.3.1 (Decidability of LIR type checking) Given well-formed
∆; Γ and expression e, there is an algorithm to determine whether there exists a σ
such that ∆; Γ ` e : σ is derivable in LIR.

Because LIR shares the kinds and constructors of LI, results for that language
still apply. The proof of decidability of LIR type checking is an extension of the
decidability of LI type checking to a few new constructs. Again, the proof consists
of two parts: showing that we may reduce types to a normal form, and showing
that we may normalize type derivations to an equivalent syntax-directed version.
Reduction of LIR types to normal form is very similar to that of LI types. The

58

only difference is that we must normalize constructors appearing in R types. We
may also produce normal forms for derivations in the same manner as LI.

Next, we would like to show that the static semantics guarantees safety. As in
the last chapter (in Section 2.5), we prove type safety syntactically, in the manner
popularized by Wright and Felleisen [WF94], by showing the usual Progress and
Subject Reduction Lemmas.

We first show that, as before, we may substitute for type and term variables in
all of the judgment forms.

Lemma 3.3.2 (Substitution) 1. If ∆, α:κ′ ` c : κ and ∆ ` c′ : κ′ then
∆ ` c[c′/α] : κ.

2. If ∆, α:κ′ ` c1 = c2 : κ and ∆ ` c′ : κ′ then ∆ ` c1[c
′/α] = c2[c

′/α] : κ.

3. If ∆, α:κ ` σ and ∆ ` c : κ then ∆ ` σ[c/α].

4. If ∆, α:κ ` σ = σ′ and ∆ ` c : κ then ∆ ` σ[c/α] = σ′[c/α].

5. If ∆, α:κ; Γ ` e : σ and ∅ ` c : κ then ∆; Γ[c/α] ` e[c/α] : σ[c/α].

6. If ∆; Γ, x:σ′ ` e : σ and ∅ ` e′ : σ′ then ∆; Γ ` e[e′/x] : σ.

The lemmas for the constructor language (parts 1 and 2) follow from the same
results for LI, as the constructor language is unchanged. To prove substitution for
the type and term language (parts 3-6), we extend the LI proofs with cases for the
new constructs. These cases follow in a straightforward manner.

Lemma 3.3.3 (Subject Reduction) If ∅ ` e : τ and e 7→ e′ then ∅ ` e′ : τ .

Proof of the Subject Reduction Lemma (3.3.3)

The proof of the Subject Reduction Lemma is by induction on the normalized
derivation of ∅ ` e : σ, with a case analysis on the last step of the derivation.
Most of the cases are the same as the proof of Subject Reduction for LI (as in the
previous chapter). The exception is the new case for typerec below:

case (term-trec) If the last rule applied in the derivation was the typerec rule,
then the operational step taken depends on the argument to the typecase e.
If the argument is not a value, then it steps to some e′, and by induction we
may conclude e′ has the same type as e. We may use this result to conclude
that a typerec on e′ will also have the same type as before.

Otherwise, the argument is a value of type R(c), and it must be one of Rint ,
R→[c1]v1[c2]v2, or R×[c1]v1[c2]v2 to take a step. If it is Rint , then c is equiv-
alent to int and the typecase term is of type σ[int /α]. By the operational

59

semantics rule (ev-trec-int), the typerec term steps to eint , by assumption of
type σ[int /α].

Otherwise, if it is R→, then the term steps to e→[c1]v1[c2]v2, by the rule (ev-
trec-arrow) of the operational semantics. By assumption, with context ∅, the
term e→ is of type |[c]〈→: ? → ? → ?〉| which expands to

∀β: ? .R(β) → σ[β/α] → ∀γ: ? .R(γ) → σ[γ/α] → σ[(β → γ)/α].

Therefore, we may construct the desired judgment of the well formedness of
the term with repeated use of (term-app) and (term-tapp), and additional
derivations of well formedness of the type constructor and term arguments.

∅ ` c1 : ?
∅ ` v1 : R(c1)
∅ ` c2 : ?
∅ ` v2 : R(c2)
∅ ` typerec[α.σ] v1 (eint , e→, e×) : σ[c1/α]
∅ ` typerec[α.σ] v2 (eint , e→, e×) : σ[c2/α]

The first four of these judgments may be derived from inversion, as we must
have derived ∅ ` R→[c1]v1[c2]v2 : R(c1 → c2) to apply (term-trec). The
last two judgments may be derived from the first four and judgments about
σ, eint , e→, and e× necessary for (term-trec).

Finally, if the argument to typerec is R×[c1]v1[c2]v2, then the case is symmetric
to the case above for R→.

�

To extend LI’s Progress Lemma (2.5.7) to LIR, we need to extend the Canonical
Forms Lemma (2.5.5) to include the representation types. Again, this lemma tells
us that the form of a closed value is determined by its type.

Lemma 3.3.4 (Canonical Forms) If ∅ ` v : σ then

1. If ∅ ` σ = int then v is i.

2. If ∅ ` σ = σ1 → σ2 then v is either λx:σ1.e or (fix f :(σ1 → σ2).v
′)[c1] · · · [cn].

3. If ∅ ` σ = σ1 × σ2 then v is of the form 〈v1, v2〉.

4. If ∅ ` σ = ∀α:κ.σ then v is either Λα:κ.v′ or (fix f :(∀α:κ.σ).v′)[c1] · · · [cn].

60

5. If ∅ ` σ = ∃α:κ.σ then v is pack v′ as ∃α.σ hiding σ′.

6. If ∅ ` σ = R(int) then v is Rint .

7. If ∅ ` σ = R(c1 → c2) then v is of the form R→[c′1]v1[c
′
2]v2, where

∅ ` c1 = c′1 : ? and ∅ ` c2 = c′2 : ?.

8. If ∅ ` σ = R(c1×c2) then v is of the form R×[c′1]v1[c
′
2]v2, where ∅ ` c1 = c′1 : ?

and ∅ ` c2 = c′2 : ?.

Proof

Proof follows from examination of the normal derivations that produce values. �

Lemma 3.3.5 (Progress) If ∅ ` e : τ and e is not a value then there exists an
e′ such that e 7→ e′.

Proof of the Progress Lemma (3.3.5)

Proof of the Progress Lemma is by induction on the derivation of ∅ ` e : τ , with
a case analysis on the last rule applied in the derivation. We present the case for
typerec below:

case (term-trec) If the argument e to typerec is not a value, then by induction,
it steps to e′, so the entire term steps to a typerec on e′ with the same
branches. Otherwise, if it is a value, by inversion of the formation rule for
typerec, e must be of type R(c) for some constructor c. Furthermore, by
Lemma 2.5.6, as c is closed and of kind ?, c must be equivalent to either int ,
c1 → c2 or c1 × c2 for some c1 and c2. Therefore, by canonical forms, e is
either Rint , R→[c′1]v1[c

′
2]v2 or R×[c′1]v1[c

′
2]v2, as these are the only values of

the appropriate type. For each of these values there is a corresponding rule
in the operational semantics (Figure 3.3).

�

Because we have proven preservation and progress for LIR, then we may prove
LIR type safety in the same manner as LI type safety.

Theorem 3.3.6 (LIR Type Soundness) If ∅ ` e : σ and e 7→∗ e′ then e′ is not
stuck.

Proof

See Theorem 2.5.8. �

61

Table 3.5: Translation of LI types and terms

types |T (c)| = c
σ1 → σ2	=	σ1	→	σ2
σ1 × σ2	=	σ1	×	σ2
∀α:κ.σ	= ∀α:κ.R〈α : κ〉 →	σ		
∃α:κ.σ	= ∃α:κ.R〈α : κ〉 ×	σ		

expressions |x| = x
|i| = i

|λx:σ.e| = λx:|σ|.|e|
| fix f :σ.e| = fix f :|σ|.|e|

|e1e2| = |e1||e2|
|〈e1, e2〉| = 〈|e1|, |e2|〉

|π1e| = π1|e|
|π2e| = π2|e|

|Λα:κ.e| = Λα:κ.λxα:R〈α : κ〉.|e|
|e[c]| = |e| [c]R|c|

| pack 〈c, e〉 as(∃α:κ.σ)| = pack 〈c, 〈R|c|, |e|〉〉
as ∃α:κ.R〈α : κ〉 × |σ|

| unpack〈α, x〉 = e1 in e2| = unpack〈α, y〉 = |e1|
in (λxα:R〈α : κ〉.

λx : α.|e2|)(π1y)(π2y)
| typerec[α.σ] c (eint , e→, e×)| = typerec[α.|σ|]R|c|

(| eint |, | e→ |, | e× |)

3.4 Embedding of LI

I next formalize the connection between LI and LIR by showing how any code
written in LI may be expressed in LIR. In this section, I describe a translation
(written | · |) of LI expressions into LIR. The full details of this embedding appear
in Tables 3.5 and 3.6. I include this embedding for two reasons: first, to show
that LIR is as expressive as LI, and second, to demonstrate a simple use of LIR as
an intermediate language. The main difference between LI and LIR is the typerec
term; in LI, it takes a type constructor as its argument, in LIR, it takes a term
representing a type. Therefore, to simulate a LI typerec term with an LIR typerec

62

Table 3.6: Translation of LI constructors

R| int | = Rint

R| → | = R→
R| × | = R×
R|α| = xα

R|λα:κ.c| = Λα:κ.λxα:R〈α : κ〉.R|c|
R|c1c2| = R|c1|[c2]R|c2|

R|Typerec c (cint , c→, c×)| = typerec[α.R〈rec(α) : κ〉] R|c|
Rint ⇒ R| cint |
R→ ⇒ expand(R| c→ |)
R× ⇒ expand(R| c× |)

where expand(e) = Λα: ? .λxα:R(α).λyα:R〈rec(α) : κ〉.
Λβ: ? .λxβ:R(β).λyβ:R〈rec(β) : κ〉.

e [α] xα [rec(α)] y [β] xb [rec(β)] y

and rec(α) = Typerec α (cint , c→, c×)

term, we must be able to form the term representation of the type constructor
argument. This operation, written R| · |, appears in Table 3.6.

Creating the representation of a given type constructor is complicated by the
fact that the argument to Typerec may contain constructors with free type vari-
ables. These type variables are translated to term variables that represent them,
but we need to maintain the invariant that for every accessible type variable, a
corresponding term variable representing it is also accessible. We make this guar-
antee by a process reminiscent of “phase splitting” [HMM90] or evidence passing
[Jon92]. In the translation of constructor abstractions (at both the constructor and
term level), we split the abstractions to take both a constructor and a term vari-
able, where the term variable must be the representation of that constructor. We
also change application accordingly. This translation satisfies the value restriction
placed on LIR type abstractions as term abstractions follow all type abstractions.
Dually, we also include the representation of a type constructor when we form an
existential package.

63

Table 3.7: Translation of LI contexts

Rval(∅) = ∅
Rval(∆, α:κ) = Rval(∆), xα:R〈α : κ〉

|∅| = ∅
|Γ, x:σ| = |Γ|, x:|σ|

|∆; Γ| = ∆; Rval(∆), |Γ|

R|α| = xα

R|λα:κ.c| = Λα:κ. λxα:R〈α : κ〉.R|c|
R|c1c2| = R|c1| [c2]R|c2|

|Λα:κ.e| = Λα:|κ|.λxα:R〈α : κ〉.|e|
|e[c]| = |e| [c]R|c|

Given a type variable, α, what is the type of its corresponding term variable,
xα? If α is of kind ?, then xα should be of type R(α). If α is of a higher kind, say, for
example, a function from types to types, then xα should map type representations
to type representations and its type should reflect that fact. For this reason,
to constrain the type of xα we use R〈c : κ〉, the type of the representations of
constructor c with kind κ. If the constructor c is of kind κ1 → κ2, its representation
is a polymorphic function that takes the representation of the argument constructor
to the representation of the result of applying c to that argument.

The last part of the translation of type constructors to their representations is
the definition of the representation of a Typerec constructor. We represent it as a
typerec on the representation of the argument to the Typerec.

3.4.1 Properties of the embedding

In this Section, I show the static and dynamic correctness of the embedding.
The first lemma states that if a type constructor is well formed, then so is the

type of its representation.

Lemma 3.4.1 If ∆ ` c : κ, then ∆ ` R〈c : κ〉

Proof

64

by induction on k. If κ=?, ∆ ` R(c). If κ = κ1 → κ2, then, as ∆, α:κ ` α:κ1

then by induction ∆, α:κ1 ` R〈α : κ1〉 and as ∆, α:κ1 ` cα : κ2, then by induction,
∆, α:κ1 ` R〈cα : κ2〉. Therefore, ∆ ` R〈c : κ1 → κ2〉. �

The following lemma states that the term representations have the correct
type. For this lemma, we must construct an appropriate context to check the
representation: one that contains term variables to represent every type variable
in the context ∆. This operation Rval(·) appears in Table 3.7.

Lemma 3.4.2 If ∆ ` c : κ then ∆; Rval(∆) `R R|c| : R〈c : κ〉

Proof

Proof is by induction on ∆ ` c : κ. Selected cases are shown below.

case (con-var) Suppose ∆ ` α : κ. Thus ∆ = ∆′, α:κ, for some ∆′. Therefore

∆′, α:κ; Rval(∆
′), xα : R〈α : κ〉 ` xα : R〈α : κ〉

case (con-fn) Suppose ∆ ` λα:κ1.c
′ : κ1 → κ2. By induction

∆, α:κ1; Rval(∆, α:κ1) ` R|c′| : R〈c′ : κ1〉.

Therefore,

∆; Rval(∆) ` Λα:κ1.λxα:R〈α : κ1〉.R|c′| : ∀α:κ1.R〈α : κ1〉 → R〈c′ : κ1〉,

from which we may conclude

∆; Rval(∆) ` R|λα:κ1.c
′| : R〈λα:κ1.c

′ : κ1 → κ2〉

case (con-trec) Suppose ∆ ` Typerec c′ (cint , c→, c×). Let the notation (rec(c))
be an abbreviation for the type constructor Typerec c (cint , c→, c×). We need
to show that

∆; Rval(∆) ` typerec[α.R〈rec(α) : κ〉] R|c|
Rint ⇒ R| cint |
R→ ⇒ Λα: ? .λxα:R(α).λyα:R〈rec(α) : κ〉.

Λβ: ? .λxβ:R(β).λyβ:R〈rec(β) : κ〉.
R| c→ | [α] xα [rec(α)] y [β] xb [rec(β)] y

R× ⇒ Λα: ? .λxα:R(α).λyα:R〈rec(α) : κ〉.
Λβ: ? .λxβ:R(β).λyβ:R〈rec(β) : κ〉.
R| c× | [α] xα [rec(α)] y [β] xb [rec(β)] y

: R〈rec(c′) : κ〉

To derive this judgment, we must satisfy the following preconditions:

65

1. ∆; Rval(∆) ` R|c′| : R(c′)

2. ∆; Rval(∆) ` R| cint | : |[α.R〈rec(α) : κ〉]〈int : ?〉|
3. ∆; Rval(∆) ` Λα: ? .λxα:R(α).λyα:R〈rec(α) : κ〉.

Λβ: ? .λxβ:R(β).λyβ:R〈rec(β) : κ〉.
R| c→ | [α] xα [rec(α)] yα [β] xb [rec(β)] yβ

: |[α.R〈rec(α) : κ〉]〈→: ? → ? → ?〉|

4. ∆; Rval(∆) ` Λα: ? .λxα:R(α).λyα:R〈rec(α) : κ〉.
Λβ: ? .λxβ:R(β).λyβ:R〈rec(β) : κ〉.
R| c× | [α] xα [rec(α)] yα [β] xb [rec(β)] yβ

: |[α.R〈rec(α) : κ〉]〈× : ? → ? → ?〉|

The first follows immediately by induction. For the second, the type

|[α.R〈rec(α) : κ〉]〈int : ?〉| = R〈rec(int) : κ〉 = R〈cint : κ〉

so again, the result follows by induction. For the third, we can conclude by
induction that

∆; Rval(∆) ` R| c→ | : R〈c→ : ? → κ → ? → κ → κ〉

The type R〈c→ : ? → κ → ? → κ → κ〉 equals

∀α1: ? .R(α1) → ∀α2:κ.R〈α2 : κ〉 → ∀β1: ? .R(β1) → ∀β2:κ.R〈β2 : κ〉
→ R〈c→ α1α2β1β2 : κ〉

so the application R| c→ | [α] xα [rec(α)] yα [β] xb [rec(β)] yβ is of type

R〈c→ α [rec(α)] β [rec(β)] : κ〉 = R〈rec(α → β) : κ〉

Therefore, by abstracting α, xα, yα, β, xb, and yβ, we get a term of type

∀α: ? .R(α) → R〈rec(α) : κ〉
→ ∀β: ? .R(β) → R〈rec(β) : κ〉 → R〈rec(α → β) : κ〉

which is the definition of

|[α.R〈rec(α) : κ〉]〈→: ? → ? → ?〉|

Similar reasoning holds for the fourth precondition.

�

66

Theorem 3.4.3 (Static correctness) 1. If ∆ `i σ then ∆ `R |σ|

2. If ∆ `i σ1 = σ2 then ∆ `R |σ1| = |σ2|

3. If ∆; Γ `i e : τ then |∆; Γ| `R |e| : |τ |

Proof

Proof is by induction on derivations. Selected cases appear below:

case (con-all) Assume ∆ `i ∀α:κ.σ. By induction, ∆, α:κ `R |σ|. Therefore
∆ `R ∀α:κ.R〈α : κ〉 → |σ|.

case (term-trec) Assume ∆; Γ `i typerec[α.σ] c (eint , e→, e×) : σ[c/α]
By Lemma 3.4.1

∆; Rval(∆) `R R|c| : R(c).

By Part 1, ∆, α:? `R |σ|. By induction

|∆; Γ| `R | eint | : |[α.σ]〈int : ?〉|,
|∆; Γ| `R | e→ | : |[α.σ]〈→: ? → ? → ?〉| and
|∆; Γ| `R | e× | : |[α.σ]〈× : ? → ? → ?〉|.

Therefore,

|∆; Γ| `R typerec[α.|σ|] R|c| (| eint |, | e→ |, | e× |) : |σ[c/α]|

�

Theorem 3.4.4 (Dynamic Correctness) If e 7→∗
i v then |e| 7→∗

R v′ and
v′ ≡T |v|.

In order to show the dynamic correctness of the embedding, we must show
that the result of translation simulates the operation of LI. However, because the
evaluation of the term representations does not exactly match the reduction of con-
structors, we must add some imprecision to the simulation. We allow constructors
and their representations appearing in the result of the embedding to be of any
equivalent constructor (based on the definition of constructor equality) instead of
exactly matching the constructor appearing in the source LI term.

First, in Table 3.8, we define [[c]] as the set of all constructors equal to c. Using
this set, we define the operation R[[c]] that produces a set of representations of the
constructor c. For any c, R|c| is in the set R[[c]]. The other members of this set dif-
fer from R|c| only the embedded constructors. For example, R[[int → int]] includes
both R→[int , int](Rint ,Rint), and R→[(λβ: ? .β) int , int](Rint ,Rint). The set R[[c]],

67

Table 3.8: Extended representations

[[c]] = {c′ | ∆ ` c′ = c : κ}

R[[int]] = {Rint}
R[[→]] = {R→}
R[[×]] = {R×}
R[[α]] = {xα}

R[[λα:κ.c]] = {Λα:κ.λxα:R〈α : κ〉.e | e ∈ R[[c]]}
R[[c1c2]] = {e1[c

′
2]e2 | e1 ∈ R[[c1]], c

′
2 ∈ [[c2]], e2 ∈ R[[c2]]}

R[[Typerec τ(cint , c→, c×)]] =


typerec[α.R〈rec(α) : κ〉] e e ∈ R[[τ]]

Rint ⇒ eint eint ∈ R[[cint]]
R→ ⇒ expand(e→) e→ ∈ R[[c→]]
R× ⇒ expand(e×) e× ∈ R[[c×]]


where expand(e) = Λα: ? .λxα:R(α).λyα:R〈rec(α) : κ〉.

Λβ: ? .λxβ:R(β).λyβ:R〈rec(β) : κ〉.
e [α] xα [rec(α)] y [β] xb [rec(β)] y

and rec(α) = Typerec α (cint , c→, c×)

R[[c]] = {e | c′ ∈ [[c]] & e ∈ R[[c′]]}

defined at the bottom of the table, is even larger. It includes all representations
of equivalent constructors. For example, not only does R[[int → int]] include the
above terms, but it also includes a representation of ((λβ: ? .β) int) → int

R→[(λβ: ? .β) int , int]((Λβ: ? .λxβ:R(β).x) Rint),Rint).

Likewise, the operations [[σ]] and [[e]] in Table 3.9 generalize the translation of
LI types and terms. Again |σ| is in the set [[σ]] and |e| is in [[e]]. In these sets,
embedded constructors and their representations may be replaced with equivalent
forms. For example, [[T (int)]] includes both the types T (int) and T ((λβ:?.β) int).
For the translation of terms, [[x[int]]] includes x[int] Rint , x[(λβ: ? .β) int] Rint , and
x[int]((Λβ: ? .λxβ:R(β).x) Rint).

In terms of typing, all terms in R[[c]] have the same typing properties as R|c|:

Lemma 3.4.5 If ∆ ` c : κ then for all e ∈ R[[c]], ∆; Rval(∆) ` e : R〈c : κ〉.

Proof sketch

68

Table 3.9: Extended translation

types
[[T (c)]] = {T (c′) | c′ ∈ [[c]]}

[[int]] = {int}
[[σ1 → σ2]] = {σ′

1 → σ′
2 | σi ∈ [[σi]], i = 1, 2}

[[σ1 × σ2]] = {σ′
1 × σ′

2 | σi ∈ [[σi]], i = 1, 2}
[[∀α:κ.σ]] = {∀α:κ.Rακ → σ′ | σ′ ∈ [[σ]]}
[[∃α:κ.σ]] = {∃α:κ.Rακ× σ′ | σ′ ∈ [[σ]]}

expressions
[[x]] = {x}
[[i]] = {i}

[[λx:σ.e]] = {λx:σ′.e′ | σ′ ∈ [[σ]], e′ ∈ [[e]]}
[[fix f :σ.v]] = {fix f :σ′.v′ | σ′ ∈ [[σ]], v′ ∈ [[v]]}

[[e1 e2]] = { e′1 e′2 | e′1 ∈ [[e1]], e′2 ∈ [[e2]]}
[[〈e1, e2〉]] = {〈e′1, e′2〉 | e′1 ∈ [[e1]], e′2 ∈ [[e2]]}

[[π1e]] = {π1e
′ | e′ ∈ [[e]]}

[[π2e]] = {π2e
′ | e′ ∈ [[e]]}

[[Λα:κ.e]] = {Λα:κ.λxα:R〈α : κ〉.e′ | e′ ∈ [[e]]}
[[e[c]]] = {e′[c′] e′′ | e′ ∈ [[e]], c′ ∈ [[c]], e′′ ∈ R[[c]]}[[

pack e as(∃α:κ.σ)
hiding c

]]
=

pack 〈e′′, e′〉 e′′ ∈ R[[c]]
as ∃α:κ.R〈α : κ〉 × σ′ e′ ∈ [[e]], σ′ ∈ [[σ]]
hiding c′ ∆ ` c′ = c : κ


[[unpack〈α, x〉 = e1 in e2]] =


unpack〈α, y〉 = e′1 e′1 ∈ [[e1]]
in(λxα:R〈α : κ〉.λx:α.e′2) e′2 ∈ [[e2]]

(π1y)(π2y)


[[typerec[α.σ] c (eint , e→, e×)]] =


typerec[α.σ′] e σ′ ∈ [[σ]]

(e ′int , e
′
→, e ′×) e ∈ R[[c]], e ′int ∈ [[eint]]

e ′→ ∈ [[e→]], e ′× ∈ [[e×]]



Follows the proof of Lemma 3.4.2, which states that ∆; Rval(∆) ` R|c| : R〈c : κ〉.
�

We must next establish how substitution interacts with these operations. In the
following, we will use the following abbreviations (where S1 and S2 are arbitrary
sets of terms):

69

S1[S2/x]
def
= {e[e′/x] | e ∈ S1 & e′ ∈ S2}

S1[e
′/x]

def
= S1[{e′}/x]

The following substitution lemmas will all be inclusions instead of equalities.
The reason is that substitution can make more constructors equivalent to each
other. Consider the following lemma:

Lemma 3.4.6 For all ∆, α:κ ` c′ : κ′ and ∆ ` c : κ, then [[c′]][c/α] ⊆ [[c′[c/α]]].

Proof

This lemma is equivalent to showing that

{c1 | ∆, α:κ ` c1 = c′ : κ′}[c/α] ⊆ {c1 | ∆ ` c1 = c′[c/α] : κ′}

This result directly follows from the substitution lemma for constructor equality.
�

This is a strict inclusion as the substitution on the right side could introduce
equalities that have no counterpart on the left side. For example, say c = λβ.β
and c2 = α int . The left set includes the constructor int (as ` int = (λβ.β) int : ?),
but the right side does not, as int does not equal α int when α is abstract.

Lemma 3.4.7 (Substitution) We must show a number of substitution proper-
ties:

1. If ∆, α:κ ` c′ : κ′ and ∆ ` c : κ, then R[[c′]][c/α][R[[c]]/xα] ⊆ R[[c′[c/α]]].

2. If ∆, α:κ ` c′ : κ′ and ∆ ` c : κ, then R[[c′]][c/α][R[[c]]/xα] ⊆ R[[c′[c/α]]].

3. If ∆, α:κ ` c′ : κ′ and ∆ ` c : κ, then R[[c′]][c/α][R[[c]]/xα] ⊆ R[[c′[c/α]]].

4. If ∆, α:κ `i σ and ∆ ` c : κ then [[σ]][c/α] ⊆ [[σ[c/α]]].

5. If ∆, α:κ; Γ `i e : σ and ∆ ` c′ = c : κ, then [[e]][c′/α][R[[c′]]/xα] ⊆ [[e[c/α]]].

6. If ∆; Γ, x:σ `i e : σ′ and ∆; Γ `i v : σ then [[e]][[[v]]/x] = [[e[v/x]]].

Proof

By structural induction on c′, σ and e.

1. Proof is by structural induction on c′.

70

case c′ ≡ α
{xα}[R[[c]]/xα] = R[[c]] = R[[α[c/α]]]

case c′ ≡ β
R[[β]][c/α][R[[c]]/xα] = {xβ} = R[[β[c/α]]]

case c′ ≡ λβ:κ.c′′

R[[λβ:κ.c′′]][c/α][R[[c]]/xα]
= {Λβ:κ.λxβ:R〈β : κ〉.e | e ∈ R[[c′′]]}[c/α][R[[c]]/xα]
⊆ {Λβ:κ.λxβ:R〈β : κ〉.e | e ∈ R[[c′′[c/α]]]}
= R[[λβ:κ.c′′[c/α]]]

as by induction R[[c′]][c/α][R[[c]]/xα] ⊆ R[[c′′[c/α]]].

case c′ ≡ c1c2

{e1[c
′
2]e2 | e1 ∈ R[[c1]], e2 ∈ R[[c2]], ∆, α:κ ` c2 = c′2 : κ}[c/α][R[[c]]/xα]

⊆ {e1[c
′
2]e2 | e1 ∈ R[[c1]][c/α][R[[c]]/xα], e2 ∈ R[[c2]][c/α][R[[c]]/xα],

∆ ` c2[c/α] = c′2 : κ}
⊆ {e1[c

′
2]e2 | e1 ∈ R[[c1[c/α]]], e2 ∈ R[[c2[c/α]]], ∆ ` c2[c/α] = c′2 : κ}

= R[[(c1c2)[c/α]]]

as by induction R[[ci]][c/α][R[[c]]/xα] ⊆ R[[ci[c/α]]] for i = 1, 2.

case c′ ≡ int

R[[int]][c/α][R[[c]]/xα] = {Rint} = R[[int [c/α]]]

case c′ ≡→,×. Analogous to the previous.

case c′ ≡ Typerec[κ] τ (cint , c→, c×).

Using the same definitions of rec(·) and expand(·) in Table 3.8, let

e ≡ typerec[α.R〈rec(α) : κ〉] e1 (e ′int , expand(e ′→), expand(e ′×))

.

Then R[[c′]][c/α][R[[c]]/xα]

= {e | eint ∈ R[[cint]], e→ ∈ R[[c→]], e× ∈ R[[c×]], e1 ∈ R[[τ]] }
[c/α][R[[c]]/xα]

⊆ {e | eint ∈ R[[cint [c/α]]], e→ ∈ R[[c→[c/α]]],
e× ∈ R[[c×[c/α]]], e1 ∈ R[[τ [c/α]]] }

= R[[c′[c/a]]]

as by induction, R[[ci]][c/α][R[[c]]/xα] ⊆ R[[ci[c/α]]] ,for i = 1, int ,→,×,
and the result from lemma 3.4.6.

71

2. Proof is by structural induction on c′.

case c′ ≡ α

R[[α]][c/α][R[[c]]/xα] = {xα}[c/α][R[[c]]/xα] = R[[c]] = R[[α[c/α]]]

case c′ ≡ β

R[[β]][c/α][R[[c]]/xα] = {xβ}[c/α][R[[c]]/xα] = {xβ} ⊆ R[[β]]

case c′ ≡ λβ:κ.c′′

R[[λβ:κ.c′′]][c/α][R[[c]]/xα]

= {Λβ:κ.λxβ:R〈β : κ〉.e | e ∈ R[[c′′]]}[c/α][R[[c]]/xα]

⊆ {Λβ:κ.λxβ:R〈β : κ〉.e | e ∈ R[[c′′[c/α]]]}
⊆ R[[λβ:κ.c′′[c/α]]]

as by induction R[[c′′]][c/α][R[[c]]/xα] ⊆ R[[c′′[c/α]]]

case c′ ≡ c1c2

R[[c1c2]][c/α][R[[c]]/xα] = {e1[c
′
2]e2 | ei ∈ R[[ci]],

∆ ` c2 = c′2 : κ}[c/α][R[[c]]/xα]

⊆ {e1[c
′′
2]e2 | ei ∈ R[[ci[c/α]]],
∆ ` c2[c/α] = c′′2 : κ}

⊆ R[[(c1c2)[c/α]]]

as by induction R[[ci]][c/α][R[[c]]/xα] ⊆ R[[ci[c/α]]]

case c′ ≡ int

R[[int]][c/α][R[[c]]/xα] = {Rint} ⊆ R[[int [c/α]]]

case c′ ≡→,×. Analogous to the previous.

case c′ ≡ Typerec[κ] c (cint , c→, c×)

Again, using the same definitions of rec(·) and expand(·) in Table 3.8,
let

e ≡ typerec[α.R〈rec(α) : κ〉] e1 (e ′int , expand(e ′→), expand(e ′×))

72

. Then R[[c′]][c/α][R[[c]]/xα]

= {e | eint ∈ R[[cint]], e→ ∈ R[[c→]], e× ∈ R[[c×]], e1 ∈ R[[τ]] }
[c/α][R[[c]]/xα]

⊆ {e | eint ∈ R[[cint [c/α]]],

e→ ∈ R[[c→[c/α]]], e× ∈ R[[c×[c/α]]], e1 ∈ R[[τ [c/α]]] }
= R[[c′[c/a]]]

as by induction, R[[ci]][c/α][R[[c]]/xα] ⊆ R[[ci[c/α]]] ,for i = 1, int ,→,×.

3. Corollary of 2. Say ∆, α:κ ` c′ : κ′, ∆ ` c : κ, and we wish to show that

R[[c′]][c/α][R[[c]]/xα] ⊆ R[[c′[c/α]]].

Let e ∈ R[[c′]][c/α][R[[c]]/xα] be arbitrary. The e is of the form

R[[c′′]][c1/α][R[[c2]]/xα],

where ∆ ` c′′ = c′ : κ′ and (by abuse of notation) ∆ ` c1 = c2 = c : κ. By
part 2, e is in R[[c′′[c1/α]]], which is equal to R[[c′[c/α]]].

4. Proof by induction on σ.

case σ ≡ T (c′′)

[[σ]][c/α] = {T (c′) | ∆, α:κ ` c′ = c′′ : ?}[c/α]
⊆ {T (c′) | ∆ ` c′ = c′′[c/α] : ?}
= [[σ[c/α]]]

case σ ≡ int
[[int]][c/α] = {int} = [[int [c/α]]]

case σ ≡ σ1 → σ2

[[σ1 → σ2]][c/α]
= {σ′

1 → σ′
2 | σ′

i ∈ [[σi]], i = i, 1}[c/α]
⊆ {σ′

1 → σ′
2 | σ′

i ∈ [[σi[c/a]]], i = i, 1}
= [[(σ1 → σ2)[c/a]]]

as by induction, [[σi]][c/a] ⊆ [[σi[c/a]]].

case σ ≡ σ1 × σ2 Analogous to the previous case.

73

case σ ≡ ∀α:κ.σ
[[∀α:κ.σ]][c/α]

= {∀α:κ.σ′ | σ′ ∈ [[σ]]}[c/α]
⊆ {∀α:κ.σ′ | σ′

i ∈ [[σi[c/a]]]}
= [[(∀α:κ.σ)[c/a]]]

as by induction, [[σ]][c/a] ⊆ [[σ[c/a]]].

case σ ≡ ∃α:κ.σ Analogous to the previous case.

5. Proof by induction on e.

case e ≡ i Trivial.

case e ≡ x Trivial.

case e ≡ λx:σ.e′

[[λx:σ.e′]][c′/α][R[[c′]]/xα]

= {λx:σ′.e′′ | σ′ ∈ [[σ]][c′/α], e′′ ∈ [[e′]][c′/α][R[[c′]]/xα]}
⊆ {λx:σ′.e′′ | σ′ ∈ [[σ[c′/α]]], e′′ ∈ [[e′[c′/α]]]}
= [[(λx:σ.e′)[c′/α]]]

By induction [[e′]][c′/α][R[[c′]]/xα] ⊆ [[e′[c′/α]]] and by lemma [[σ]][c′/α] ⊆
[[σ[c′α]]].

case e ≡ fix x:σ.e′ Analogous to previous case.

case e ≡ e1e2

[[e1e2]][c
′/α][R[[c′]]/xα]

= {e′1e′2 | e′1 ∈ [[e1]], e
′
2 ∈ [[e2]]}[c′/α][R[[c′]]/xα]

⊆ {e′1e′2 | e′1 ∈ [[e1[c
′/α]]], e′2 ∈ [[e2[c

′/α]]]}
= [[e1e2[c

′/α]]]

By induction [[e′i]][c
′/α][R[[c′]]/xα] ⊆ [[e′i[c

′/α]]].

case e ≡ 〈e1, e2〉 Analogous to the previous case.

case e ≡ πie
′ Analogous to the previous case.

case e ≡ Λβ:κ.e′ Follows by induction:

[[Λβ:κ.e′]][c′/α][R[[c′]]/xα]

= {Λβ:κ.λxβ:R〈β : κ〉.e′′ | e′′ ∈ [[e′]]}[c′/α][R[[c′]]/xα]
⊆ {Λβ:κ.λxβ:R〈β : κ〉.e′′ | e′′ ∈ [[e′[c′/α]]]}
= [[Λβ:κ.e′[c′/α]]]

74

case e ≡ e′[c1].

[[e′[c1]]][c
′/α][R[[c′]]/xα]

= {e1[c2]e2 | e1 ∈ [[e′]], ∆, α:κ′ ` c1 = c2 : κ, e2 ∈ R[[c2]]}
[c′/α][R[[c′]]/xα]

⊆ [[(e′[c1])[c
′/α]]]

By induction, [[e′]][c′/α][R[[c′]]/xα] ⊆ [[e[c/α]]]. By the previous part 3,

R[[c2]][c
′/α][R[[c′]]/xα] ⊆ R[[c2[c/α]]].

case e ≡ pack e′ as ∃β:κ.σ hiding c1

[[pack e as ∃β:κ.σ hiding c1]][c
′/α][R[[c′]]/xα]

= {pack〈ec, e
′〉 as ∃β:κ.R〈β : κ〉 × σ′ hiding c′1

| ec ∈ R[[c1]], c
′
1 ∈ [[c1]], e

′ ∈ [[e]], σ′ ∈ [[σ]]}[c′/α][R[[c′]]/xα]
⊆ {pack〈ec, e

′〉 as ∃β:κ.R〈β : κ〉 × σ′ hiding c′1
| ec ∈ R[[c1[c′/α]]], c′1 ∈ [[c1[c

′/α]]], e′ ∈ [[e[c′/α]]], σ′ ∈ [[σ[c′/α]]]}
= [[(pack e as ∃β:κ.σ hiding c1)[c

′/α]]]

as by part 3, R[[c1]][c
′/α][R[[c′]]/xα] ⊆ R[[c1[c′/α]]], by lemma 3.4.6

{c′1 | ∆ ` c1 = c′1 : κ}[c′/α] ⊆ {c′1 | ∆ ` c1[c
′/α] = c′1 : κ}

and by induction [[e′]][c′/α][R[[c′]]/xα] ⊆ [[e′[c′/α]]].

case e ≡ unpack〈β, x〉 = e1 in e2 Follows directly by induction.

[[e]][c′/α][R[[c′]]/xα]
= {unpack〈β, y〉 = e′1 in(λxβ:R〈β : κ〉.λx : β.e′2)(π1y)(π2y)

| e′i ∈ [[ei]]}[c′/α][R[[c′]]/xα]
⊆ {unpack〈β, y〉 = e′1 in(λxβ:R〈β : κ〉.λx : β.e′2)(π1y)(π2y)
| e′i ∈ [[ei[c

′/α]]]}
= [[e[c′/α]]]

case e ≡ typerec[α.σ] c′′ (eint , e→, e×)

[[e]][c′/α][R[[c′]]/xα]
= {typerec[α.σ′] e′ (eint

′, e→
′, e×

′)

| σ′ ∈ [[σ]], e′ ∈ R[[c′′]], e′i ∈ [[ei]] for i = int ,→,×}[c′/α][R[[c′]]/xα]
⊆ {typerec[α.σ′] e′ (eint

′, e→
′, e×

′)

| σ′ ∈ [[σ[c′/α]]], e′ ∈ R[[c′′[c′/α]]], e′i ∈ [[ei[c
′/α]]] for i = int ,→,×}

= [[e[c′/α]]]

75

6. Proof is by induction on e.

case e ≡ i Trivial.

case e ≡ x Trivial.

case e ≡ λy:σ.e′.

[[λy:σ.e′]][[[v]]/x]= {λy:σ′.e′′[v′/x] | σ′ ∈ [[σ]], e′′ ∈ [[e′]], v′ ∈ [[v]]}
= {λy:σ′.e′′ | σ′ ∈ [[σ]], e′′ ∈ [[e′[v/x]]]}
= [[(λy:σ.e)[v/x]]]

as by induction [[e′]][[[v]]/x] = [[e′[v/x]]].

case e ≡ fix x:σ.e′ Analogous to the previous case.

case e ≡ e1e2

[[e1e2]][[[v]]/x]= {e′1e′2 | e′1 ∈ [[e1]], e
′
1 ∈ [[e1]]}[[[v]]/x]

= {e′1e′2 | e′1 ∈ [[e1[[[v]]/x]]], e′1 ∈ [[e1[[[v]]/x]]]}
= [[(e1e2)[v/x]]]

as by induction [[ei]][[[v]]/x] = [[ei[v/x]]].

case e ≡ 〈e1, e2〉 Analogous to the previous case.

case e ≡ πie
′ Analogous to the previous case.

case e ≡ Λα:κ.e′

[[Λα:κ.e′]][[[v]]/x]= {Λβ:κ.λxβ:R〈β : κ〉).e′′ | e′′ ∈ [[e′]]}[[[v]]/x]
= {Λβ:κ.λxβ:R〈β : κ〉).e′′ | e′′ ∈ [[e′[[[v]]/x]]]}
= [[(Λβ:κ.e′)[c′/α]]]

as by induction [[e′]][[[v]]/x] = [[e′[v/x]]].

case e ≡ e′[c1].

[[e′[c1]]][[[v]]/x]

= {e1[c2]e2 | e1 ∈ [[e′]], ∆, α:κ′ ` c1 = c2 : κ, e2 ∈ R[[c2]]}[[[v]]/x]
⊆ [[(e′[c1])[v/x]]]

as by induction, [[e′]][[[v]]/x] = [[e[[[v]]/x]]].

case e ≡ pack e′ as ∃β:κ.σ hiding c Follows by induction.

[[e]][[[v]]/x] = {pack〈ec, e
′〉 as ∃β:κ.R〈β : κ〉 × σ′ hiding c′1

| ec ∈ R[[c1]], ∆ ` c1 = c′1 : κ, e′ ∈ [[e]], σ′ ∈ [[σ]]}[[[v]]/x]
= {pack〈ec, e

′〉 as ∃β:κ.R〈β : κ〉 × σ′ hiding c′1
| ec ∈ R[[c1]], ∆ ` c1 = c′1 : κ, e′ ∈ [[e[v/α]]], σ′ ∈ [[σ]]}

= [[(pack e as ∃β:κ.σ hiding c1)[v/x]]]

76

case e ≡ unpack〈β, x〉 = e1 in e2 Follows by induction.

[[e]][[[v]]/x]
= {unpack〈β, x〉 = e′1 in(λxβ:R〈β : κ〉.λx : β.e′2)(π1y)(π2y)
| e′i ∈ [[ei]]}[[[v]]/x]

= {unpack〈β, x〉 = e′1 in(λxβ:R〈β : κ〉.λx : β.e′2)(π1y)(π2y)
| e′i ∈ [[ei[v/x]]]}

= [[e[v/x]]]

case e ≡ typerec[α.σ] c′′ (eint , e→, e×) Follows by induction.

[[e]][[[v]]/x]= {typerec[α.σ′] e′ (eint
′, e→

′, e×
′)

| σ′ ∈ [[σ]], e′ ∈ R[[c′′]], e′i ∈ [[ei]] for i = int ,→,×}[[[v]]/x]
= {typerec[α.σ′] e′ (eint

′, e→
′, e×

′)

| σ′ ∈ [[σ]], e′ ∈ R[[c′′]], e′i ∈ [[ei[[[v]]/x]]] for i = int ,→,×}
= [[e[v/x]]]

�

Next, we also need to establish that the evaluation of term representations
agrees with constructor equality. In the end, our goal is to show that if e ∈ R[[int]]
then e must evaluate to Rint (and similar results for arrow and product types).

Lemma 3.4.8 If v ∈ R[[c]] and ∅ ` c : ? then c is in normal form.

Proof

Proof by induction on c.

case c ≡ int , in normal form.

case c ≡ c1 → c2. By induction c1 and c2 are normal, so c1 → c2 is normal.

case c ≡ c1 × c2 By induction c1 and c2 are normal, so c1 × c2 is normal.

case c 6≡ α, (λα:κ.c), (c1c2), or Typerec c (cint , c→, c×) because either c is not
closed or of the right kind (in the former two cases) or R[[c]] is not a value
(latter two cases).

�

Lemma 3.4.9 For all ∅ ` c : κ, e ∈ R[[c]] then either e is a value or there exists
some e′ and c′ such that e 7→+ e′ and e′ ∈ R[[c′]] and c reduces to c′.

77

Proof

Proof is by induction on ∅ ` c : κ.

case ` int : ?.

In this case R[[int]] is only Rint , a value.

case `→: ? → ? → ?

case ` × : ? → ? → ?. Same as above.

case Variable case cannot occur in closed constructors.

case

[cfn]
∅, α:κ1 ` c : κ2

α:κ1 ` λα:κ1.c : κ1 → κ2

In this case R[[λα:κ1.c]] is a value.

case

[capp]
∅ ` c1 : κ1 → κ2 ∅ ` c2 : κ1

∅ ` c1c2 : κ2

In this case, R[[c1c2]] = {e1[c
′
2]e2 | ei ∈ R[[ci]], ∅ ` c2 = c′2 : κ1} There are

three cases to consider:

• e1 and e2 are values. As e1 ∈ R[[c1]], then ∅ ` e1 : R〈c1 : κ1 → κ2〉.
By canonical forms, e1 must be Λα:κ1.λx:R〈a : κ1〉.e′1. Furthermore,
c1 must be of the form λα:κ1.c

′
1 where e′1 ∈ R[[c′1]] as this is the only

case of R[[·]] that produces a term of this form. Therefore e1[c
′
2]e2 7→

e′1[c
′
2/α][e2/xα]. By substitution corollary 3 this term is in R[[c1[c2/α]]].

As (λα:κ1.c
′
1)c2 reduces to c1[c2/α] we are done.

• e1 7→ e′1. Then e1[c
′
2]e2 7→ e′1[c

′
2]e2. By induction, there exists a c′1 such

that e′1 is in R[[c′1]] and c1 reduces to c′1. Therefore, e′1[c
′
2]e2 ∈ R[[c′1c2]]

and c1c2 reduces to c′1c2.

• e1 is a value and e2 7→ e′2. Then e1[c
′
2]e2 7→ e1[c

′
2]e

′
2. This case is

analogous to the previous.

case

[ctrec]

∅ ` τ : ? ∅ ` cint : κ
∅ ` c→ : ? → ? → κ → κ → κ
∅ ` c× : ? → ? → κ → κ → κ

∅ ` Typerec τ (cint , c→, c×) : κ

78

In this case R[[c]] is

typerec[α.R〈rec(α) : κ〉] e (eint , expand(e→), expand(e×))

where
eint ∈ R[[cint]], e→ ∈ R[[c→]], e× ∈ R[[c×]], e ∈ R[[τ]]

Suppose e ∈ R[[τ]] is a value. By lemma 3.4.8, τ must be either int , c1 → c2

or c1 × c2.

• If τ ≡ int , then e is Rint . R[[c]] 7→ eint ∈ R[[cint]].
As Typerec int (cint , c→, c×) reduces to cint , the result holds.

• If τ ≡ c1 → c2, then by definition of R[[τ]], e is R→[c′1]v1[c
′
2]v2, where

c′i ∈ [[ci]] and vi ∈ R[[ci]]. Therefore
R[[c]] 7→ expand(e→)

[c′1] v1

(typerec[α.R〈rec(α) : κ〉] v1 (eint , expand(e→), expand(e×)))
[c′2] v2

(typerec[α.R〈rec(α) : κ〉] v2 (eint , expand(e→), expand(e×)))
7→6 e→

[c′1] v1 [rec(c′1)]
(typerec[α.R〈rec(α) : κ〉] v1 (eint , expand(e→), expand(e×)))

[c′2] v2 [rec(c′1)]
(typerec[α.R〈rec(α) : κ〉] v2 (eint , expand(e→), expand(e×)))

∈ R[[c→ c1(Typerec c1(cint , c→, c×)) c2 (Typerec c2(cint , c→, c×))]]

As Typerec (c1 → c2) (cint , c→, c×) reduces to

c→ c1 c2 (Typerec c1(cint , c→, c×)) (Typerec c2(cint , c→, c×)),

this evaluation is correct.

• If c ≡ c1 × c2, the case is analogous to the previous.

If e is not a value, then by induction it steps to e′ ∈ R[[τ]], and

typerec[α.R〈rec(α) : κ〉] e (eint , expand(e→), expand(e×))
7→ typerec[α.R〈rec(α) : κ〉] e′ (eint , expand(e→), expand(e×))

∈ R[[c]]

�

Lemma 3.4.10 If e ∈ R[[c]] then e evaluates to a value v ∈ R[[c]].

79

Proof

If e ∈ R[[c]] then e ∈ R[[c′]] for some c′ equal to c. Assume e diverges. By above,
the evaluation sequence of e is e = e1 7→+ e2 7→+ e3 . . ., where ei ∈ R[[ci]] and
ci+1 reduces to ci. If this sequence is infinite, there must be an infinite reduction
sequence for c′, which is impossible. Therefore, this sequence must be e = e1 7→+

e2 7→+ e3 . . . 7→+ en, where en ∈ R[[cn]], for some cn equal to c. Furthermore, en

must be a value by type soundness. �

Corollary 3.4.11 1. If e ∈ R[[int]] then e evaluates to Rint .

2. If e ∈ R[[τ1 → τ2]] then e evaluates to R→[τ ′1] v1 [τ ′2] v2, where ∅ ` τi = τ ′i : ?
and vi ∈ R[[τi]] for i = 1, 2.

3. If e ∈ R[[τ1 × τ2]] then e evaluates to R×[τ ′1] v1 [τ ′2] v2, where ∅ ` τi = τ ′i : ?
and vi ∈ R[[τi]] for i = 1, 2.

Proof

1. By lemma 3.4.10, e evaluates to some v ∈ R[[c]], where ∅ ` int = c : ?. By
lemma 3.4.8, c is in normal form, so it must be int . Therefore, v is Rint .

2. By lemma 3.4.10, e evaluates to some v ∈ R[[c]], where ∅ ` c1 → c2 = c :
?. By lemma 3.4.8, c is in normal form, so it must be c′′1 → c′′2 for some
∅ ` ci = c′i : ?. Therefore v is R→[c′1] v1 [c′2] v2, where ∅ ` ci = c′i : ? and
vi ∈ R[[c′′i]] = R[[ci]].

3. Analogous to the previous case.
�

Lemma 3.4.12 [[v]] only contains values.

Proof

Proof is by induction on v. �

Lemma 3.4.13 (Simulation) If `i e1 : σ and e1 7→i e2 then for all e′1 ∈ [[e1]]
there exists an e′2 ∈ [[e2]] such that e1 7→∗

R e′2.

Proof

Proof by induction on e1 7→i e2.

80

case (Λα:κ.e)[c] 7→i e[c/α]

In this case, [[e1]] = (Λα:κ.λxα:R〈α : κ〉.e′)[c′]v where e′ ∈ [[e]] and ` c = c′ : κ
and v ∈ R[[c]] are arbitrary. This term steps to e′[c′/α][v/xα]. By Lemma 5,
e′[c′/α][v/xα] ∈ [[e[c/α]]].

case (fix f :σ.v)[c] 7→i (v[fix f :σ.v/f])[c]

Here, [[e1]] = (fix f :σ′.v′)[c′]e where ∅ ` σ = σ′, ∅ ` c = c′ : κ and e ∈ R[[c]].
This term steps in LIR to (v′[fix f :σ′.v′/f])[c′]e, which is in [[e2]], by Lemma
6.

case Type analysis of int :

c normalizes to int
typerec c (eint , e→, e×) 7→i eint

Now [[e1]] = typerec e (e ′int , e
′
→, e ′×), where e ∈ R[[c]], e ′int ∈ [[eint]], and e ′→ ∈

[[e→]], e ′× ∈ [[e×]]. By lemma 3.4.11.1, e evaluates to Rint , so the term [[e1]]
steps to e ′int .

case Type analysis of an arrow type.

c normalizes to (c1 → c2)

typerec c (eint , e→, e×)
7→i e→[c1](typerec c1(eint , e→, e×)) [c2] (typerec c1(eint , e→, e×))

As above, [[e1]] = typerec e(e ′int , e
′
→, e ′×), where e ∈ R[[c]], e ′int ∈ [[eint]], and

e ′→ ∈ [[e→]], e ′× ∈ [[e×]]. However, this time, by lemma 3.4.11.2, e evaluates

to R→[c′1] v1 [c′2]v2, where c′1 ∈ [[c1]], c
′
2 ∈ [[c2]], v1 ∈ R[[c1]] and v2 ∈ R[[c2]].

Therefore, the term steps to

e ′→[c′1] v1 (typerec v1 (eint , e→, e×))[c′2] v2 (typerec v2 (eint , e→, e×))

This result is in

[[e→ [c1] (typerec c1(eint , e→, e×)) [c2] (typerec c1(eint , e→, e×))]].

case Type analysis of a product type. This case is analogous to the previous.

case (λx:σ.e)v 7→i e[v/x].

Here, [[(λx:σ.e)v]] includes (λx:σ′.e′)v′ where σ′ ∈ [[σ]], e′ ∈ [[e]] and v′ ∈ [[v]].
This term steps to e′[v′/x]. By Lemma 6, this term is in [[e[v/x]]].

81

case (fix f :σ.v1)v2 7→i (v1[fix f :σ.v1/f])v2

[[(fix f :σ.v)v′]] includes terms of the form (fix f :σ′.v′1)v
′
2 where σ′ ∈ [[σ]], v′i ∈

[[vi]]. This term steps to (v′1[fix f :σ′.v′1/f])v′2. By Lemma 6, this term is in
[[(v1[fix f :σ.v1/f])v2]].

case πi〈v1, v2〉 7→ vi Let e in [[πi〈v1, v2〉]] be πi〈v′1, v′2〉 for v′i ∈ [[vi]]. This term steps
to v′i which is in [[vi]] by definition.

case
e1 7→ e′1

e1e2 7→ e′1e2

Let e in [[e1e2]] be e′′1e
′′
2 for e′′i ∈ [[ei]]. By induction e′′1 steps to some e′′′1 ∈ [[e′1]].

Therefore e′′1e
′′
2 steps to e′′′1 e′′2 which is in [[e′1e2]].

case
e 7→ e′

ve 7→ ve′

Let e1 ∈ [[ve]] be v′e′ for v′ ∈ [[v]] and e′ ∈ [[e]]. By induction e′ steps to some
e′′ ∈ [[e]]. Furthermore, v′ is a value. Therefore, v′e′ steps to v′e′′ which is in
[[ve′]].

case
e 7→ e′

e[c] 7→ e′[c]

Here [[e[c]]] includes e1[c
′]ec where e1 ∈ [[e]], ∅ ` c = c′ : κ, ec ∈ R[[c]]. By

induction, e1 steps to e2 in [[e′]]. Therefore e1[c
′]ec steps to e2[c

′]ec.

case unpack〈α, x〉 = (pack v as ∃β:κ.σ hiding c) in e2 7→ e2[c/α, v/x]

Here

[[e1]] ≡ unpack〈α, y〉 = (pack〈vc, v
′〉 as ∃β:κ.R〈β : κ〉 × σ′ hiding c′)

in(λxα:R〈α : κ〉.λx:α.e′2)(π1y)(π2y)

where vc ∈ R[[c]], v′ ∈ [[v]], σ′ ∈ [[σ]], ∅ ` c′ = c : κ, e′2 ∈ [[e2]]. This term steps
to

(λxα:R〈α : κ〉.λx:α.e′2)(π1y)(π2y)[c′/α][〈vc, v
′〉/y]

which steps to
e′2[c

′/α][vc/xα][v/x]

which is in [[e2[c/α][v/x]]].

82

case
e 7→ e′

pack e as ∃β.σ hiding c 7→ pack e′ as ∃β.σ hiding c

This case follows by induction.

case
e 7→ e′

unpack〈α, x〉 = e in e2 7→ unpack〈α, x〉 = e′ in e2

This case follows by induction.

�

Lemma 3.4.14 If ` e : int and e 7→∗
i i then for all e′ ∈ [[e]], e′ 7→∗

R i.

Proof

By induction on the number of steps in e 7→∗
i i. If e is i and [[e]] is also i. Otherwise,

assume e 7→i e′ 7→∗
i i, and let e1 ∈ [[e]] be arbitrary. By the previous lemma

e1 7→ e′1 ∈ [[e′]], and by induction e′1 7→∗ i. �

Now we can conclude the dynamic correctness of the translation:

Theorem 3.4.15 (Dynamic Correctness) If ` e : int and e 7→∗
i i then

|e| 7→∗
R i.

Proof

Special case of the previous lemma. �

3.5 Discussion and chapter summary

In this chapter, I have described the LIR language that enforces the phase dis-
tinction between types and terms. Types are only used to describe code, and all
information necessary for execution is a part of the term language. The necessary
device is a set of terms that represent the type system, and a special singleton type
that describes the dependency between the value of these terms and their types.
Therefore, the mechanisms of LIR can be applied to type analysis into low-level
typed languages.

The ideas of this chapter were used by Hicks, Weirich and Crary (HWC)
[HWC01] to add dynamic linking to Typed Assembly Language (TAL) [MWCG99].
In that system, types describe the target language of a type-directed compiler. Be-
cause all output of this compiler may be type checked, there is a partial guarantee

83

of the correctness of the compiler. The type system also provides a way for code
consumers to verify that the provided programs satisfy critical safety properties.
By type checking target code, they do not need to trust the compiler that produced
that code, thereby reducing the trusted computing base.

In HWC’s extension of TAL, the desire was to keep the increase of the trusted
computing base to a minimum. In order to add the full capabilities of LIR to
typed assembly language, they would have had to add term representations for
every element of the large and complicated type language of TAL. The imple-
mentation of this addition would have been complicated and its type soundness
(though a straightforward extension of the type soundness of LIR) would have had
to be proved. Furthermore, any extensions to the type language of TAL would
also have to be reflected into type representations—requiring additional trusted
implementation.

Instead, they use existing functionality already within the trusted computing
base for interpreting binary descriptions of types to form the type representations.
The limitation of this strategy is that the creation of representations of types can
only occur at compile time. TAL programs cannot dynamically create representa-
tions at run time (through some sort of type passing) for arbitrary types, as may
be done in LIR. This limitation also prohibits the inclusion of typecase or typerec in
TAL, as run-time type representations cannot be decomposed into smaller parts.
However, types may be examined in their entirety. HWC add a checked type cast-
ing operation to support the implementation of dynamic types. The addition of
this primitive, which behaves the same as the cast example from the previous chap-
ter, does not significantly increase the trusted computing base because comparing
types for equality is already an operation of the TAL type checker.

In the next chapter, I will discuss an alternative to encoding specialized type
representations within the term language. This alternative avoids this unwanted
expansion of the trusted computing base and duplication of the type system within
the term language. It is possible to extend the expressiveness of the type construc-
tor language so that it may encode a low-level type system such as TAL, using
programming language elements such as inductive datatypes and case analysis. By
interpreting this encoding at the term level, we may program type analysis. What
is important about this strategy is that the technical machinery needed for type
analysis is independent of the actual type system of the language.

Chapter 4

Type analysis without hard-wired
types (I)

4.1 Introduction

In this chapter, I discuss a new approach to adding type analysis to an existing
typed programming language. The LX language of Crary and Weirich [CW99a] has
a very expressive type constructor language, including elements commonly found in
functional programming languages such as products, sums and primitive recursion.
Instead of using typerec to analyze the types LX may only determine whether a
sum constructor is a left or right branch. However, with these elements, if the
type system of a language (such as LI) may be expressed as inductive datatype,
it and analysis over it may be encoded in LX. This language demonstrates that
type analysis may be added to a programming language without specializing it
directly to the type system of that language. This encoding is important because it
separates the mechanism for type analysis from the other features of the language.

4.1.1 Type analysis in typed compilation

An extremely important motivation for the LX language is to support intensional
type analysis in the framework of typed-directed compilation. A type-directed
compiler operates over a series of typed intermediate languages. Each phase trans-
lates the types and terms of the source language into its target in a manner that
preserves typing.

However, it is problematic to translate a type-analyzing term from one type lan-
guage into another. Many translations, such as conversion to continuation-passing
style [App92] or closure conversion [MMH96], require a substantial translation of
the types. In this case, since the argument to typecase has been modified, it is

84

85

difficult to preserve the meaning of a typecase expression. If the type translation is
not injective it is impossible to produce the same type analysis, as typecase cannot
discriminate between two source types that map to the same target. Even if this is
not the case, problems still arise. If the transformed types are larger, as is typical,
the target analysis must do additional and unnecessary examination to produce
the same result. Furthermore, the translation may not be surjective. In this event,
exhaustive typecases in the target language do not produce exhaustive typecases
in the result, leading to wasteful additional branches that must be inserted by the
compiler.

Crary and Weirich proposed the LX language as a solution to this problem.
This language allows two distinct notions of type to coexist: the current types and
the types used in some earlier stage of compilation. For example, consider the
following example of LI typecase.

Λα: ? . λx:α.
typecase α of

int =>...(* x has type int *). . .
β × γ =>...(* x has type β × γ *)...

β → γ =>...(* x has type β → γ *)...

Now suppose the compiler performs typed closure conversion [MMH96, MWCG99],
transforming function types τ1 → τ2 into ∃δ.((δ × τ1) → τ2) × δ. In LI, typecase
must add an additional branch.1

Λα: ? . λx:α.
typecase α of

int =>...(* x has type int *). . .
β × γ =>...(* x has type β × γ *)...

∃δ.((δ × β) → γ)× δ =>...(* x has type ∃δ.((δ × β) → γ)× δ *)...

_ =>...(* x has some other type *)...

Intuitively, we would like α to be a “high-level” type, but upon finding it to be
β → γ we want to be able to conclude that x has the closure-converted type. The
LX language supports the description of several kinds of type. For this example,
LX could allow the definition of a special kind MLType, representing the types
before closure conversion. The translation between MLType and the native types
of LX may be expressed with a function interp : MLType → ?, but type analysis
may be performed over the members of MLType, as below.

1This example is not exactly valid in LI, as that language cannot analyze existential types.

86

Λα:MLType. λx:(interp α).
typecase α of

[int]ML =>...(* x has type int *). . .
[β × γ]ML =>...(* x has type (interp β)× (interp γ) *)...

[β → γ]ML =>...(* x has type ∃δ.((δ × (interp β)) → (interp γ))× δ *)...

LX makes this solution possible by providing a rich programming language of
type constructors. In this language, we may define the kind MLType using sum,
product and inductive kinds, and the operator interp using primitive recursion.
Section 4.3 demonstrates this definition.

4.1.2 Type analysis as a programming idiom

Although LX was devised to support type analysis, it does not specify the struc-
ture of types that may be analyzed. This fact about LX reveals that intensional
type analysis is simply a programming idiom that is possible in a language with
sufficiently rich type constructors.

Crary and Weirich also use this flexibility to extend the capabilities of inten-
sional type analysis by describing how to conduct it in the presence of polymorphic
types and other types with binding structure. I will cover this in more detail in
Chapter 4.3. In their paper, they also show how to implement “shallow” type anal-
ysis, for applications that do not require full type information. They also describe
an elegant way to express Haskell-style type classes [PH99] or ML equality types.

Furthermore, in the last chapter I argued that it is important for a type-
analyzing language to support a type-erasure semantics. For simplicity, I first
present LX with a type-passing semantics. Later in this chapter, I explain the
modifications to LX necessary to support a type erasure semantics and the en-
coding of the type-passing LX into that version. Just as LX can encode the type
system with the type constructor language, in the erasure version of LX, the type
representations are also definable within the term language.

4.1.3 Informal presentation

I begin the description of the LX language with an example from Crary and
Weirich [CW99a] that optimizes memory usage in a polymorphic language. Sup-
pose we wish to store arrays of pairs efficiently. In a naive implementation, because
the operations over arrays are polymorphic over their elements, those elements
must be the same size. Consequently, each pair in the array must be boxed so that
all entries are all word sized. This format requires an additional word for each

87

array entry. It is more efficient to store such arrays using arrays of pairs instead
of pairs of arrays.2

For functions that manipulate arrays polymorphically, we must use intensional
type analysis. Because such a polymorphic array may be actually be a pair of ar-
rays, we must determine the actual type of the array elements before we may access
them. To make what we mean concrete, we will first implement this optimization
in LI, and then translate it into LX.

To implement this optimization, we define a type operator optarray and a
corresponding subscript function optsub for optimized arrays. The optarray op-
erator recursively splits arrays of pairs into pairs of arrays. If the element type is
not a pair, it defaults to an ordinary array. (Recursion is not needed at arrow and
array types; we assume optimization in those cases is handled by the caller.) The
built-in function sub has type forall a. array a -> int -> a.

type optarray a =

Typecase a of

int => array int

| b * c => (optarray b) * (optarray c)

| b -> c => array (b -> c)

| array b => array (array b)

fun optsub[a] (x : optarray a) (n : int) =

typecase a of

b * c => (optsub[b] (#1 x) n, optsub[c] (#2 x) n)

| => sub[a] x n

In an LX version of this example, optarray and optsub no longer operate
on types. Instead they operate on type constructors that encode the types. For
example, we inductively define a kind MLType whose members specify the abstract
syntax of a type. In this section we use an informal notation borrowed from ML
datatypes; we will show how this example is formalized in the next section.

kind MLType = Int

| Prod of MLType * MLType

| Arrow of MLType * MLType

| Array of MLType

Members of the kind MLType have no built-in interpretation as types; they are
merely data that may be processed at the level of type constructors. In order to

2An ever better representation would be to use arrays of unboxed, flattened tuples. This also
can be done straightforwardly using type analysis [HM95], but is a more complicated example.

88

use them as types, we must define their meaning by a function mapping MLType

to ?:

interp (Int) = int

interp (Prod(c1,c2)) = (interp c1) * (interp c2)

interp (Arrow(c1,c2)) = (interp c1) -> (interp c2)

interp (Array(c)) = array (interp c)

Note that the function interp is primitive recursive. It only calls itself recursively
on smaller subcomponents. In order to ensure that computations with type con-
structors always terminate, arbitrary recursive functions are not permitted in the
constructor language of LX. This restriction allows us to use the same method for
determining type equality in LX as we used for LI. We will be able to reduce each
type to its normal form. Therefore, type checking is decidable in LX.

In LX, we define the new operator Optarray of kind MLType -> MLType using
primitive recursion.

Optarray(Int) = Array(Int)

Optarray(Prod(c1,c2)) = Prod(Optarray(c1), Optarray(c2))

Optarray(Arrow(c1,c2)) = Array(Arrow(c1,c2))

Optarray(Array(c)) = Array(Array(c))

The corresponding subscript function, optsub, now analyzes members of MLType
rather than actual types.

fun optsub [a : MLType] (x : interp (OptArray a)) (n : int) =

ccase a of

Prod(b,c) => (optsub[b] (#1 x) n, optsub[c] (#2 x) n)

| => sub [interp a] x n

Translating this example into LX has certainly made it more verbose, but it also
makes it robust under further compilation. Suppose the compiler performs closure
conversion, thereby transforming function types τ1 → τ2 into ∃δ.((δ×τ1) → τ2)×δ.
All that is necessary is a change to the appropriate clause of the interp function.

interp (Arrow (c1, c2))

= exists d. ((d * interp c1) -> interp c2) * d

4.2 A Language for flexible type analysis

In this section, I discuss the formal syntax and semantics of LX. I present the
constructor and term levels individually, concentrating discussion on the novel

89

features of each. Like LI and LIR, the syntax of LX (shown in Tables 4.1 and 4.2)
is based on Girard’s Fω [Gir71, Gir72]. The difference is that, instead of including
built-in constructs for analyzing types, LX includes a rich programming language
at the constructor level, and constructor refinement operators at the term level.
The full static and operational semantics of LX appear in Section 4.2.3 and in
Table 4.3.

4.2.1 Kinds and Constructors

Table 4.1: LX: Syntax for kinds and constructors

κ ::= ? | 1 | κ1 → κ2 | κ1 × κ2 | κ1 + κ2

| χ | µχ.κ

c, τ ::= ∗ | α | λα:κ.c | c1c2 unit, vars and functions
| 〈c1, c2〉 | π1c | π2c products
| inj κ1+κ2

1 c | inj κ1+κ2
2 c sums

| case(c, α1.c1, α2.c2)
| foldµχ.κ c | pr(χ, α:κ, β:χ→κ′.c) primitive recursion
| int | τ1 → τ2 | τ1 × τ2 | τ1 + τ2 types
| ∀α:κ.τ | ∃α:κ.τ
| unit | void | µκ(c1, c2) types

The constructor and kind levels, shown in Table 4.1, contain both base con-
structors of kind ? (called types) for classifying terms and a variety of programming
constructs for computing types. In addition to the type functions of Fω, LX also
includes unit, product, and sum kinds. The introduction and elimination con-
structors for those kinds are similar to those of the term language, discussed in
Chapter 2. We label a few constructors (inj i, fold , pr , and µ) with kinds to assist
in kind checking; we will omit such kinds when they are clear from context.

Unlike LI and LIR, this language is impredicative and makes no distinction be-
tween types and type constructors. Therefore the language requires fewer redun-
dant constructs (i.e. both an → constructor and an → type), as both the facilities
for statically computing types and the descriptors of the term language occur in
the same syntactic category. The typerec term of the LI and LIR languages had
a restricted domain—it could not analyze polymorphic types. Therefore, those
languages used predicativity to restrict what types may be abstracted. LX, on the

90

other hand, does not include any terms that perform type analysis, and so does
not need such a restriction.

To support encodings of type structure with abstract syntax trees, LX includes
kind variables (χ) and inductive kinds (µχ.κ). An inductive kind is similar to
standard recursive type with the restriction that χ appears only positively within
κ. Inductive kinds are formed using the introductory operator foldµχ.κ, which
coerces constructors from kind κ[µχ.κ/χ] to kind µχ.κ. For example, consider the
kind of natural numbers Nat , defined as µχ.(1 + χ). The constructor (inj 1+Nat

1 ∗)
has kind (1+χ)[Nat/χ]. Therefore foldNat(inj 1+Nat

1 ∗) has kind Nat , and represents
the natural number 0.

Inductive kinds are eliminated using the primitive recursion operator pr . In-
tuitively, pr(χ, α:κ, ϕ:χ → κ′.c) may be thought of as a recursive function with
domain µχ.κ. Within the body of the function c, α is bound to the argument
and ϕ recursively refers to the full pr expression. To ensure that the reduction of
constructor expressions always terminates, pr may only define primitive recursive
functions. Intuitively, a function is primitive recursive if it can only call itself re-
cursively on a subcomponent of its argument. Following Mendler [Men91], Crary
and Weirich [CW99b] enforce this property using abstract kind variables. Since α
stands for the unfolded argument, we could consider it to have the kind κ[µχ.κ/χ].
Instead of substituting for χ in κ, χ is abstract. The recursive variable ϕ is given
kind χ → κ′ (instead of χ[µχ.κ/χ] → κ′) ensuring that ϕ may be applied only to
a subcomponent of α.

The kind κ′ in pr(χ, α:κ, ϕ:χ → κ′.c) is permitted to contain (positive) free
occurrences of χ. Therefore, the result kind of the above constructor is κ′[µχ.κ/χ].
This substitution is useful so that some part of the argument may be passed
through without ϕ operating on it. For example, we can define a constructor
unfoldµχ.κ with kind µχ.κ → κ[µχ.κ/χ] to be pr(χ, α:κ, ϕ:χ → κ.α).

Given a constructor n with kind Nat , we can use primitive recursion to con-
struct the type of (n + 1)-tuples of integers:

ntuple
def
= pr(χ, α:1 + χ, ϕ:χ → ?.

case α of
inj 1 β ⇒ int
inj 2 γ ⇒ ϕ(γ)× int)

Suppose we apply ntuple to 1, that is, the encoding of the natural number 1,

fold(inj 2(fold(inj 1 ∗))).

91

By unrolling the pr expression, we may show :

(pr(χ, α:1 + χ, ϕ:χ → ?.
case α of

inj 1 β ⇒ int
inj 2 γ ⇒ ϕ(γ)× int)) 1

= case (inj 2(fold(inj 1 ∗))) of
inj 1 β ⇒ int
inj 2 γ ⇒ ntuple(γ)× int

= (ntuple(fold(inj 1 ∗)))× int

= (case (inj 1 ∗) of
inj 1 β ⇒ int
inj 2 γ ⇒ ntuple(γ)× int)× int

= int × int

The following constructor equivalence rule formalizes the unrolling process for pr
constructors. The relevant judgment forms of LX are similar to those of LI, and
are summarized in Table 4.8:

[ce-µβ]

∆ ` c′ : κ[µχ.κ/χ] ∆, χ ` κ′

∆, χ, α:κ, ϕ:χ → κ′ ` c : κ′ ∆ ` µχ.κ
(χ only positive in κ′ and χ, α, ϕ 6∈ ∆)

∆ ` pr(χ, α:κ, ϕ:χ → κ′.c)(foldµχ.κ c′) =
c[µχ.κ/χ, c′/α, pr(χ, α:κ, ϕ:χ→κ′.c)/ϕ] : κ′[µχ.κ/χ]

4.2.2 Terms

The syntax of LX terms appears in Table 4.2. Many LX terms, including the
introduction and elimination forms for functions, products, sums, unit, universal
and existential types and parameterized recursive types, are from the core lan-
guage of Section 2.2.2. As in LIR, constructor abstractions are limited by a value
restriction, in anticipation of the type erasure interpretation in Section 4.4. The
value forms of LX are shown at the bottom of Table 4.2. Also like LIR, recur-
sive functions are expressible using fix terms, the bodies of which are syntactically
restricted to be functions (possibly polymorphic) by their typing rule (Table 4.7).

92

Table 4.2: LX: Syntax for terms and values

e ::= i | () | x | λx:τ.e | e1e2 ints, unit, abstractions
| 〈e1, e2〉 | π1e | π2e products
| inj τ1+τ2

1 e | inj τ1+τ2
2 e sums

| case(e, x1.e1, x2.e2)
| Λα:κ.v | e[c] | fix f :τ.e type abstractions, recursion
| pack〈c, e〉 as ∃α:κ.τ existential packages
| unpack〈α, x〉 = e1 in e2

| rollµk(c,c′) e | unroll e parameterized recursive types
| let [τ] 〈β, γ〉 = c in e constructor refinement
| let [τ] (fold β) = c in e
| ccase[τ](c, α1.e1, α2.e2)

v ::= i | () | λx:c.e | 〈v1, v2〉
| inj τ1+τ2

1 v | inj τ1+τ2
2 v

| Λα:κ.v | fix f :τ.v | rollµk(c,c′) v
| pack v as ∃α.c1 hiding c2

93

Table 4.3: LX: Operational semantics of refinement terms

[ev-ccase1]
c normalizes to inj 1 c′

ccase(c, α1.e1, α2.e2) 7→ e1[c
′/α1]

[ev-ccase2]
c normalizes to inj 2 c′

ccase(c, α1.e1, α2.e2) 7→ e2[c
′/α2]

[ev-let-prod]
c normalizes to 〈c1, c2〉

let〈β, γ〉 = c in e 7→ e[c1, c2/β, γ]

[ev-let-fold]
c normalizes to foldµχ.κ c′

let(foldµχ.κ β) = c in e 7→ e[c′/β]

Refinement The novel features of the LX term language are the three refine-
ment operations. To perform constructor analysis at run time, we require a
mechanism for branching on sum kinds at the term level. The ccase construct
supports this branching. For example, if c normalizes to inj 1(c

′), then the term
ccase(c, α1.e1, α2.e2) evaluates to e1[c

′/α1].
However, we require more than a term with this evaluation behavior. After

branching, we have learned something about the constructor in question, and this
information may result in additional knowledge about the types of our data. We
wish the type system to be able to exploit that knowledge. Consequently, the
typing rule for ccase, when the constructor argument is some variable α, substitutes
for α to propagate the new information:

[e-ccase]

∆, β:κ1; Γ[inj 1 β/α] ` e1[inj 1 β/α] : τ [inj 1 β/α]
∆, β:κ2; Γ[inj 2 β/α] ` e2[inj 2 β/α] : τ [inj 2 β/α]

∆, α:κ1 + κ2 ` c = α : κ1 + κ2

∆, α:κ1 + κ2; Γ ` ccase[τ](c, β.e1, β.e2) : τ
(β 6∈ ∆)

After substitution, types that once depended upon α are now equivalent to new
types, and these types may be different for each branch. For example, if x has
type case(α, β. int , β. bool), its type can be reduced in either branch, allowing it to
be used as an integer in one branch and as a boolean in the other.

In order for LX to enjoy the subject reduction property, we also require two
trivialization rules [CWM02] for ccase, for use when the argument to ccase is a

94

sum introduction:

[e-triv1]
∆ ` c = inj 1 c′ : κ1 + κ2 ∆; Γ ` e1[c

′/α] : τ

∆; Γ ` ccase[τ](c, α.e1, α.e2) : τ

[e-triv2]
∆ ` c = inj 2 c′ : κ1 + κ2 ∆; Γ ` e2[c

′/α] : τ

∆; Γ ` ccase[τ](c, α.e1, α.e2) : τ

Path refinement In the case when the argument to ccase is not a variable, we
may still like to do refinement. For example, suppose α has kind (1 + 1) × ? and
x has type case(π1α, β. int , β. bool). When branching on π1α, we should again be
able to consider x an integer or boolean, but the ordinary ccase rule above no
longer applies since π1α is not a variable. To support refinement in this situation,
LX includes the product refinement operation, let [τ] 〈β, γ〉 = α in e. Like ccase,
the product refinement operation substitutes everywhere for α:

[e-prod]

∆, β:κ1, γ:κ2; Γ[〈β, γ〉/α] ` e[〈β, γ〉/α] : τ [〈β, γ〉/α]
∆, α:κ1 × κ2 ` c = α : κ1 × κ2

∆, α:κ1 × κ2; Γ ` let [τ]〈β, γ〉 = c in e : τ
(β, γ 6∈ ∆)

A similar refinement operation exists for inductive types. Each operation also has
trivialization and nonrefining rules similar to those of ccase.

We may use these refinement operations to turn paths into variables. For
example, suppose α has kind Nat × Nat and we wish to branch on unfold(π1α).
We do so using product and inductive kind refinement:

let 〈β1, β2〉 = α in
let (fold γ) = β1 in

ccase(γ, δ.e1, δ.e2)

Nonpath refinement Since there is no refinement operation for functions,
sometimes a constructor cannot be reduced to a path. Nevertheless, it is still
possible to gain some of the benefits of refinement, using a device due to Harper
and Morrisett [HM95]. Suppose ϕ has kind Nat → (1 + 1), x has type
case(ϕ(1), β. int , β. bool), and we wish to branch on ϕ(1) to learn the type of x.
First we use a constructor abstraction to assign a variable α to ϕ(1), thereby
enabling ccase, and then we use an ordinary abstraction to rebind x with type
case(α, β. int , β. bool):

95

(Λα:1 + 1. λx: case(α, β. int , β. bool).
ccase[τ](α, β.e1, β.e2)) [ϕ(1)] x

Within e1, x will be an integer, and similarly within e2, x will be a Boolean. This
device has all the expressive power of refinement, but is less efficient because of the
need for extra beta-expansions. However, this is the best that can be done with
unknown functions.

4.2.3 Static semantics

Table 4.4: LX: Static semantics for kinds

∆ ` κ

[k-type]
∆ ` ?

[k-triv]
∆ ` 1

[k-var]
∆, χ ` χ

[k-mu] ∆, χ ` κ

∆ ` µχ.κ

(
χ only positive in κ
χ 6∈ ∆

)

[k-fn] ∆ ` κ1 ∆ ` κ2

∆ ` κ1 → κ2

[k-sum] ∆ ` κ1 ∆ ` κ2

∆ ` κ1 + κ2

[k-prod] ∆ ` κ1 ∆ ` κ2

∆ ` κ1 × κ2

96

Table 4.5: LX: Static semantics for constructor formation

∆ ` c : κ

[c-triv]
∆ ` ∗ : 1

[c-var]
∆ ` α : ∆(α)

[c-fn] ∆, α:κ′ ` c : κ ∆ ` κ′

∆ ` λα:κ′.c : κ′ → κ
(α 6∈ ∆)

[c-app] ∆ ` c1 : κ′ → κ ∆ ` c2 : κ′

∆ ` c1c2 : κ

[c-prod] ∆ ` c1 : κ1 ∆ ` c2 : κ2

∆ ` 〈c1, c2〉 : κ1 × κ2

[c-π1]
∆ ` c : κ1 × κ2

∆ ` π1c : κ1

[c-π2]
∆ ` c : κ1 × κ2

∆ ` π2c : κ2

[c-inj1]
∆ ` c : κ1 ∆ ` κ2

∆ ` inj κ1+κ2
1 c : κ1 + κ2

[c-inj2]
∆ ` c : κ2 ∆ ` κ1

∆ ` inj κ1+κ2
2 c : κ1 + κ2

[c-case]

∆ ` c : κ1 + κ2

∆, α:κ1 ` c1 : κ
∆, α:κ2 ` c2 : κ

∆ ` case(c, α.c1, α.c2) : κ
(α 6∈ ∆)

[c-fold] ∆ ` c : κ[µχ.κ/χ]
∆ ` foldµχ.κ c : µχ.κ

97

Table 4.5 (Continued)

[c-pr]

∆, χ, α:κ, ϕ:χ → κ′ ` c : κ′

∆ ` µχ.κ ∆ ` µχ.κ′

∆ ` pr(χ, α:κ, ϕ:χ→κ′.c) : µχ.κ → κ′[µχ.κ/χ]

(
χ, α, ϕ 6∈ ∆

)
[c-int-type]

∆ ` int : ?

[c-fn-type] ∆ ` τ1 : ? ∆ ` τ2 : ?
∆ ` τ1 → τ2 : ?

[c-prod-type] ∆ ` τ1 : ? ∆ ` τ2 : ?
∆ ` τ1 × τ2 : ?

[c-sum-type] ∆ ` τ1 : ? ∆ ` τ2 : ?
∆ ` τ1 + τ2 : ?

[c-all-type] ∆, α:κ ` τ : ? ∆ ` κ

∆ ` ∀α:κ.τ : ?
(α 6∈ ∆)

[c-ex-type] ∆, α:κ ` τ : ? ∆ ` κ

∆ ` ∃α:κ.τ : ?
(α 6∈ ∆)

[c-void-type]
∆ ` void : ?

[c-unit-type]
∆ ` unit : ?

[c-rec-type]

∆ ` c : (κ → ?) → κ → ?
∆ ` κ ∆ ` c′ : κ

∆ ` µκ(c, c′) : ?

98

Table 4.6: LX: Static semantics for constructor equivalence

∆ ` c = c′ : κ

[ce-µβ]

∆ ` c′ : κ[µχ.κ/χ] ∆ ` µχ.κ′

∆, χ, α:κ, ϕ:χ → κ′ ` c : κ′ ∆ ` µχ.κ
(χ, α, ϕ 6∈ ∆)

∆ ` pr(χ, α:κ, ϕ:χ → κ′.c)(foldµχ.κ c′) =
c[µχ.κ/χ, c′/α, pr(χ, α:κ, ϕ:χ→κ′.c)/ϕ] : κ′[µχ.κ/χ]

[ce-π1β] ∆ ` c1 : κ ∆ ` c2 : κ′

∆ ` π1〈c1, c2〉 = c1 : κ

[ce-π2β] ∆ ` c1 : κ′ ∆ ` c2 : κ

∆ ` π2〈c1, c2〉 = c2 : κ

[ce-πη]
∆ ` c : κ1 × κ2

∆ ` 〈π1c, π2c〉 = c : κ1 × κ2

[ce-fnβ]

∆ ` κ′

∆, α:κ′ ` c : κ′ ∆ ` c′ : κ

∆ ` (λα:κ′.c)c′ = c[c′/α] : κ
(α 6∈ ∆)

[ce-fnη] ∆ ` c : κ′ → κ
∆ ` (λα:κ′.cα) = c : κ′ → κ

(α 6∈ c)

[ce-inj 1]

∆, α:κ1 ` c1 : κ ∆, α:κ2 ` c2 : κ
∆ ` c : κ1 ∆ ` κ2

∆ ` case(inj κ1+κ2
1 c, α.c1, α.c2) = c1[c/α] : κ

[ce-inj 2]

∆, α:κ1 ` c1 : κ ∆, α:κ2 ` c2 : κ
∆ ` c : κ2 ∆ ` κ1

∆ ` case(inj κ1+κ2
2 c, α.c1, α.c2) = c2[c/α] : κ

[ce-case η]
∆ ` c : κ1 + κ2

∆ ` case(c, α1. inj κ1+κ2
1 α1, α2. inj κ1+κ2

2 α2) =
c : κ1 + κ2

99

Table 4.6 (Continued)

[ce-ref] ∆ ` c : κ
∆ ` c = c : κ

[ce-sym] ∆ ` c′ = c : κ
∆ ` c = c′ : κ

[ce-trans] ∆ ` c1 = c2 : κ ∆ ` c2 = c3 : κ
∆ ` c1 = c3 : κ

[ce-cong-fn] ∆, α:κ′ ` c = c′ : κ ∆ ` κ′

∆ ` λα:κ′.c = λα:κ′.c′ : κ′ → κ
(α 6∈ ∆)

[ce-cong-app]
∆ ` c1 = c′1 : κ′ → κ ∆ ` c2 = c′2 : κ′

∆ ` c1c2 = c′1c
′
2 : κ

[ce-cong-prod]
∆ ` c1 = c′1 : κ1 ∆ ` c2 = c′2 : κ2

∆ ` 〈c1, c2〉 = 〈c′1, c′2〉 : κ1 × c2

[ce-cong-prj1] ∆ ` c = c′ : κ1 × κ2

∆ ` π1c = π1c
′ : κ1

[ce-cong-prj2] ∆ ` c = c′ : κ1 × κ2

∆ ` π2c = π2c
′ : κ2

[ce-cong-inj1]
∆ ` c = c′ : κ1 ∆ ` κ2

∆ ` inj κ1+κ2
1 c = inj κ1+κ2

1 c′ : κ1 + κ2

[ce-cong-inj2]
∆ ` c = c′ : κ2 ∆ ` κ1

∆ ` inj κ1+κ2
2 c = inj κ1+κ2

2 c′ : κ1 + κ2

[ce-cong-case]

∆ ` c = c′ : κ1 + κ2

∆, α:κ1 ` c1 = c′1 : κ
∆, α:κ2 ` c2 = c′2 : κ

∆ ` case(c, α.c1, α.c2) =
case(c′, α.c′1, α.c′2) : κ

(α 6∈ ∆)

100

Table 4.6 (Continued)

[ce-cong-fold]
∆ ` c = c′ : κ[µχ.κ/χ]

∆ ` foldµχ.κ c = foldµχ.κ c′ : µχ.κ

[ce-cong-pr]

∆, χ, α:κ, ϕ:χ → κ′ ` c1 = c2 : κ′

∆ ` µχ.κ ∆, χ ` κ′

∆ ` pr(χ, α:κ, ϕ:χ→κ′.c1) = pr(χ, α:κ, ϕ:χ→κ′.c2)
: µχ.κ → κ′[µχ.κ/χ]

(χ only positive in κ′ and χ, α, ϕ 6∈ ∆)

[ce-cong-fn-type]
∆ ` τ1 = τ ′1 : ? ∆ ` τ2 = τ ′2 : ?

∆ ` τ1 → τ2 = τ ′1 → τ ′2 : ?

[ce-cong-prod-type]
∆ ` τ1 = τ ′1 : ? ∆ ` τ2 = τ ′2 : ?

∆ ` τ1 × τ2 = τ ′1 × τ ′2 : ?

[ce-cong-sum-type]
∆ ` τ1 = τ ′1 : ? ∆ ` τ2 = τ ′2 : ?

∆ ` τ1 + τ2 = τ ′1 + τ ′2 : ?

[ce-cong-all-type] ∆, α:κ ` τ = τ ′ : ? ∆ ` κ

∆ ` ∀α:κ.τ = ∀α:κ.τ ′ : ?
(α 6∈ ∆)

[ce-cong-ex-type] ∆, α:κ ` τ = τ ′ : ? ∆ ` κ

∆ ` ∃α:κ.τ = ∃α:κ.τ ′ : ?
(α 6∈ ∆)

[ce-cong-rec-type]

∆ ` κ ∆ ` c2 = c′2 : κ
∆ ` c1 = c′1 : (κ → ?) → κ → ?

∆ ` µκ(c1, c2) = µκ(c′1, c
′
2) : ?

Table 4.7: LX: Static semantics for expressions

∆; Γ ` e : τ

101

Table 4.7 (Continued)

[e-ccase]

∆, β:κ1; Γ[inj κ1+κ2
1 β/α] ` e1[inj κ1+κ2

1 β/α] : τ [inj κ1+κ2
1 β/α]

∆, β:κ2; Γ[inj κ1+κ2
2 β/α] ` e2[inj κ1+κ2

2 β/α] : τ [inj κ1+κ2
2 β/α]

∆, α:κ1 + κ2 ` c = α : κ1 + κ2

(β 6∈ ∆, τ, Γ)

∆, α:κ1 + κ2; Γ ` ccase[τ](c, β.e1, β.e2) : τ

[e-prod]

∆, β:κ1, γ:κ2; Γ[〈β, γ〉/α] ` e[〈β, γ〉/α] : τ [〈β, γ〉/α]
∆, α:κ1 × κ2 ` c = α : κ1 × κ2

(β, γ 6∈ ∆, τ, Γ))

∆, α:κ1 × κ2; Γ ` let [τ]〈β, γ〉 = c in e : τ

[e-fold]

∆, β:κ[µχ.κ/χ]; Γ[foldµχ.κ β/α] ` e[foldµχ.κ β/α] : τ [foldµχ.κ β/α]
∆, α:µχ.κ ` c = α : µχ.κ

(β 6∈ ∆, τ, Γ)

∆, α:µχ.κ; Γ ` let [τ](foldµχ.κ β) = c in e : τ

[e-triv1]
∆ ` c = inj κ1+κ2

1 c′ : κ1 + κ2 ∆; Γ ` e1[c′/α] : τ

∆; Γ ` ccase[τ](c, α.e1, α.e2) : τ

[e-triv2]
∆ ` c = inj κ1+κ2

2 c′ : κ1 + κ2 ∆; Γ ` e2[c′/α] : τ

∆; Γ ` ccase[τ](c, α.e1, α.e2) : τ

[e-triv3]
∆ ` c = 〈c1, c2〉 : κ1 × κ2 ∆; Γ ` e[c1, c2/β, γ] : τ

∆; Γ ` let [τ] 〈β, γ〉 = c in e : τ

[e-triv4]
∆ ` c = foldµχ.κ(c′) ∆; Γ ` e[c′/β] : τ

∆; Γ ` let [τ] (foldµχ.κ β) = c in e : τ

4.2.4 Properties of LX

The judgments of the static semantics of LX appear in Table 4.8. Because of the
presence of kind variables and their positivity restriction, not all syntactic kinds
are well formed. Therefore, LX formalizes kind formation and augments ∆ with
the currently bound kind variables.

102

Table 4.8: LX: Judgment forms

Judgment Meaning

∆ ` κ κ is a well-formed kind
∆ ` c : κ c is a valid constructor of kind κ
∆ ` c1 = c2 : κ c1 and c2 are equal constructors
∆; Γ ` e : τ e is a term of type τ

Contexts

∆ ::= ε | ∆, χ | ∆, α:κ
Γ ::= ε | Γ, x:τ

Like LI and LIR, LX satisfies the important properties of decidable type check-
ing and type safety. For type checking, the challenging part is deciding equality of
type constructors. This equality is defined using a normalize and compare method
employing a reduction relation extracted from the equality rules in the same man-
ner as in LI.

Lemma 4.2.1 Reduction of well-formed constructors is strongly normalizing, con-
fluent, preserves kinds, and is respected by equality.

Strong normalization is proven using Mendler’s variation on Girard’s method
[Men87, Men91]. Given Lemma 4.2.1 it is easy to show the normalize and compare
algorithm to be terminating, sound and complete, and decidability of type checking
follows in a straightforward manner.

Theorem 4.2.2 (Decidability) It is decidable whether or not ∆; Γ ` e : τ is
derivable in LX.

We say that a term is stuck if it is not a value and if no rule of the operational
semantics applies to it. Type safety requires that no well-typed term can become
stuck:

Theorem 4.2.3 (Type Safety) If ∅ ` e : τ and e 7→∗ e′ then e′ is not stuck.

The proof of this theorem is standard, relying on the usual lemmas: Progress,
Subject Reduction and Substitution.

103

4.3 Programming type analysis

In this section, I discuss how to implement type analysis in general with LX. I
begin with a specific example: Crary and Weirich’s formalization of the Optarray

example from Section 4.1.3. Crary and Weirich [CW99a] describe number of novel
styles of type analysis. For example, LX may provide a version of type classes
where the domain of type analyzing terms may be restricted to include only those
types for which the operation is defined. The LX language may also encode shallow
representations of types, for applications of type analysis where the complete type
information is not necessary at run time. Finally, LX provides the first mechanism
for type-level analysis of types with binding structure (such as universal, existential
or recursive types). Because it will be relevant to Chapter 6, I will discuss this last
extension in detail at the end of this section.

The basic idea of the type analysis programming idiom is to use elements of the
constructor language to represent types and to define an interpretation function
to extract the represented type. Instead of destructing types through typerec,
type-analyzing functions examine constructors the built-in features of LX.

Recall from Section 4.1.3 the inductive kind MLType

kind MLType = Int

| Prod of MLType * MLType

| Arrow of MLType * MLType

| Array of MLType

and its (primitive-recursive) interpretation function

interp (Int) = int

interp (Prod(c1,c2)) = (interp c1) * (interp c2)

interp (Arrow(c1,c2)) = (interp c1) -> (interp c2)

interp (Array(c)) = array (interp c)

If we add an array type constructor to LX for this example, we can formalize these
definitions in LX by encoding the datatype definition of MLType into a recursive

104

sum of products. Below, if κ1 = µχ.κ′ let κ1[κ2] abbreviate κ′[κ2/χ].

MLType
def
= µχ.(1 + ((χ× χ) + ((χ× χ) + χ)))

interp
def
= pr(χ, α:MLType[χ], ϕ:χ → ?.

case α of
inj 1 β ⇒ int
inj 2 β ⇒

(case β of
inj 1 β ⇒ ϕ(π1β)× ϕ(π2β)
inj 2 β ⇒

(case β of
inj 1 β ⇒ ϕ(π1β) → ϕ(π2β)
inj 2 β ⇒ array(ϕ(β)))))

Now recall the function optsub from Section 4.1.3. To formalize optsub in LX,
we use ccase and inductive kind refinement:

fix optsub : (∀α:MLType. interp(OptArray(α)) → int → interp(α)).
Λα:MLType. λx: interp (OptArray(α)). λn: int .

let (fold α′) = α in
ccase α′ of

inj 1 β ⇒ sub[interp(α)] x n
inj 2 β ⇒

(ccase β of
inj 1 γ ⇒ 〈optsub[π1γ] (π1x) n, optsub[π2γ] (π2x) n〉
inj 2 γ ⇒ . . .)

We may verify that optsub is well typed using the typing rules from the pre-
vious section. The interesting branch is the one dealing with products (begin-
ning with “inj 1 γ ⇒ . . .”). The let operation creates a new variable α′ with kind
MLType[MLType] and substitutes fold(α′) everywhere that α appears. In the prod-
uct branch, after two uses of ccase, γ has kind MLType×MLType and inj 2(inj 1(γ))
is substituted for α′.

The required result type is interp(α), which (after substitution) becomes

interp(fold(inj 2(inj 1(γ))))

which by definition is equal to

interp(π1γ)× interp(π2γ).

105

The type of x is interp(OptArray(α))
= interp(OptArray(fold(inj 2(inj 1(γ)))))
= interp(OptArray(π1γ))× interp(OptArray(π2γ)).

Thus π1x and π2x have the appropriate type for the call to optsub and the
branch type checks.

4.3.1 Types with binding structure

Because types with binding structure (universal, existential and recursive types)
cannot generally be included in an inductive description of the type system, LI
prohibited the analysis of those type constructors. However, by coding the abstract
syntax of the type, Crary and Weirich provide the first type-level analysis of types
with binding structure.

For example, we can encode the polymorphic lambda calculus using de Bruijn
indices as follows (because the official LX syntax is so verbose, we will use the ML
datatype notation):

kind Nat = Zero

| Succ of Nat

kind FType = Var of Nat

| Arrow of FType * FType

| Forall of FType

To interpret an FType we also need to provide an environment env that maps
type variables (natural numbers) to types. Thus interp has kind (Nat -> *)

-> FType -> *. To interpret variables, we retrieve them from the environment.
For arrow types, we interpret the subcomponents of the arrow with the same
environment. In the Forall branch, we interpret the body with an appropriately
extended environment.

interp env (Var (c)) = env(c)

interp env (Arrow (c1,c2)) = (interp env c1) -> (interp env c2)

interp env (Forall (c)) = forall (a:*).

interp (fn (b:Nat) =>

case (unfold b) of

Zero => a

| Succ n => env n) c

Type analysis of this language at the term level can be defined in a manner
similar to the previous example.

106

Table 4.9: LX: Representation types

R〈c : 1〉 def
= unit

R〈c : κ1 → κ2〉
def
= ∀α:κ1.R〈α : κ1〉 → R〈cα : κ2〉

(where α is fresh)

R〈c : κ1 × κ2〉
def
= R〈π1c : κ1〉 ×R〈π2c : κ2〉

R〈c : κ1 + κ2〉
def
= case(c, α.R〈α : κ1〉, α. void)+

case(c, α. void , α.R〈α : κ2〉)
R〈c : χ〉 def

= ϕχc

R〈c : µχ.κ〉 def
= µµχ.κ(λϕχ:µχ.κ → ?.

λα:µχ.κ.R〈unfold α : κ〉, c)
(where α is fresh)

R〈c : ?〉 def
= unit

4.4 Type erasure

The most important contribution of LIR is its reconciliation of type analysis with
type-erasure semantics, through the use of primitive terms that express the repre-
sentations of types at run time. This mechanism allows a semantics where types
and type constructors may be erased, as their representations remain to be exam-
ined. As I argued in Chapter 3, a type erasure semantics is essential in extending
type analysis to low-level languages. In this section, I describe how the methodol-
ogy of LIR may be used in a type erasable version of LX called LXR and how LX
may be translated to this language.

The key part of the translation between LI to LIR was to replace the analysis
of any type by an analysis of its representation. So that we could form these type
representations when parts of the type were abstract, it was important that the
translation ensure that whenever a term abstracts a type variable it also abstracts
the representation of that type.

The translation between LX and LXR is very much analogous to this transla-
tion. Again, the most important part is to create term representations of LX type
constructors, and replace LX’s ccase operator with a term analysis of the repre-
sentation of the argument to ccase. To support this translation, LXR includes a
special form called vcase, discussed below. The static and dynamic semantics for
vcase appear in Tables 4.11 and 4.12. Because the most important part of this
translation is representing the type constructors with LXR terms, the rest of this
section is devoted to that definition.

107

Table 4.10: LX: Representation terms

R| ∗ | def
= ()

R|α| def
= xα

R|λα:κ.c| def
= Λα:κ. λxα:R〈α : κ〉.R|c|

R|c1c2|
def
= R|c1|[c2]R|c2|

R|〈c1, c2〉|
def
= 〈R|c1|,R|c2|〉

R|πic|
def
= πiR|c|

R| inj κ1+κ2
i c| def

= inj
R〈inj i c:κ1+κ2〉
i R|c|

R| case(c, α.c1, α.c2)|
def
= (Λβ:κ1 + κ2. λx:R〈β : κ1 + κ2〉.

case x of
inj 1 xα ⇒ vcase[R〈case(β, α.c1, α.c2) : κ〉]

(β, α.R|c1|, α. dead xα)
inj 2 xα ⇒ vcase[R〈case(β, α.c1, α.c2) : κ〉]

(β, α. dead xα, α.R|c2|))
[c]R|c|

(where β is fresh, κ1 + κ2 is the kind of c
and κ is the kind of case(c, α.c1, α.c2))

R| foldµχ.κ c| def
= rollR〈foldµχ.κ c:µχ.κ〉R|c|

R| pr(χ, α:κ, ϕ:χ → κ′.c)| def
= fix xϕ.

Λβ:µχ.κ. λx:R〈β : µχ.κ〉.
(λxα:R〈unfold β : κ[µχ.κ/χ]〉.
R|c|

[µχ.κ/χ, (λγ:µχ.κ.R〈γ : µχ.κ〉)/ϕχ,
unfold β/α, pr(χ, α:κ, ϕ:χ → κ′.c)/ϕ])

(unroll x)
(where β is fresh)

R| int |,R|τ1 → τ2|, . . .
def
= ()

108

To represent the basic type constructors of LI, the LIR language contains special
terms (Rint , R→ , R×). Besides those, it was necessary to define representations
for the rest of the LI constructor language, including functions, variables and
applications. We did so with the notationR|c| (see Table 3.6) for the representation
of the constructor c. For example, we represented constructor functions by term
functions and constructor application by term application.

R|α| def
= xα

R|λα:κ.c| def
= Λα:κ. λxα:R〈α : κ〉. R|c|

R|c1c2|
def
= R|c1| [c2] R|c2|

For each representation, the kind of the constructor determines the type of its
representation. We formed the type of the representation R|c| with the definition
of R〈c : κ〉 in Table 4.9. We added the special R-type to LIR, which formed the
type of representations of kind ?.

R〈c : ?〉 = R(c)

For constructors of function kind, the representations are of type

R〈c : κ1 → κ2〉
def
= ∀α:κ1.R〈α : κ1〉 → R〈cα : κ2〉 (where α is fresh)

Because the LX language includes a rich constructor language with product,
sum and inductive constructors, we will need to extend the definitions of R|c| and
R〈c : κ〉 to include these new forms. As the LX language allows the encoding
of various type systems through this rich constructor language, LXR allows the
encoding of representations of those types. Therefore, we will not need the R-type
or the basic terms Rint , R→ and R× . By extending the definition of R|c|
to the rich forms of LX we may encode term representations of types with the
representations of the constructors we used to encode the types. In Section 4.4.2
we demonstrate this idea with an embedding of LIR within LXR.

The complete definitions of R|c| and R〈c : κ〉 for LX appear in Tables 4.10
and 4.9. In general, we represent an LX constructor form with an equivalent LX
term form. The reason is one of consistency. If two LX type constructors are
equivalent (according to the definition of equality, ∆ ` c1 = c2 : κ) then the terms
that represent them should behave in equivalent ways.

Because types may not be analyzed in LX, they have trivial representations in
LXR. All types are represented by the term (). The representation of constructor
functions and application remains the same as in LIR. We map unit constructors
to unit terms, and product constructors to product terms.

109

R| ∗ | def
= ()

R|〈c1, c2〉|
def
= 〈R|c1|,R|c2|〉

R|πic|
def
= πi(R|c|)

Therefore, the type of the representations of constructors with unit kinds is unit
and the type of representations of constructors with product kinds is a product
type.

R〈c : 1〉 def
= unit

R〈c : κ1 × κ2〉
def
= R〈π1c : κ1〉 ×R〈π2c : κ2〉

Inductive Constructors We represent an inductive constructor c using a recur-
sive type parameterized by c. The recursive type binds the variable ϕχ to compute
the representation of the inductive type.

R〈c : µχ.κ〉 def
= µµχ.κ(λϕχ:µχ.κ → ?. λα:(µχ.κ). R〈unfold α : κ〉, c)

R〈c : χ〉 def
= ϕχ c

As fold introduces an inductive kind in the constructor language, we use roll
introduce the appropriate recursive type.

R| foldµχ.κ c| def
= rollR〈foldµχ.κ c:µχ.κ〉R|c|

To represent primitive recursion, we must use fix , which creates iteration at the
term level. Suppose β is fresh. The type of the representation of a pr constructor
should be:

R〈pr(χ, α:κ, ϕ:χ → κ′.c) : µχ.κ → κ′[µχ.κ/χ]〉
= ∀β:µχ.κ.R〈β : µχ.κ〉 → R〈pr(χ, α:κ, ϕ:χ → κ′.c)β : κ′[µχ.κ/χ]〉

R| pr(χ, α:κ, ϕ:χ → κ′.c)| def
=

fix xϕ.
Λβ:µχ.κ. λx:R〈β : µχ.κ〉.

((λxα:R〈unfold β : κ[µχ.κ/χ]〉.
R|c|[µχ.κ/χ, (λγ.R〈γ : µχ.κ〉)/ϕχ, (unfold β)/α, pr(χ, α:κ, ϕ:χ → κ′.c)/ϕ])

(unroll x))

110

Table 4.11: LXR: Static semantics for vcase

[e-vc1]

∆, β:κ1; Γ[inj κ1+κ2
1 β/α] ` v[inj κ1+κ2

1 β/α] : void
∆, β:κ2; Γ[inj κ1+κ2

2 β/α] ` e[inj κ1+κ2
2 β/α] : τ [inj κ1+κ2

2 β/α]
∆, α:κ1 + κ2 ` c = α : κ1 + κ2

∆, α:κ1 + κ2; Γ ` vcase[τ](c, β. dead v, β.e) : τ
(β 6∈ ∆)

[e-vc2]

∆, β:κ1; Γ[inj κ1+κ2
1 β/α] ` e[inj κ1+κ2

1 β/α] : τ [inj κ1+κ2
1 β/α]

∆, β:κ2; Γ[inj κ1+κ2
2 β/α] ` v[inj κ1+κ2

2 β/α] : void
∆, α:κ1 + κ2 ` c = α : κ1 + κ2

∆, α:κ1 + κ2; Γ ` vcase[τ](c, β.e, β. dead v) : τ
(β 6∈ ∆)

[e-triv5]
∆ ` c = inj κ1+κ2

1 c′ : κ1 + κ2 ∆; Γ ` e1[c
′/α] : τ

∆; Γ ` vcase[τ](c, α.e1, α. dead v) : τ

[e-triv6]
∆ ` c = inj κ1+κ2

2 c′ : κ1 + κ2 ∆; Γ ` e2[c
′/α] : τ

∆; Γ ` vcase[τ](c, α. dead v, α.e2) : τ

[e-triv7]
∆ ` c = inj κ1+κ2

1 c′ : κ1 + κ2 ∆; Γ ` e2[c
′/α] : void

∆; Γ ` vcase[τ](c, α.e1, α. dead v) : τ

[e-triv8]
∆ ` c = inj κ1+κ2

2 c′ : κ1 + κ2 ∆; Γ ` e1[c
′/α] : void

∆; Γ ` vcase[τ](c, α. dead v, α.e2) : τ

111

Table 4.12: LXR: Operational semantics for vcase

Value Syntax
v ::= . . . | (fix f :τ.v)[c1] . . . [cn]

Operational Rules Remove the rules ev-fix1, ev-fix2, ev-ccase1, ev-ccase2. Add
the following rules:

[ev-fix]
(fix f :c.e)[c1]...[cn]v 7→ (e[fix f :c.e/f])[c1]...[cn]v

[ev-vcase1]
c normalizes to inj 1 c′

vcase(c, α1.e1, α2. dead v) 7→ e1[c
′/α1]

[ev-vcase2]
c normalizes to inj 2 c′

vcase(c, α1. dead v, α2.e2) 7→ e2[c
′/α2]

Sum Constructors The definition of the representation of sum constructors is
the most important and the most subtle of all of the constructors of LX. Unlike LI
and LIR, instead of analyzing constructors of kind ? with typecase, LX analyzes
constructors of sum kind with ccase. It is this ccase that prevents type erasure
in LX; the operation of ccase depends on its argument type constructor. In order
to create an erasable version of LX, we need to replace ccase by something that
analyzes term representations of the sum constructors.

What should the term representation of a sum constructor be? It makes sense
that we should represent sum constructors by sum terms. If the sum constructor
is a left injection of some c′, then its term representation should be a left injection
of the representation of c′:

R| inj κ1+κ2
i c| def

= inj
R〈inj i c:κ1+κ2〉
i R|c|

What is the type of such a representation? (i.e., what is R〈inj i c : κ1 + κ2〉?)
The type of an injection term must be a sum type. Furthermore, if c is inj 1 c1 then
left component of this sum type should be R〈c1 : κ1〉. To enforce that the term
representation is inj 1 of the representation of c1, we make the right component of
the sum type void . Because the void type contains no values, if a term is of type
R〈c1 : κ〉1 + void it must evaluate to an inj 1 term. Likewise, if c is inj 2 c2 then the
right component of the sum type should be R〈c2 : κ2〉 and the left component of
the sum type should be void . We may express this entire type using a case analysis

112

of c.

R〈c : κ1+κ2〉
def
= case c (α.R〈α : κ1〉+void , α. void +R〈α : κ2〉) (where α is fresh)

However, in practice, there is a problem with the above definition. If c is abstract,
the type is not a sum type, so we cannot use case analysis of this representation.
Even though both branches of the case analysis produce sum types, our equational
theory does not let us conclude that the type is equivalent to a sum type. If this
type is not a sum, then we cannot use case for terms of this type. So when we do
not know the type that is represented by such a term, we cannot use case analysis
to find out its identity. Therefore, we use a related definition that commutes the
sum and the case analysis.

R〈c : κ1 + κ2〉
def
= case(c, α.R〈α : κ1〉, α. void) + case(c, α. void , α.R〈α : κ2〉)

We already have a facility for analyzing term sums, the standard case expres-
sion. Say a term of this type is the argument to case. In the first branch, the
argument is of type

case(c, α.R〈α : κ1〉, α. void).

Because there are no closed values of type void , we know that c must be inj 1 c′ for
some c′. In order to reflect this knowledge we add a coercion to the term language
called a virtual case or vcase. The typing judgment for vcase for the left branch is
below:

∆, β:κ1; Γ[inj 1 β/α] ` e[inj 1 β/α] : τ [inj 1 β/α]
∆, β:κ2; Γ[inj 2 β/α] ` v[inj 2 β/α] : void
∆, α:κ1 + κ2 ` c = α : κ1 + κ2

∆, α:κ1 + κ2; Γ ` vcase[τ](c, β.e, β. dead v) : τ
(β 6∈ ∆)

We call this case virtual because we know statically which branch will be taken,
the left branch. The formation rules for the left branch are just the same as for
ccase. In the right branch, or dead branch, we must show that had the argument
constructor c have been a right injection, we would produce a value, v of type void .
We list the complete rules for vcase in Tables 4.11 and 4.12. In addition to the
formation rule for vcase above (and its analogue), because it does refinement, we
require a number of trivialization rules for vcase.

Below, we use vcase to construct the representation of a constructor that em-
ploys case analysis. Because of refinement, the argument to vcase must be statically
equal to a type variable. Therefore, we must abstract this argument with a fresh

113

variable β. Suppose κ1 + κ2 is the kind of c, and κ the kind of case(c, α.c1, α.c2):

R| case(c, α.c1, α.c2)|
def
=

(Λβ:κ1 + κ2. λx:R〈β : κ1 + κ2〉.
case x of

inj 1 xα ⇒ vcase[R〈case(β, α.c1, α.c2) : κ〉](β, α.R|c1|, α. dead xα)
inj 2 xα ⇒ vcase[R〈case(β, α.c1, α.c2) : κ〉](β, α. dead xα, α.R|c2|)) [c] R|c|

4.4.1 Type soundness of constructor representation

Next, we prove that a constructor’s representation does represent it, by stating that
in an appropriate context, the translation of a constructor (from the translation
defined in Table 4.10) has the correct type (as defined in Table 4.9). The result is
the analogue to Lemma 3.4.1 of the translation between LI and LIR.

We begin, as usual, with some substitution lemmas:

Lemma 4.4.1
R〈c[c′/α] : κ〉 = R〈c : κ〉[c′/α]

Proof

By structural induction on κ. �

Lemma 4.4.2 If ϕχ is not free in c

R〈c[κ′/χ] : κ[κ′/χ]〉 = R〈c : κ〉[κ′, λα:κ′.R〈α : κ′〉/χ, ϕχ]

Proof

by structural induction on κ. �

Using the definition of Rcon(·) and Rval(·) in Table 4.13, we may state the
connection between a representation and its type.

Theorem 4.4.3 (Representations) If ∆ ` c : κ then

Rcon(∆); Rval(∆) ` R|c| : R〈c : κ〉.

Proof

For notational convenience, define R(∆)
def
= Rcon(∆); Rval(∆). Proof is by induction

on the derivation of ∆ ` c : κ, and case analysis of the last rule of the derivation.
Selected cases appear below:

114

Table 4.13: Translation of LX contexts

Rcon(∅)
def
= ∅

Rcon(∆, χ)
def
= Rcon(∆), χ, ϕχ:χ → ?

Rcon(∆, α:κ)
def
= Rcon(∆), α:κ

Rval(∅)
def
= ∅

Rval(∆, χ)
def
= Rval(∆)

Rval(∆, α:κ)
def
= Rval(∆), xα:R〈α : κ〉

case (c-inj1)
∆ ` c : κ1 ∆ ` κ2

∆ ` inj κ1+κ2
1 c : κ1 + κ2

As R| inj κ1+κ2
1 c| is defined as inj

R〈inj 1 c:κ1+κ2〉
1 R|c| and R〈inj 1 c : κ1 + κ2〉 is

case(inj 1 c, α.R〈α : κ1〉, α. void) + case(inj 2 c, α. void , α.R〈α : κ2〉), or R〈c :
κ1〉+ void , it suffices to show

R(∆) ` inj
R〈c:κ1〉+void
1 R|c| : R〈c : κ1〉+ void

By induction we know R(∆) ` R|c| : R〈c : κ1〉 so we may apply (e-inj1) to
derive this result. The case for (e-inj2) is analogous.

case (c-case)

∆ ` c : κ1 + κ2 ∆, α:κ1 ` c1 : κ ∆, α:κ2 ` c2 : κ

∆ ` case(c, α.c1, α.c2) : κ
(α 6∈ ∆)

By induction we know three judgments:

R(∆) ` R|c| : case(c, α : R〈α : κ1〉, α. void) + case(c, α. void , α.R〈α : κ2〉)

Rcon(∆), α : κ1; Rval(∆), xα : R〈α : κ1〉 ` R|c1| : R〈c1 : κ1〉

Rcon(∆), α : κ2; Rval(∆), xα : R〈α : κ2〉 ` R|c2| : R〈c1 : κ2〉

We wish to show that:

R(∆) ` R| case(c, α.c1, α.c2)| : R〈case(c, α.c1, α.c2) : κ〉

115

By expanding the definition and pushing abstracted variables into the context
via (e-fn) (e-tfn) and (e-case), it suffices to show that:

Rcon(∆), β : κ1 + κ2;
Rval(∆), x : R〈β : κ1 + κ2〉, xα : case(β, α.R〈α : κ1〉, α. void)
` vcase[R〈case(β, α.c1, α.c2) : κ〉](β, α.R|c1|, α. dead xα)
: R〈case(β, α.c1, α.c2) : κ〉

and its analogue.

First define the term context with β replaced by inj 1 α

Γ1
def
= (Rval(∆), x:R〈β : κ1 + κ2〉, xα: case(β, α.R〈α : κ1〉, α. void))

[inj 1 α/β]
def
= Rval(∆), x:R〈α : κ1〉+ void , xα:R〈α : κ1〉

and analogously Γ2
def
= Rval(∆), x: void +R〈α : κ2〉, xα: void .

It suffices to show that :

• (Rcon(∆), α:κ1; Γ1 ` R|c1| : R〈case(inj 1 α), α.c1, α.c2 : κ〉)[inj 1 α/β]

As β is not free in c1 and c2, this follows from induction.

• Rcon(∆), α : κ2; Γ2 ` xα : void , trivial

• Rcon(∆), β : κ1 + κ2 ` β = β : κ1 + κ2, trivial

case (c-fold)
∆ ` c : κ[µχ.κ/χ]

∆ ` foldµχ.κ c : µχ.κ

We would like to prove

R(∆) ` rollR〈foldµχ.κ c:µχ.κ〉R|c| : R〈foldµχ.κ c : µχ.κ〉

where R〈foldµχ.κ c : µχ.κ〉 = µµχ.κ(λϕχ:µχ.κ → ?.λα:µχ.κ.R〈unfold α :
κ〉, foldµχ.κ c)

It suffices to prove the premises of (e-fold)

• Well formedness of the recursive type:

Rcon(∆) ` µµχ.κ(λϕχ:µχ.κ → ?.λα:µχ.κ.R〈unfold α : κ〉, foldµχ.κ c) : ?

116

• Correctness of the unfolding:

R(∆) ` R|c| : R〈unfold α : κ〉
[foldµχ.κ c/α]
[λα:µχ.κ.µµχ.κ(λϕχ:µχ.κ → ?.λβ:(µχ.κ).R〈unfold β : κ〉, α)/ϕχ]

As α is not free in c, we can push the substitution for it through the
judgment. Also, as χ is not free in c, we can add a simultaneous sub-
stitution.

R(∆) ` R|c| : R〈unfold(foldµχ.κ c) : κ〉
[µχ.κ, λα:(µχ.κ).µµχ.κ(λϕχ:µχ.κ → ?.λβ:(µχ.κ).R〈unfold β : κ〉, α)/χ, ϕχ]

or, using the definition of R〈α : µχ.κ〉, and the equivalence for unfold
of fold , we may rewrite the judgment as

R(∆) ` R|c| : R〈c : κ〉[µχ.κ, λα:(µχ.κ).R〈α : µχ.κ〉/χ, ϕχ]

By the lemma, it suffices to show: R(∆) ` R|c| : R〈c : κ[µχ.κ/χ]〉
which follows from induction.

case (c-pr)
∆, χ, α:κ, ϕ:χ → κ′ ` c : κ′

∆ ` µχ.κ ∆, χ ` κ′

∆ ` pr(χ, α:κ, ϕ:χ→κ′.c) : µχ.κ → κ′[µχ.κ/χ]
(χ only positive in κ′, and χ, α, ϕ 6∈ ∆)

First, for notational convenience define ρ
def
= pr(χ, α:κ, ϕ:χ→κ′.c).

We would like to prove that

R(∆) ` fix xϕ : R〈ρ : µχ.κ → κ′[µχ.κ/χ]〉.
Λβ:µχ.κ. λx:R〈β : µχ.κ〉.

(λxα:R〈unfold β : κ[µχ.κ/χ]〉.
R|c|[µχ.κ/χ, (λγ:µχ.κ.R〈γ : µχ.κ〉)/ϕχ, unfold β/α, ρ/ϕ])

(unroll x)
: R〈ρ : µχ.κ → κ′[µχ.κ/χ]〉

As R〈ρ : µχ.κ → κ′[µχ.κ/χ]〉 is equivalent to ∀β:µχ.κ.R〈β : µχ.κ〉 → R〈ρβ :
κ′[µχ.κ/χ]〉, it suffices to show the premises of the application:

117

R(∆), xϕ:R〈ρ : µχ.κ → κ′[µχ.κ/χ]〉, β:µχ.κ, x:R〈β : µχ.κ〉
` (unroll x)
: R〈unfold β : κ[µχ.κ/χ]〉

R(∆), xϕ:R〈ρ : µχ.κ → κ′[µχ.κ/χ]〉, β:µχ.κ, xα:R〈unfold β : κ[µχ.κ/χ]〉
` R|c|[µχ.κ/χ, (λγ:µχ.κ.R〈γ : µχ.κ〉)/ϕχ, unfold β/α, ρ/ϕ])
: R〈ρβ : κ′[µχ.κ/χ]〉

The first is by inspection. To show the second, first we know by induction
that

Rcon(∆), χ, ϕχ:χ → ?, α:κ, ϕ:χ → κ′;
Rval(∆), xα:R〈α : κ〉, xϕ:(∀γ:χ.ϕχγ → R〈ϕγ : κ′〉) `
R|c| : R〈c : κ′〉

As we can easily show Rcon(∆) ` µχ.κ and Rcon(∆) ` λδ:µχ.κ.R〈δ : µχ.κ〉 :
µχ.κ → ? we can derive by a simultaneous kind and constructor substitution
for χ and ϕχ:

Rcon(∆), α:κ[µχ.κ/χ], ϕ:µχ.κ → κ[µχ.κ/χ]′;
Rval(∆), xα:R〈α : κ[µχ.κ/χ]〉,

xϕ:∀γ:µχ.κ.(λδ:µχ.κ.R〈δ : µχ.κ〉)γ → R〈ϕγ : κ′[µχ.κ/χ]〉
` R|c|[µχ.κ/χ, λδ:(µχ.κ).R〈δ : µχ.κ〉ϕχ]
: R〈c : κ′〉[µχ.κ, λδ:µχ.κ.R〈δ : µχ.κ〉/χ, ϕχ]

By the lemma, we may note that result type of the judgment is actually

R〈c[µχ.κ/χ] : κ′[µχ.κ/χ]〉.

We can easily show also that:

Rcon(∆), β:µχ.κ ` unfold β : κ[µχ.κ/χ]
Rcon(∆) ` ρ : µχ.κ → κ′[µχ.κ/χ]

With these facts we can apply the constructor substitution lemma again
(after weakening the context with β) to substitute for α and ϕ:

Rcon(∆), β:µχ.κ;
Rval(∆), xα:R〈unfold β : κ[µχ.κ/χ]〉,

xϕ:∀γ:µχ.κ.(λδ:µχ.κ.R〈δ : µχ.κ〉)γ → R〈ργ : κ′[µχ.κ/χ]〉 `
R|c|[µχ.κ/χ, (λγ:µχ.κ.R〈γ : µχ.κ〉)/ϕχ, unfold β/α, ρ/ϕ] :
R〈c[µχ.κ, unfold β, ρ/χ, α, ϕ] : κ′[µχ.κ/χ]〉

118

To finish, we just need to notice two things—the type of xϕ is just R〈ρ :
µχ.κ → κ′[µχ.κ/χ]〉, what we wanted.

Furthermore,

R〈c[µχ.κ/χ, unfold β/α, ρ/ϕ] : κ′[µχ.κ/χ]〉

is equivalent to R〈ρβ : κ′[µχ.κ/χ〉.

�

4.4.2 Encoding of LIR

LI
Informally, Section 4.3−−−−−−−−−−−−−−−−−−→ LX

Section 3.4
y ySection 4.4

LIR
This section−−−−−−−−−−→ LXR

This section demonstrates that LXR is as fully expressive as LIR, by defining
an embedding of LIR. This embedding consists of four translations: | · |κ for kinds,
| · |c for constructors, | · |t for types and | · |e for terms. The techniques of this
section are reminiscent of Section 4.3 in the embedding of kinds and constructors.

First we define the kind of the representation of LIR constructors:

T ′ = µχ.(1 + (χ× χ) + (χ× χ))

Again for notational convenience, we will use T ′[k] = (1 + (χ× χ) + (χ× χ))[k/χ]
be its unrolling.

We use this definition as the base case for the embedding of LIR kinds into
LX. Because T ′ is well formed, all kinds produced by this translation will be well
formed.

| ? |κ = T ′

|κ1 → κ2|κ = |κ1|κ → |κ2|κ
Constructors in LIR are used in two ways—they are examined at the con-

structor level with Typerec, or they are interpreted as types. In the first case, we
need to translate all LIR constructors into the constructor-level LX datatype. The

119

translation of Typerec uses primitive recursion to create a fold over this datatype.

|α|c = α
|λα:κ.c|c = λα:|κ|κ.|c|c
|c1c2|c = |c1|c|c2|c
| int |c = foldT ′(inj

T ′[T ′]
1 ∗)

| → |c = λα:T ′. λβ:T ′. foldT ′(inj
T ′[T ′]
2 〈α, β〉)

| × |c = λα:T ′. λβ:T ′. foldT ′(inj
T ′[T ′]
3 〈α, β〉)

|Typerec(c, cint , c→, c×)|c = prT ′,κ(χ, α, ϕ.
case α,

inj 1 β ⇒ | cint |c,
inj 2 β ⇒ case β

inj 1 γ ⇒ | c→ |c(π1γ)(π2γ)
(ϕ(π1γ))(ϕ(π2γ))

inj 2 γ ⇒ | c→ |c(π1γ)(π2γ)
(ϕ(π1γ))(ϕ(π2γ)))

|c|c

Next, when constructors are used as types in LIR, they need to be interpreted,
again through primitive recursion. We use this interpretation as the basis for the
embedding of types.

|T (c)|t = prT ′?(χ, α, ϕ.
case α

inj 1 β ⇒ int
inj 2 β ⇒ case β

inj 1 γ ⇒ (ϕ(π1γ)) → (ϕ(π2γ))
inj 2 γ ⇒ (ϕ(π1γ))× (ϕ(π2γ)))

|c|c
|t1 → t2|t = |t1|t → |t2|t
|t1 × t2|t = |t1|t × |t2|t
|∀α:κ.t|t = ∀α:|κ|κ.|t|t
|∃α:κ.t|t = ∃α:|κ|κ.|t|t

Term representations already exist primitively in LIR, and we can encode them
in the term level of LX as the encoding of the constructor representations. If the
LIR type of a representation is R(c) (it represents the LIR constructor c), then
the LX type of the term representation should be R〈c : T ′〉. From the definition
in Table 4.9, this should be a recursive type, parameterized by the translation of
c. If we unfold the definitions, the type is

120

µT ′(ϕ, |c|c)

where

ϕ = λαχ:T ′ → ?.λβ:T ′.R〈unfold β : T ′[χ]〉
= λαχ:T ′ → ?.λβ:T ′.case(unfold β, inj 1 α ⇒ unit , inj 2 α ⇒ void)

+ case(unfold β,
inj 1 α ⇒ void ,
inj 2 α ⇒ case α

inj 1 γ ⇒ αχ(π1γ)× αχ(π2γ)
inj 2 γ ⇒ void)

+ case(unfold β,
inj 1 α ⇒ void ,
inj 2 α ⇒ case α

inj 1 γ ⇒ void
inj 2 γ ⇒ αχ(π1γ)× αχ(π2γ))

The definitions of the term representations follow from Table 4.10.

|Rint |e = R|| int |c| = foldµT ′ (ϕ,|c|c)(inj 1())

|R→ |e = R|| → |c| = Λα:T ′.λxα:R〈α : T ′〉. Λβ:T.λxβ:R〈β : T ′〉.
foldµT ′ (ϕ,|c|c)(inj 2〈xα, xβ〉)

|R× |e = R|| × |c| = Λα:T ′.λxα:R〈α : T ′〉. Λβ:T.λxβ:R〈β : T ′〉.
foldµT ′ (ϕ,|c|c)(inj 3〈xα, xβ〉)

To analyze these term representations, we use a combination of case and vcase.
If the representation argument e to a typerec term is of LIR type R(c), and the
entire typerec term is of type σ[c/δ], then we can embed it in LXR as below.

121

| typerec[δ.σ](e, eint , e→, e×)|e =

(fix f :∀α: ? .R(α) → σ[α/δ].
Λα: ? .λxα:R(α).

case(unfold xα)
inj 1 x ⇒ vcase(unfold c)

inj 1 β ⇒ | eint |e
inj 2 β ⇒ dead x

inj 2 x ⇒ vcase(unfold c)
inj 1 β ⇒ dead x
inj 2 β ⇒ case x of

inj 1 y ⇒ (vcase β
inj 1 γ ⇒ let〈w, z〉 = y in
| e→ |e[π1γ] w (f [π1γ]w) [π2γ] z (f [π2γ]z)

inj 2 γ ⇒ dead y)
inj 2 y ⇒ (vcase β

inj 1 γ ⇒ dead y
inj 2 γ ⇒ let〈w, z〉 = x in
| e× |e[π1γ] w (f [π1γ]w) [π2γ] z (f [π2γ]z))

) [|c|c] |e|e

Finally, the rest of the term embedding can be defined in a straightforward manner.

|x|e = x
|λx:σ.e|e = λx:|σ|t.|e|e

| fix f :σ.v|e = fix f :|σ|t.|v|e
|e1e2|e = |e1|e|e2|e

|〈e1, e2〉|e = 〈|e1|e, |e2|e〉
|π1e|e = π1|e|e
|π2e|e = π2|e|e

|Λα:κ.v|e = Λα:|κ|κ.|v|e

Definition 4.4.4 Define the translation of contexts in a pointwise manner:

|∅| = ∅
|∆, α : κ| = |∆|, α:|κ|κ

|∅| = ∅
|Γ, x : σ| = |Γ|, x : |σ|t

122

Theorem 4.4.5 (Static correctness of translation) 1. For all κ in LIR,
∅ ` |κ|κ.

2. If ∆; Γ `R c : κ then |∆|; |Γ| ` |c|c : |κ|κ.

3. If ∆; Γ `R e : σ then |∆|; |Γ| ` |e|e : |σ|t.

4.5 Discussion and chapter summary

In this chapter, I have described a language designed to encode several type systems
simultaneously. Through the use of an expressive programming language at the
type level, the type structure of various intermediate languages and the translations
between them may be described and reasoned about within LX.

This chapter is important to the rest of the thesis for several additional reasons.
First, it raises the question of what linguistic support is actually necessary to
support intensional type analysis. In essence, the only specialized constructs in
LX and in LXR are those for constructor refinement. In the next chapter, I will
show that even those terms are unnecessary, and use impredicative polymorphism
to encode LIR.

Furthermore, this chapter presents the first solution to the problem of analyzing
types with binding structure. By representing these types with abstract syntax,
and then analyzing that abstract syntax, LX may express type analysis over the
types of the polymorphic lambda calculus. This facility is important for advanced
type systems that include such types in an intrinsic way. In chapter 6, I will come
back to this issue, and present a different solution for analyzing polymorphic types.

Finally, the mechanism used in this chapter for creating the representations
of constructors and describing their types is interesting in its own respect. In
essence, it is creating a form of synthetic dependent type. By using similar tech-
niques, Crary and Weirich [CW00] developed a language that could express type
dependency on term values. This language, called LXres, used this expressive-
ness to describe the running time of programs. Because this running time of a
function typically depends on the arguments to that function, this language could
use that dependency to describe that relationship, and so was quite expressive.
Most importantly, because LXres was not based on a full dependent type system,
it retained decidable type checking. As in LXR, there was a complete separation
between the type language with a decidable equivalence procedure and possibly
non-terminating term language.

Chapter 5

Type analysis without hard-wired
types (II)

5.1 Eliminating type analysis

In this chapter, I further explore what is necessary to implement run-time type
analysis. In fact, little hard-wired machinery is necessary for expressing programs
that analyze types. In other words, instead of using the sums, products and
primitive recursion in the type language of LXR and vcase in the term language
of LXR, in both cases we can use impredicative polymorphism to encode the type
language of LIR. Because types essentially form an inductive datatype (that is,
the kind ? is an inductive datatype with data constructors int , →, etc.), we can
use well-known techniques of encoding such datatypes. The fact that our target
language contains nothing beyond impredicative polymorphism further justifies the
claim that intensional type analysis is simply a programming idiom that is possible
in a sufficiently rich language.

This chapter essentially describes an embedding of LIR into a pared down lan-
guage called LU. I begin this chapter with an informal description of the technique
that we use for that embedding. Formal descriptions of the minor changes we must
make to LIR and of the target languages LU appear in Section 5.2, and I present
the embedding between them in Section 5.3. Section 5.4 describes the limitations
of the translation and discusses when one might want an explicit iteration operator
in the target language, such as pr in the last chapter.

5.1.1 Encoding datatypes with polymorphism

Consider a well-known inductive datatype (presented in Standard ML syntax
[MTHM97] augmented with explicit polymorphism):

123

124

datatype Tree = Leaf | Node of Tree * Tree

Treerec : ∀a. Tree -> a -> (a * a -> a) -> a

Leaf and Node are introduction forms, used to create elements of type Tree.
The function Treerec is an elimination form, iterating computation over an ele-
ment of type Tree, creating a fold or a catamorphism. It accepts a base case (of
type a) for the leaves and an inductive case (of type a * a -> a) for the nodes .
For example, we may use Treerec to define a function to display a Tree. First, we
explicitly instantiate the return type a with [string]. For the leaves, we provide
the string "Leaf", and for the nodes we concatenate (with the infix operator ^)
the strings of the subtrees.

val showTree = fn x : Tree =>

Treerec [string] x

"Leaf"

(fn (s1:string, s2:string) => "Node(" ++ s1 ++ "," ++ s2 ")")

As Tree is an inductive datatype, it is well known how to encode it in the
polymorphic lambda calculus [BB85]. The basic idea is to encode a Tree as its
elimination form—a function that iterates over the tree. In other words, a Leaf

is a function that accepts a base case and an inductive case and returns the base
case. Because we do not wish to constrain the return type of iteration, we abstract
it, explicitly binding it with Λa.

val Leaf = Λa. fn base:a => fn ind:a * a -> a => base

Likewise, a Node, with two subtrees x and y, selects the inductive case, passing it
the result of continuing the iteration through the two subtrees.

val Node (x:Tree) (y:Tree) =

Λa. fn base:a => fn ind:a * a -> a =>

ind (Treerec [a] x base ind) (Treerec [a] y base ind)

However, as all of the iteration is encoded into the data structure itself, the elimi-
nation form only needs to pass it on.

val Treerec = Λa. fn x : Tree => fn base : a =>

fn ind : a * a -> a => x [a] base ind

Consequently, we may write Node more simply as

val Node (x:Tree) (y:Tree) =

Λa. fn base:a => fn ind:a * a -> a =>

ind (x [a] base ind) (y [a] base ind)

125

Now consider another inductive datatype:

datatype Type = Int | Arrow of Type * Type

Typerec : ∀a. Type -> a -> (a * a -> a) -> a

Ok, so I just changed the names. But this encoding will still provide us with
methodology for encoding a type analyzing language such as LIR, into a lan-
guage only containing polymorphism. As there are two elimination forms for LIR
(typerec that eliminates representations to terms and Typerec that eliminates type
constructors to types) this encoding occurs at two different levels. Therefore our
simplest target language is Girard’s LU, the language Fω augmented with kind
polymorphism at the type constructor level (Table 5.2).

5.2 Source and target language details

Although in previous chapters typerec and Typerec define a primitive recursive fold
over kind ? (also called a paramorphism [MFP91, Mee92]), in this modification of
LIR we replace these operators with their iterative cousins (which define catamor-
phisms). The difference between iteration and primitive recursion is apparent in
the kind of c→ and the type of e→. With primitive recursion, the arrow branch
receives four arguments: the two subcomponents of the arrow constructor and
two results of continuing the fold through these subcomponents. In iteration, on
the other hand, the arrow branch receives only two arguments, the results of the
continued fold.1 We discuss this restriction further in Section 5.4.2.

Furthermore, in order to simplify the proof of dynamic correctness of the trans-
lation into LU, there is one more modification. Instead of giving LIR a call-by-value
semantics, for this chapter we consider a version of it with a call-by-name seman-
tics. This change means that instead of the restricted β-evaluation rule that only
applies when its argument is a value:

(λx:σ.e)v 7→R e[v/x]

we allow the full rule for function application:

(λx:σ.e)e′ 7→R e[e′/x]

1Because we cannot separate type constructors passed for static type checking, from those
passed for dynamic type analysis in LI, we must provide the subcomponents of the arrow type to
the arrow branch of typerec. Therefore, we cannot define an iterative version of typerec for that
language.

126

Table 5.1: Typerecit and typerecit

∆ ` τ : ?
∆ ` cint : κ

∆ ` c→ : κ → κ → κ

∆ ` Typerecit[κ] τ cint c→ : κ

∆ ` Typerecit[κ] int cint c→ = cint : κ

∆ ` Typerecit[κ](τ1 → τ2) cint c→
= c→ (Typerecit[κ] τ1 cint c→)(Typerecit[κ] τ2 cint c→) : k

∆, α:? ` σ
∆; Γ ` e : R(c)

∆; Γ ` eint : σ[int /α]
∆; Γ ` e→ : ∀β: ? .σ[β/α] → ∀γ: ? .σ[γ/α] → σ[(β → γ)/α]

∆; Γ ` typerecit[α.σ] e eint e→ : σ[c/α]

typerecit[α.σ] Rint eint e→ 7→ eint

typerecit[α.σ] (R→[τ1]e1 [τ2] e2) eint e→
7→ e→ [τ1] (typerecit[α.σ] e1 eint e→)[τ2] (typerecit[α.σ] e2 eint e→)

In order to maintain a deterministic semantics, we must remove the following rule
from LIR that allows us to evaluate the function argument.

e 7→R e′

ve 7→R ve′

127

Table 5.2: LU: Syntax

(kinds) κ :: = ? | κ1 → κ2 | χ | ∀χ.κ

(con′s) c, τ :: = α | λα:κ.c | c1c2 | Λχ.c | c[κ]
| int | τ1 → τ2 | ∀α:κ.τ

(terms) e :: = i | x | λx:τ.e | e1e2

| Λα:κ.e | e[c]

Table 5.3: LU: Operational semantics

(λx:c.e)e′ 7→ e[e′/x]

e1 7→ e′1
e1e2 7→ e′1e2

(Λα:κ.e)[c] 7→ (e[c/α])

e 7→ e′

e[c] 7→ e′[c]

Table 5.4: LU: Static semantics

∆ ` κ Kind Formation

[k-var]
∆, χ ` χ

[k-type]
∆ ` ?

128

Table 5.4 (Continued)

[k-arr] ∆ ` κ1 ∆ ` κ2

∆ ` κ1 → κ2

[k-all]
∆, χ ` κ

∆ ` ∀χ.κ
(χ 6∈ ∆)

∆ ` c : κ Constructor Formation

[c-var]
∆ ` α : κ

(∆(α) = κ)

[c-fn]
∆, α:κ1 ` c : κ2

∆ ` λα:κ1.c : κ1 → κ2
(α 6∈ Dom(∆))

[c-app] ∆ ` c1 : κ1 → κ2 ∆ ` c2 : κ1

∆ ` c1c2 : κ2

[c-kfn]
∆, χ ` c : κ

∆ ` Λχ.c : ∀χ.κ
(χ 6∈ ∆)

[c-kapp]
∆ ` c : ∀χ.κ

∆ ` c[κ1] : κ[κ1/χ]

[c-int-type]
∆ ` int : ?

[c-fn-type] ∆ ` c1 : ? ∆ ` c2 : ?
∆ ` c1 → c2 : ?

[c-all-type]
∆, α:κ ` c : ? α 6∈ Dom(∆)

∆ ` ∀α:κ.c : ?

129

Table 5.4 (Continued)

∆ ` c = c′ : κ Constructor Equality

[ceq-β]
∆, α:κ′ ` c1 : κ ∆ ` c2 : κ′

∆ ` (λα:κ′.c1)c2 = c1[c2/α] : κ
(α 6∈ Dom(∆))

[ceq-η] ∆ ` c : κ1 → κ2

∆ ` λα:κ1.c α = c : κ1 → κ2
(α 6∈ Dom(∆))

[ceq-cong1]
∆, α:κ ` c = c′ : κ′

∆ ` λα:κ.c = λα:κ.c′ : κ → κ′

[ceq-cong2]

∆ ` c1 = c′1 : κ′ → κ
∆ ` c2 = c′2 : κ′

∆ ` c1c2 = c′1c
′
2 : κ

[ceq-κβ]
∆, χ ` c : κ′

∆ ` Λχ.c[κ] = c[κ/χ] : κ′[κ/χ]
(χ 6∈ ∆)

[ceq-κη]
∆ ` c : ∀χ′.κ

∆ ` Λχ.c[χ] = c : ∀χ′.κ

[ceq-cong3]
∆, χ ` c = c′ : κ

∆ ` Λχ.c = Λχ.c′ : ∀χ.κ
(χ 6∈ ∆)

[ceq-cong4]
∆ ` c = c′ : ∀χ.κ

∆ ` c[κ] = c′[κ] : κ′[κ/χ]

[ceq-cong5]

∆ ` c1 = c′1 : ?
∆ ` c2 = c′2 : ?

∆ ` c1 → c2 = c′1 → c′2 : ?

130

Table 5.4 (Continued)

[ceq-cong6]
∆, α:κ ` τ = τ ′ : ?

∆ ` ∀α:κ.τ = ∀α:κ.τ ′ : ?

[ceq-ref] ∆ ` c : κ
∆ ` c = c : κ

[ceq-sym] ∆ ` c′ = c : κ
∆ ` c = c′ : κ

[ceq-trans] ∆ ` c = c′ : κ ∆ ` c′ = c′′ : κ
∆ ` c = c′′ : κ

∆; Γ ` e : τ Term Formation

[e-int]
∆; Γ ` i : int

[e-var]
∆; Γ ` x : τ

(Γ(x) = τ)

[e-fn]
∆; Γ, x:τ2 ` e : τ1 ∆ ` τ2 : ?

∆; Γ ` λx:τ2.e : τ2 → τ1
(x 6∈ Dom(Γ))

[e-app]
∆; Γ ` e1 : τ2 → τ1 ∆; Γ ` e2 : τ2

∆; Γ ` e1e2 : τ1

[e-tfn]
∆; Γ ` e : ∀α:κ.τ ∆ ` c : κ

∆; Γ ` e[c] : τ [c/α]

[e-tapp]
∆, α:κ; Γ ` e : τ

∆; Γ ` Λα:κ.e : ∀α:κ.τ
(α 6∈ Dom(∆))

[e-equiv]
∆; Γ ` e : τ2 ∆ ` τ1 = τ2 : ?

∆; Γ ` e : τ1

131

The target language of the translation is LU, originally called “System U−”
by Girard [Gir72]. Essentially it is the language Fω augmented with kind poly-
morphism at the type constructor level (Table 5.2). We make the type constructor
language polymorphic by adding kind variables χ and polymorphic kinds ∀χ.κ
to the syntax of kinds, and adding type constructors supporting kind abstraction
(Λχ.c) and application c[κ]. Otherwise, the constructor language resembles that of
a standard polymorphic lambda calculus. As the target language is impredicative,
both types and type constructors are in the same syntactic class2.

The dynamic and static semantics of LU appear in Tables 5.3 and 5.4. This
semantics is very similar to that of the core language of Chapter 2. For consistency,
LU is presented with a small-step call-by-name operational semantics. The nota-
tion 7→U emphasizes that the rules apply to LU, when it is not clear from context.
We also use `U to differentiate the typing judgments of LU. This static semantics
must make sure that kind variables appear correctly. As in the last chapter, we
add kind variables to the context ∆ to type check constructors and kinds. How-
ever, this time there are no restrictions that the kind variables appear positively.
The rules of the static semantics that specifically support kind polymorphism are
shaded in the tables.

5.3 Defining iteration

The translation of LIR into LU can be thought of as two separate translations: A
translation of the kinds and constructors of LIR into the kinds and constructors
of LU and a translation of the types and terms of LIR into the constructors and
terms of LU. For reference, the complete translation appears in Tables 5.5 and 5.6.

To define the translation of Typerecit we use the traditional encoding of induc-
tive datatypes in impredicative polymorphism. As before, we encode τ , of kind ?
as its elimination form: a function that chooses between two given branches—one
for cint , one for c→. Then Typerecit[κ] τ cint c→ can be implemented with

|τ |[|κ|] | cint | | c→ |

As τ is of kind type, we define | ? | to reflect the fact that |τ | must accept an
arbitrary kind and the two branches.

| ? | = ∀χ.χ → (χ → χ → χ) → χ

2In Section 5.4.3 we discuss why we might want alternate target languages not based on
impredicative polymorphism.

132

Accordingly, the encoding of the type constructor int just returns its first argument
(the kinds of the arguments have been elided)

| int | = (Λχ.λι.λα.ι)

Now consider the constructor equality rule when the argument to Typerecit is
an arrow type. The translation of the arrow type constructor →, should apply the
second argument (the c→ branch) to the result of continuing the recursion through
the two subcomponents.

|τ1 → τ2| = Λχ.λι.λα.α(|τ1|[χ] ι α)(|τ2|[χ] ι α)

A critical property of this translation is that it preserves the equivalences that
exist in the source language. For example, one equivalence we must preserve from
the source language is that

|Typerecit[κ] (τ1 → τ2) cint c→ |
= | c→(Typerecit[κ] τ1 cint c→)(Typerecit[κ] τ2 cint c→)|

If we expand the left side, we get

(Λχ.λι.λα.α(|τ1|[χ] ι α)(|τ2|[χ] ι α)) [|κ|] | cint | | c→ |

This term is then β-equivalent to the expansion of the right hand side.

| c→ | (|τ1|[|κ|]| cint || c→ |) (|τ2|[|κ|]| cint || c→ |)

Because type constructors are a separate syntactic class from types, we must
define |T (τ)|, the coercion between them. We convert |τ | of kind | ? | into a LU
constructor of kind ? using the iteration built into |τ |.

|T (τ)| = |τ | [?] int (λα: ? .λβ: ? .α → β)

For example,

|T (int)| = | int |[?] int (λα: ? .λβ: ? .α → β)
= (Λχ.λι.λα.ι)[?] int (λα: ? .λβ: ? .α → β)
=β int

We use a very similar encoding for typerecit at the term level, as we do for
Typerecit. Again, we wish to apply the translation of the argument to the transla-
tion of the branches, and let the argument select between them.

| typerecit[α.σ] e eint e→ | as |e| [λα:| ? |.|σ|] | eint | | e→ |

133

Table 5.5: Translation of LIR into LU, kinds and constructors

Kind Translation

| ? | = ∀χ.χ → (χ → χ → χ) → χ
|κ1 → κ2| = |κ1| → |κ2|

Constructor Translation

|α| = α
|λα:κ.c| = λα:|κ|.|c|
|c1c2| = |c1||c2|
| int | = Λχ.λι:χ.λα:χ → χ → χ.ι
| → | = λα1:| ? |.λα2:| ? |.Λχ.λι:χ.λα:χ → χ → χ.

α (α1 [χ] ι α) (α2 [χ] ι α)
|Typerecit[κ] τ cint c→ | = |τ | [|κ|] | cint | | c→ |

The translations of Rint and R→ are analogous to those of the type construc-
tors int and →. To preserve typing, we define |Rτ | as:

∀γ:| ? | → ?. γ| int |
→ (∀α:| ? |.γα → ∀β:| ? |.γβ → γ|α → β|)
→ γ|τ |

5.3.1 Properties of the embedding

The translation presented above enjoys the following properties. Define |∆| as
{α:|∆(α)| | α ∈ Dom(∆)} and |Γ| as {x:|Γ(x)| | x ∈ Dom(Γ)}.

First we show the correctness of the translation. The translation of terms that
type check in the source language also type check in the target language.

Theorem 5.3.1 (Static Correctness) 1. ∅ `U |κ|

2. If ∆ `R c : κ then |∆| `U |c| : |κ|.

3. If ∆ `R c = c′ : κ then |∆| `U |c| = |c′| : |κ|.

4. If ∆ `R σ then |∆| `U |σ| : ?.

134

Table 5.6: Translation of LIR into LU, types and terms

Type Translation

|T (τ)| = |τ | [?] int →
|Rτ | = ∀γ:| ? | → ?. γ| int |

→ (∀α:| ? |.γα → ∀β:| ? |.γβ → γ|α → β|)
→ γ|τ |

| int | = int
|σ1 → σ2| = |σ1| → |σ2|
|∀α:κ.σ| = ∀α:|κ|.|σ|

Term Translation

|x| = x
λx:σ.e	= λx:	σ	.	e
e1e2	=	e1		e2
Λα:κ.e	= Λα:	κ	.	e
e[c]	=	e	[c
Rint	= (Λγ:	?	→ ?. λi:γ	int

λa:(∀α:| ? |.γα → ∀β:| ? |.γβ → γ|α → β|) .i)
|R→ | = Λα:| ? |.λx1:|Rα|.Λβ:| ? |.λx2:|Rβ|

(Λγ:| ? | → ?. λi:γ| int |.
λa:(∀α:| ? |.γα → ∀β:| ? |.γβ → γ|α → β|).

a [α] (x1[γ] i a) [β] (x2[γ] i a))
| typerecit[α.σ] e eint e→ | = |e|[λα:| ? |.|σ|]| eint | | e→ |

135

5. If ∆ `R σ = σ′ then |∆| `U |σ| = |σ′| : ?

6. If ∆; Γ `R e : σ then |∆; Γ| `U |e| : |σ|.

Proof

Proof is by induction on the appropriate derivation. �

Furthermore, evaluation in the source language is mirrored by evaluation in the
target language.

Theorem 5.3.2 (Dynamic Correctness) If ∅ `R e : τ and e 7→R e′ then
|e| 7→∗

U |e′|.

Proof

The proof of this result is fairly straightforward, by induction on e 7→ e′. The most
complex case is the rule for typerec when the argument is a function type. Suppose

typerecit[α.σ] (Rint [τ1] e1 [τ2] e2) eint e→
7→R e→ [τ1] (typerecit[α.σ] e1 eint e→) [τ2] (typerecit[α.σ] e1 eint e→)

the translation of the left side is the following:

((Λα:| ? |.λx1:|Rα|.Λβ:| ? |.λx2:|Rβ|.
Λγ:| ? | → ?.λi:(γ| int |).λa:(∀α.γα → ∀β.γβ → γ|α → β|).

a [α] (x1[γ] i a) [β] (x2[γ] i a))
[|τ1|] |e1| [|τ2|] |e2|)

[λα:| ? |.|σ|] | eint | | e→ |

which steps to

(Λγ:| ? | → ?.λi:(γ| int |).λa:(∀α.γα → ∀β.γβ → γ|α → β|).
a [|τ1|] (|e1| [γ] i a) [|τ2|] (|e2| [γ] i a))

[λα:| ? |.|σ|] | eint | | e→ |

which steps to the translation of the right hand side.

| e→ | [|τ1|] (|e1| [λα:| ? |.|σ|] | eint | | e→ |)
[|τ2|] (|e2| [λα:| ? |.|σ|] | eint | | e→ |)

�

136

As well as being correct, it is important that our translation be interesting.
What does this property mean? The target language of the translation could
have been the trivial language with only one element. Even though the obvious
translation to that language is trivially correct (in the sense defined above) the
target language does not capture any of the properties of the source language.

The property that we care about the source language is that it allows us to
write type-analyzing operations, while enforcing that those operations use type
information correctly. Another possible translation might send the type represen-
tations to a datatype like structure in Scheme and “forget” the type-dependency
of the R type. For example, we might represent Rint with a scheme symbol:

(define rint ’Rint)

(define rint? (lambda (rep) (eq? rep ’Rint)))

We might also represent R→ with a scheme list, tagged with a symbol at the
head. For ease of use, we can also define functions to access the components of
that list, once we know the term is a representation of the arrow type.

(define rarrow (lambda (e1 e2) (list ’Rarrow e1 e2)))

(define rarrow? (lambda (rep) (and (list? rep)

(not (null? rep))

(eq? (car rep) ’Rarrow))))

(define get-e1 cadr)

(define get-e2 caddr)

With these definitions, we can implement a Scheme typerec term.

(define typerec

(lambda (rep eint earrow)

(cond [(rint? rep)]

[(rarrow? rep)

(earrow (typerec (get-e1 rep) eint earrow)

(typerec (get-e2 rep) eint earrow))])))

This translation has the same correctness properties as the one presented in this
chapter. The image of all LIR code will type check in Scheme (all Scheme code
type checks) and it will operate in the same way. However, when using these
scheme definitions, there is nothing in Scheme that guarantees that we will use
them correctly. The problem is that code that does not type check in LIR, will
still type check in the Scheme version. So these definitions are not appropriate for
writing our type-analyzing operations.

137

However, for the translation of LIR into LU, it is the case that LIR type errors
will translate to LU type errors. I show this result by proving the contrapositive.
Any translation of an LIR term that type checks in LU will also type check in LIR.

Before proving this result, I first assert a property about the translation:

Lemma 5.3.3 (Injectivity) 1. If |κ1| = |κ2|, then κ1 = κ2.

2. If |σ1| = |σ2| then σ1 = σ2.

3. (Corollary of 1) If |∆1| = |∆2| then ∆1 = ∆2.

4. (Corollary of 2) If |Γ1| = |Γ2| then Γ1 = Γ2.

Theorem 5.3.4 (Static adequacy) 1. If ∆ `U |c| : κ then there exists ∆R

and κR such that |∆R| = Γ and |κR| = κ and ΓR `R c : κR.

2. If ∆ `U |σ| : κ then there exists ∆R such that |∆| = ∆R and ∆R `R σ.

3. If ∆; Γ `U |e| : τ then there exists ∆R, ΓR and σR such that |∆R| = ∆,
|ΓR| = Γ and |σR| = τ and ∆R; ΓR `R e : σR.

Proof

Proof is by structural induction of e. I show the case for typerec in the proof of
part 3 below. Suppose e is typerecit[α.σ] e1 eint e→ and that

∆; Γ `U |e1| [λα:| ? |.|σ|] | eint | | e→ | : τ

Below, let γ = λα:| ? |.|σ|. By inversion

∆; Γ `U |e1| : ∀β:| ? | → κ.τ1 → τ2 → τ3 where τ = τ3[γ/β]
∆ `U λα:| ? |.|σ| : | ? | → κ
∆, α:| ? | `U |σ| : κ
∆; Γ `U | eint | : τ1[γ/β]
∆; Γ `U | e→ | : τ2[γ/β]

By induction,
∆R, α:? `R σ where
∆R; ΓR `R e1 : σ0 |σ0| = ∀β:| ? | → κ.τ1 → τ2 → τ3

∆R; ΓR `R eint : σ1 |σ1| = τ1[γ/β]
∆R; ΓR `R e→ : σ2 |σ2| = τ2[γ/β]

Note that by injectivity all of the above contexts are the same. As ∆R, α:? `R σ,
then κ must be ?.

138

Now consider the possible identities of σ0. Since we must produce a polymor-
phic type in the translation, σ0 must either itself be a polymorphic type, or must
be Rτ ′ for some τ ′. However, if σ0 were a polymorphic type, what is the kind of
the type variable? There is no LIR kind that translates to | ? | → ?. So σ0 must
be Rτ ′.

|σ0| = ∀γ:| ? | → ?.γ| int | → (∀δ:| ? |.γδ → ∀η: ? .|η| → γ|δ → η|) → γ|τ ′|
= ∀β:| ? | → κ.τ1 → τ2 → τ3

so

|σ1| = τ1[γ/β] = γ| int |
= |σ[int /α]|

|σ2| = τ2[γ/β] = (∀δ:| ? |.γδ → ∀η: ? .γη → γ|δ → η|)
= |∀δ: ? .σ[δ/α] → ∀η: ? .σ[η/α] → σ[δ → η/α]|

τ3[γ/β] = γ|τ ′|
= |σ[τ ′/α]|

∆R, α:? `R σ
∆R; ΓR `R e1 : Rτ ′

∆R; ΓR `R eint : σ[int /α]
∆R; ΓR `R e→ : ∀δ: ? .σ[δ/α] → ∀η: ? .σ[η/α] → σ[δ → η/α]
then we may conclude

∆R; ΓR `R typerecit[α.σ] e1 eint e→ : σ[τ ′/α]

�

5.4 Discussion

Despite the simplicity of this encoding, it falls short for a number of reasons. First,
it probably is not possible to extend this encoding to an R-constructor or extend
typerec to the primitive recursion of the full LIR language. Second, the target
language has different properties than the source language.

5.4.1 Extension to an R-constructor

It is also possible to formulate the LIR language so that as well as an R-type,
it also has an R-constructor [CWM98]. In this case, the version of LIR needs to
have a constant that represents this constructor RR , and a branch in typerec that
matches this constant. With the R-constructor, type analysis is more complete.

139

There are fewer elements of the type language that may not be represented by
constructors, and therefore not analyzed by typerec.

However, we cannot encode the R-type if we support R-constructors. Adding
an additional constructor is no problem—it is the branch for the R-constructor in
the encoding of the R-type is the source of the difficulty. The type of this branch
in typerec[α.σ] should be

[α.σ]〈R : ? → ?〉 = ∀β: ? .σ[β/α] → σ[Rβ/α]

By giving the branch this type, we must change the translation of the R-type so
that includes type of this branch. In that case, |Rτ | must be a recursive definition:

∀γ:| ? | → ?. γ| int |
→ (∀α:| ? |.γα → ∀β:| ? |. → γβ → γ|α → β|)
→ (∀β:| ? |.γα → γ|Rβ|)
→ γ|τ |

We have defined |Rτ | in terms of |Rβ|. We need a recursive type to represent
this definition. As LU does not include them, we cannot extend the encoding.
However, this restriction is not that limiting as we might expect that a realistic
term language include recursive types.

5.4.2 Extension to primitive recursion

At the term level we could extend the previous definition of typerecit to a primitive
recursive version typerecpr by providing terms of type Rα and Rβ to e→. In that
case, again |Rτ | must be a recursive definition:

∀γ:| ? | → ?. γ| int |
→ (∀α:| ? |.Rα → γα → ∀β:| ? |.Rβ → γβ → γ|α → β|)
→ γ|τ |

With the addition of parameterized recursive types, the definition of typerecpr

is no more difficult than that of typerecit; just supply the extra arguments to the
arrow branch. In other words,

|R→ | = Λα:| ? |.Λβ:| ? |.λx1:|Rα|.λx2:|Rβ|.
Λγ:|? → ?|.λi.λa.

a[α][β] x1 x2 (x1[γ]ia)(x2[γ]ia)

However, we cannot add recursive kinds to implement primitive recursion at
the type constructor level without losing decidable type checking. Even without

140

resorting to recursion, there is another well-known technique for encoding primitive
recursion in terms of iteration: pairing the argument with the result during the
iteration.3 Unfortunately, this pairing trick only works for closed expressions, and
only produces terms that are βη−equivalent in the target language. Therefore, at
the term level, our strong notion of dynamic correctness does not hold. Using this
technique, we must weaken it to:

If ∅ `U e : σ and e 7→ e′ then |e| is βη-convertible with |e′|.
At the type-constructor level, βη-equivalence is sufficient. However, for type

checking, we need the equivalence to extend to constructors with free-variables.
The reason that this trick does not work is that LU can encode iteration over
datatypes only weakly; there is no induction principle for this encoding provable
in LU. Therefore, we cannot derive a proof of equality in the equational theory
of the target language that relies on induction. This weakness has been encoun-
tered before. In fact, it is conjectured that it is impossible to encode primitive
recursion in System F using βη-equality [SU99]. A stronger equational theory
for LU, perhaps one incorporating a parametricity principle [PA93], might solve
this problem. However, a simpler way to support primitive recursion would be to
include an operator for primitive recursion directly in the language as we did in
LX [Men87, CPM88, PPM90, CW99a].

5.4.3 Impredicativity and non-termination

Another issue with this encoding is that the target language must have impred-
icative polymorphism at the type and kind level. In practice, this property is
acceptable in the target language. Although impredicativity at the kind level de-
stroys strong-normalization of the term level [Coq94],4, intensional polymorphism
was designed for typed compilation of Turing-complete language [HM95]. Fur-
thermore, Trifonov et al. show that impredicative kind polymorphism aids in the
analysis of quantified types [TSS00]5. Also, impredicativity at the type level is
vital for such transformations as typed closure conversion. Allowing such impred-
icativity in the source language does not prevent this encoding; we can similarly
encode the type-erasure version of their language [STS00].

However, the source language of this paper, LIR, is predicative and strongly
normalizing, and the fact that this encoding destroys these properties is unsatis-

3See the tutorials in Meertens [Mee92] and Mitchell [Mit96] Section 9.3
4Coquand [Coq94] originally derived a looping term by formalizing a paradox along the lines

of Reynolds’ theorem [Rey84], forming an isomorphism between a set and its double power set.
Hurkens [Hur95] simplified this argument and developed a shorter looping term, using a related
paradox.

5See 6.6.4 for more discussion on this point.

141

factory. It seems reasonable, then, to look at methods of encoding iteration within
predicative languages [PM93, Dyb91]. In adding iteration to the kind level, strict
positivity (the recursively bound variable may not appear to the left of an arrow)
may be required [CPM88], to prevent the definition of an equivalent paradox.

5.4.4 Related work

The language Haskell [PH99] uses an alternative way to implement type-analyzing
functions (or ad-hoc polymorphism). In Haskell, type classes [WB89] declare what
operations are available to abstract types. At run-time, instead of passing the
representation of a type, instead polymorphic functions pass dictionaries including
implementations of the operations at that type. In some sense, an R-type is a
“universal” dictionary allowing the definition of any operation from any class.

In Standard ML [MTHM97], Yang [Yan98] similarly used it to encode type-
specialized functions (such as type-directed partial evaluation [Dan96]). Because
core ML does not support higher-order polymorphism, he presented his encoding
within the ML module system.

Chapter 6

Higher-order type analysis

In the last two chapters, I argued that type analysis was merely a programming
idiom. With an expressive type constructor language, a type-analyzing operator
may be encoded. In this chapter, I turn the attention of type analysis to the full
constructor language—instead of interpreting just the types, what if typerec could
also interpret the type constructors in a principled way?

6.1 Polytypic programming

The idea of polytypic programming is to define functionality using type structure
instead of values. As I discussed in Chapter 1, classic examples of polytypic pro-
gramming include pretty printers, debuggers, equality functions and mapping func-
tions. For example, by examining the type of a term, a polytypic pretty-printer can
break the term into basic parts, and can print arbitrarily complex data-structures
using this decomposition. The theory behind describing such polytypic operations
has been explored in a variety of frameworks [WB89, ACPP91, She93, ACPR95,
DRW95, HM95, JJ97, JBM98, Rue98, CW99a, Hin00, TSS00].

Nevertheless, no single existing framework encompasses all polytypic pro-
grams. These systems are limited by what polytypic operations they may ex-
press and by what types they may examine. These deficiencies are unfortunate
because advanced languages depend crucially on these features. Only some frame-
works for polytypism may express operations over parameterized data structures,
such as maps and folds [JJ97, JBM98, Rue98, Hin00]. Yet parametric polymor-
phism is essential to modern typed programming languages. It is intrinsic to
functional programming languages, such as ML [MTHM97] and Haskell [PH99],
and also extremely important to imperative languages such as Ada [ISO94] and
Java [BOSW98, GJS96]. Furthermore, only some frameworks for polytypism

142

143

may examine types with binding structure, such as polymorphic or existential
types [ACPR95, CW99a, TSS00]. The LX language of Chapter 4 has this capa-
bility. However, these types are becoming increasingly more important. Current
implementations of the Haskell language [JR99, GHC02] include a form of exis-
tential type and first class polymorphism. Existential types are particularly useful
for implementing dynamically extensible systems that may be augmented at run
time with new operations and new types of data [HWC01]. Also, the extension of
polytypic programming to an object-oriented language will require the ability to
examine types with binding structure.

What is necessary to accommodate all types and all operations? First, be-
cause a quantified type is not known until run time, a type-passing (like LI) or
representation-passing (like LIR) interpretation is required to examine types with
binding structure. By incorporating the type information with the execution of the
language, such frameworks may define polytypic operations over abstract types.
Second, the class of polytypic operations including mapping functions, reductions,
zipping functions and folds must be defined in terms of higher-order type construc-
tors instead of types. Such type constructors are “functions” such as list or tree,
that are parameterized by other types.

There is no reason why one system should not be able to define polytypic
operations over both higher-order type constructors and quantified types. In
fact, the two abilities are quite complementary when quantified types are rep-
resented using higher-order type constructors (i.e., with higher-order abstract syn-
tax [Chu40, PE88, TSS00]). For example, the constant ∀? applied to the type
function (λα: ? .α → α) represents the polymorphic type ∀α.α → α.

In this chapter, I address the previous limitations of polytypic programming and
demonstrate how well these abilities fit together by extending LI (from Chapter 2)
to higher-order polytypism. Recall, in LI polytypic operations are defined by
run-time examination of the structure of first-order types with the special term
typerec. An analyzable type is either int , string , a product type composed of two
other types, or a function type composed of two other types. As these simple type
constructors form an inductive datatype, typerec defines a fold (or catamorphism)
over its type argument. For example, the result of analyzing types such as τ1 × τ2

is defined in terms of analyses of τ1 and τ2.
With the inclusion of type constructors that take a higher-order argument (such

as ∀? with argument of kind ? → ?) the type structure of the language is no longer
inductive. Previously, Trifonov et al. [TSS00] avoided this issue by using the kind-
polymorphic type constructor ∀ of kind ∀χ.(χ → ?) → ? instead of ∀? to represent
polymorphic types. As the argument of ∀ does not have a negative occurrence of
the kind ?, the type structure remains inductive.

144

Hinze [Hin00] defined polytypic operations over type constructors by viewing
a polytypic definition as an interpretation of the entire type constructor language,
instead of a fold over the portion of kind type. However, his framework is based
on compile-time definitions of polytypic functions (as opposed to run-time type
analysis) and so cannot instantiate these functions with polymorphic or existential
types. Here, I use this idea to extend Harper and Morrisett’s typerec to a run-
time interpreter for the type language, so that it may analyze higher-order type
constructors and quantified types.

In the rest of this section, I review LI and Hinze’s framework for polytypic
programming. In Section 6.2 I extend typerec to constructors of function kind.
Because a polytypic definition is a model of the type language, it inhabits a unary
logical relation indexed by the kind of the argument type constructor. A sim-
ple generalization in Section 6.3 extends this typerec to inhabit multiplace logi-
cal relations. Furthermore, in Section 6.4 I generalize typerec to constructors of
polymorphic kind. This extension admits the analysis of the ∀ constructor and
encompasses as a special case the previous approach of Trifonov et al. [TSS00].
Also, incorporating kind polymorphism enables further code sharing; without it,
polytypic definitions must be duplicated for each kind of type argument. Finally,
in Section 6.5 I compare this approach with other systems.

6.1.1 Higher-order polytypism

Why do I need to extend typerec to higher-order constructors? With the semantics
of LI, it may not express all polytypic definitions. For example, I cannot use
it to define the function fsize that counts up the number of values of type β
in a data structure of type T (α β). This functions should be of type ∀α:? →
?.∀β: ? .T (α β) → int . For example, if c1 = λα: ? .α × int and c2 = λα: ? .α × α,
then fsize[c1] and fsize[c2] are constant functions returning 1 and 2 respectively. If
α is instantiated with list, fsize[list] is the standard length function.

Recall the typing rule for LI typerec, below:

[e-trec]

∆ ` c : ?
∆, α:? ` σ

∆; Γ ` e⊕ : [α.σ]〈⊕ : κ⊕〉 ∀η⊕ ∈ e

∆; Γ ` typerec[α.σ] c e : σ[c/α]

Again, the symbol e abbreviates the branches of the typerec (int ⇒ eint ,→ ⇒
e→,× ⇒ e×). In this chapter I will be deliberately vague about what type con-
structors comprise these branches and add new branches as necessary. I use ⊕ to
notate arbitrary type constructor constants (such as int ,→,×, called operators),

145

and assume each ⊕ is of kind κ⊕. To verify the branches of the typerec, this rule
depends on the following definition of a polykinded type, written [α.σ]〈c : κ〉. This
type represents the result of a branch on constructor c of kind κ. It is defined
below by induction on κ

[α.σ]〈c : ?〉 = σ[c/α]
[α.σ]〈c : κ1 → κ2〉 = ∀α:κ1.[α.σ]〈α : κ1〉 → [α.σ]〈(cα) : κ2〉

In the above rule, the argument to typerec must be of kind ?. If α is an unknown
type constructor of kind ?→?, it cannot directly be the argument to typerec. It is
possible to analyze the result of applying it, but that may not work. For example,
an attempt to define fsize might start out as

fsize = Λα:? → ?.Λβ: ? . typerec[λγ.γ → int](α β) of . . .

However, this approach is wrong. At run time, β will be instantiated before typerec
analyzes (α β). The value returned by typerec will depend on what type instanti-
ated β. If that type was int , then c1 int and c2 int will reduce to the same type,
and analysis will produce the same result, even though c1 and c2 are different con-
structors. Therefore, in order to define fsize, we must somehow analyze the type
constructor α independently of its argument β.

How should typerec analyze higher-order type constructors? What should the
return type of such an analysis be? I draw inspiration from a recently proposed
framework for generic programming by Ralf Hinze [Hin00]. Unlike in LI, where
types are analyzed at run time, in this framework, polytypic functions are created
and specialized to their type arguments at compile-time. The key insight is that
each polytypic definition should be an interpretation of the type language with
elements of the term language. If this interpretation is sound—i.e. when two types
are equal, their interpretations are equal—we will be able to reason about the
behavior of a polytypic definition. Otherwise, the process of substituting equal
types for equal types could affect the meanings of the programs. A sound inter-
pretation of higher-order types is to interpret type functions as term functions
and type application as term application, because the β-equality between types
(i.e.(λα:κ.c1)c2 = c2[c1/α]) will be preserved by β-equivalence in the term lan-
guage. However, the constants of the type language (int ,→,×) may be mapped
to any term (of the right type) providing the flexibility to define a number of
different polytypic operations.

For example, the definition of the polytypic operation size is in Figure 6.1.
This operation is defined by induction over a type constructors c. It is also param-
eterized by a finite map η (an environment) mapping type variables to terms. I use
∅ as the empty map, extend a map with a new mapping from the type variable α

146

size 〈α〉 η = η(α)
size 〈λα:κ.c〉 η = Λα:κ. λx:(S ize 〈κ〉 α).

size 〈c〉 (η, α:x)
size 〈c1c2〉 η = (size 〈c1〉 η) [c2] (size 〈c2〉 η)
size 〈int〉 η = λx: int .0
size 〈string〉 η = λx: string .0
size 〈×〉 η = Λα: ? .λx:(α → int). Λβ: ? .λy:(β → int).

λv:(α× β).x(π1v) + y(π2v)
size 〈+〉 η = Λα: ? .λx:(α → int). Λβ: ? .λy:(β → int).

λv:(α + β). case v of (inj 1 w ⇒ xw | inj 2 w ⇒ yw)

where
S ize 〈?〉 c = c → int
S ize 〈κ1 → κ2〉 c = ∀α:κ1.S ize 〈κ1〉 α → S ize 〈κ2〉 (c α)

Figure 6.1: Example: size in Hinze’s system

to the term e with the notation η, α:e, and retrieve the mapping for a type variable
with η(α). All variables in the argument of size should be in the domain of η.
The first three lines of the definition in this table are common to polytypic defini-
tions. The definition for variables is determined by retrieving the mapping of the
variable from environment. The environment is extended in the definition of size
for type functions (λα:κ.c). As a type function is of higher kind, it is defined to
be a polymorphic function from the size of the type argument, to the size of the
body of the type constructor, with the environment updated to provide a mapping
for the type variable occurring in the body. The type of x is determined by the
kind of α and is explained in the following. Because a type function maps to a
polymorphic term function, a type application produces a term application.

The last four cases determine the behavior of size. Intuitively, size produces
an iterator over a data structure, which adds the “sizes” of all of its parts. I
would like to use this operation in the definition of fsize as follows. Because list
is a type constructor, the specialization size〈list〉 maps a function to compute
the “size” of values of some type β, to a function to compute the “size” of the
entire list of type list β. If we supply the constant function λx:β.1 for the list
elements, we produce the desired length function for lists. Therefore, I may define

147

fsize specialized by any closed type constructor c as Λβ: ? .(size〈c〉∅) [β] (λx:β.1).1

For base types, such as int or string , size produces the constant function λx.0,
because they should not be included in computing the size. The type constructors
+ and × are both parameterized by the two subcomponents of the + or × types
(α and β) and functions to compute their sizes (x and y).

For example, the slightly simplified specialization of size〈λα.α×string〉∅, when
all of the definitions have been applied, is below. It is a function that when given
an argument to compute the size of terms of type α, should accept a pair and
apply this argument to the first component of the pair. (As the second component
of the pair is of type string , its size is 0).

size〈λα.α× string〉∅
= { using the definition for type abstraction }

Λα: ? .λw:α → int .size〈α× string〉, α:w
= { definition for application, applied twice }

Λα: ? .λw:α → int .(size〈×〉, α:w)
[α] (size〈α〉, α:w) [string] (size〈string〉, α:w)

= { definitions for ×, variables, and string }

Λα: ? .λw:α → int .(Λα: ? .λx:α → int .Λβ : ?.λy:β → int .
λv : α× β.x(π1v) + y(π2v))[α] w [string] (λx: string .0)

= { β-simplification }

Λα: ? .λw:(α → int).λv:(α× string).w(π1v) + 0

Because type functions are mapped to term functions, the type of the polytypic
definition (such as size) will be determined by the kind of the type constructor
analyzed. In each instance, the definition of size〈c〉 will be of type S ize〈κ〉c where
κ is the kind of c and S ize〈κ〉c is defined by induction on the structure of κ. If
the constructor c is of kind ?, then S ize〈?〉c, is a function type from c to int .
Otherwise, if c is of higher kind then size is parameterized by a corresponding
size argument for the type argument to c.

S ize〈?〉c = c → int
S ize〈κ1 → κ2〉c = ∀α:κ1.S ize〈κ1〉α → S ize〈κ2〉(cα)

Why does the definition of size make sense? It is defined over the syntax of a
type, but a type is actually an equivalence class of syntactic expressions. To be well
defined, a polytypic function must return equivalent terms for all equivalent types,
no matter how the types are expressed. For example, size instantiated with (λα:?

1Unlike LI where types are analyzed at run time, in this framework polytypic functions are
created and specialized to their type arguments at compile-time, so I may not make fsize〈c〉
polymorphic over c.

148

.α × string) int must be equal to size 〈int × string〉 because these two types are
equal by β-equality. Because the term functions provide the necessary equational
properties, the definition of size is sound. Therefore, though the interpretations
of the type operators (int ,→,×) may change for each polytypic operation, the
interpretations of functions (λα:κ.c), variables α, and applications (c1c2) remain
constant in every polytypic definition. As a result, the types of polytypic operations
can be expressed using the same notation for polykinded types that I used to
describe the type of each branch of typerec. For example, I express S ize〈κ〉c in
this notation as [α.α → int]〈c : κ〉.

6.2 The semantics of higher-order typerec: The

LH language

Hinze’s framework specifies how to define a polytypic function at compile time by
translating closed types into terms. However, in some cases, such as in the presence
of polymorphic recursion, first-class polymorphism, or separate compilation it may
not be possible to specialize all type abstractions at compile time. Therefore, in
this section, I extend a language supporting run-time type analysis to polytypic
definitions over higher-order type constructors. I do so by changing the behavior
of LI’s typerec to an interpret the type language at run time.

Just as each of the branches in the definition of size are described by polykinded
types, so are each of the branches of typerec. Carrying the analogy further suggests
that I may extend typerec to all type constructors by relaxing the restriction that
the argument to typerec be of kind ?, and by using a polykinded type to describe
the result of typerec.

∆ ` c : κ
∆, α:? ` σ

∆; Γ ` e⊕ : [α.σ]〈⊕ : κ⊕〉 (∀e⊕ ∈ e)

∆; Γ ` typerec[α.σ] c of e : [α.σ]〈c : κ〉

Unfortunately, this judgment is not complete. As in the definition of size〈c〉η, the
operational semantics for higher-order typerec must involve some sort of environ-
ment η, and the typing judgment must describe that environment.

In the following, I introduce higher-order typerec, first presenting its operational
semantics, and then describe how to type-check a typerec term. I conclude this
section by exhibiting the expressiveness of a language including this term with
a number of examples demonstrating typerec extended to type constructors with
binding constructs.

149

Table 6.1: LH: Syntax

(kinds) κ ::= ? | κ1 → κ2

(ops) ⊕ ::= int |→| × | + | . . .
(con′s) c ::= α | λα:κ.c | c1c2 | ⊕
(types) σ ::= T (c) | int | σ → σ | ∀α:κ.σ | . . .
(exps) e ::= i | x | λx:σ.e | e1e2 | fix x:σ.e | Λα:κ.e | e[c]

| typerec[α.σ][∆, η, ρ] c of e | . . .

To make the examples concrete, I replace the typerec term in Harper and Mor-
risett’s LI with higher-order typerec. The syntax of this language appears in Ta-
ble 6.1; the semantics not involved with typerec remains the same. Type con-
structors and types are again separate syntactic classes in this language, with an
injection T (c) between the type constructors of kind ?, and the types.

I define the operational semantics for higher-order typerec by induction on the
structure of the type constructor argument, c, at the bottom of Table 6.2. In order
to interpret type variables in this argument, I add an environment component η
to typerec. The intention is that the free type variables in c will be in the domain
of η, and typerec will use it to look up the appropriate value when analysis reaches
one of these variables. However, in order to define a sound operational semantics, I
must be careful that these free type variables in c do not escape their scope. When
part of c is used for a purpose other than type analysis (as in the rule for type
application below) I must substitute away all of the free type variables occurring
in c. For this substitution, I add to typerec an additional environment, ρ, mapping
type variables to types. The notation ρ(c) applied the substitution for all free
variables of c in the domain of ρ.

When the argument to typerec is a type variable, the result is its mapping in the
environment η. When type analysis reaches a type-constructor abstraction, both
the term and the type environments are extended with the appropriate mappings.
For a type application, typerec applies the analyzed constructor function to the
analyzed argument. For operators, typerec just returns the appropriate branch.

A reassuring property of this typerec is that it derives the original operational
rules. For example, the original version of typerec has the following evaluation rule
for product types:

typerec[α.σ] (c1 × c2) of e
7→i e×[c1] (typerec[α.σ] c1 of e) [c2] (typerec[α.σ] c2 of e)

150

With higher-order type analysis, because c1 × c2 is the operator × applied to c1

and c2, the rule for type-constructor application generates the same behavior.

Table 6.2: LH: semantics for higher-order typerec

∆; Γ[α.σ] ` ∆′ | η | ρ

[ctx-empty]
∆; Γ[α.σ] ` ∅ | ∅ | ∅

[ctx-add]

∆; Γ[α.σ] ` ∆′ | η | ρ
∆ ` c : κ

∆; Γ ` e : [α.σ]〈c : κ〉
∆; Γ[α.σ] ` ∆′, β:κ | η, β:e | ρ, β:c

(β 6∈ Dom(∆, ∆′))

∆; Γ ` e : σ

[e-trec]

∆, α:? ` σ
∆; Γ[α.σ] ` ∆′ | η | ρ

∆, ∆′ ` c : κ
∆; Γ ` e⊕ : [α.σ]〈⊕ : κ⊕〉 (∀e⊕ ∈ e)

∆; Γ ` typerec[α.σ][∆′, η, ρ] c of e : [α.σ]〈ρ(c) : κ〉

e 7→ e′

[ev-trec-var]
typerec[α.σ][∆′, η, ρ] β of e 7→ η(β)

[ev-trec-fn]
typerec[α.σ][∆′, η, ρ] (λβ:κ.c) of e 7→

Λγ:κ.λx:[α.σ]〈γ : κ〉.
typerec[α.σ][∆′, β:κ, η, β:x, ρ, β:γ] c of e

[ev-trec-app]
typerec[α.σ][∆′, η, ρ] (c1c2) of e 7→

(typerec[α.σ][∆′, η, ρ] c1 of e) [ρ(c2)]
(typerec[α.σ][∆′, η, ρ] c2 of e)

151

Table 6.2 (Continued)

[ev-trec-op]
typerec[α.σ][∆′, η, ρ] ⊕ of e 7→ e⊕

To typecheck a typerec term, I need a context ∆′ to describe the kinds of the
variables in the domain of η and ρ. I use this context as an additional assumption
when checking the argument to typerec, and also employ it when checking η and
ρ. For the latter, I formulate a new judgment ∆; Γ[α.σ] ` ∆′ | η | ρ, stating that
η and ρ are well formed. Intuitively this judgment states “in context ∆; Γ, the
environment η maps type variables in ∆′ to appropriate terms for the result type
annotation [α.σ], and the environment ρ maps those variables to type constructors
of the same kind”. This judgment is derived from two inference rules in Table 6.2.
The first rule states that the empty context and the empty environments are always
valid. In the second rule, if I add a new type variable α of kind κ to ∆′, its mapping
in ρ must be to a type constructor c also of kind κ, and its mapping in η must be
to a term with type indexed by κ. Note that as I add to ∆′ only type variables
that are not in ∆, the domains of ∆ and ∆′ must be disjoint.

With this judgment, I can state the formation rule for higher-order typerec in
Table 6.2, as an extension of the previous rule.

The LH version of size appears below. For each operator (int , unit ,etc..) the
branch in typerec is the same as in Hinze’s definition in Figure 6.1. In this and
following examples, when the maps annotating typerec are empty, they are elided.

size = Λα:? → ?. typerec[β.β → int] α of
int ⇒ λy: int .0
unit ⇒ λy: unit .0
× ⇒ Λβ: ? .λx:(β → int).Λγ: ? .λy:(γ → int).

λv:(β × γ). x(π1v) + y(π2v)
→ ⇒ Λβ: ? .Λγ: ? .undefined
+ ⇒ Λβ: ? .λx:(β → int).Λγ: ? .λy:(γ → int).

λv:(β + γ). case v of (inj 1 z ⇒ x(z) | inj 2 z ⇒ y(z))

This example demonstrates a few deficiencies of the calculus presented so far.
First, what about recursive types? The definition of size for lists and trees re-
quires them. What about polymorphic or existential types? It seems reasonable
to extend size to data types with abstract components. What about applying size

152

to constructors of kind ? → ?? This typerec can operate over constructors of any
kind. I address these limitations in the rest of this chapter.

6.2.1 Recursive types

Higher-order type analysis is amenable to both equi-recursive and iso-recursive
types. For simplicity, I begin with the non-parameterized version of these recursive
types, created with the constructor µ? of kind (? → ?) → ?.

Hinze’s definitions were originally in the context of a language with iso-recursive
types. In such a language, a recursive type is definitionally equal to its unrolling.
The rules for type equivalence include the following rule to witness that fact.

∆ ` c : ? → ?
∆ ` µ?c = c(µ?c) : ?

In order to preserve this equality, Hinze always translated polytypic functions over
recursive types to recursive functions. Because a recursive function will unwind
itself during execution, size〈µ?c〉 will step to size〈cµ?〉, and so both will provide
the same behavior.

With this extra constraint on type equality, analysis of (µ?c) must be equal
to that c(µ?c), just as analysis of (λα:κ.c1)c2 is equal to analysis of c1[c2/α]. As
in Hinze’s definition, an evaluation rule for typerec in this context takes the fixed
point of its argument as the interpretation of a recursive type2.

typerec[α.σ][Γ, η, ρ] µ? e 7→
Λβ:? → ?. λx:[α.σ]〈β : ? → ?〉.

fix f :[α.σ]〈µ?β : ?〉. (x [µ?β] f)

However, type-checking in a systems with equi-recursive types is more compli-
cated than in languages with iso-recursive types (such as LI, LX, etc..). Unlike
those languages, we cannot use normalize-and-compare algorithm to decide when
two type constructors are equivalent. Like the evaluation of recursive functions,
unrolling a recursive type may not terminate. Efficient algorithms to decide equiv-
alence (and subtyping) of regular recursive types do exists. Gapeyev, Levin and
Pierce [GLP00] provide a tutorial, based on the work of Brandt and Henglein
[BH97], Kozen et al.[KPS93], and Jim and Palsberg [JP99]. However, extending
equivalence algorithms to parameterized (non-regular) recursive types is difficult.
Determining when two of these types are equal is equivalent to the equivalence

2In a call-by-value calculus this rule is ill-typed because it takes the fixed point of an expression
that is not necessarily of function type. To support this rule in such a calculus, the rule for typerec
should require that σ return a function type for any argument.

153

problem for deterministic pushdown automata [Sol78]. That problem is known to
be decidable [S9́7], but no tractable algorithm is known.

Iso-recursive types

In order to simplify the implementation of type equality, many languages support
iso-recursive types: those that require explicit terms that coerce between a re-
cursive type and its unfolding. In this framework, there is no equational rule for
µ?, but the calculus includes the two terms that witness the isomorphism between
a recursive type and its unrolling. For non-parameterized recursive types, these
terms have formation rules:

rollµ?c : c(µ?c) → µ?c unroll : µ?c → c(µ?c)

There is the most flexibility in the definition of polytypic functions with iso-
recursive types. As there is no equivalence rule governing µ?, polytypic functions
are free to interpret it in any manner, as long as its branch in typerec has the
correct type, determined by the kind of µ?. This type is

[α.σ]〈µ? : (? → ?) → ?〉 = ∀β:? → ?.(∀γ: ? .σ[γ/α] → σ[βγ/α]) → σ[µ?β/α]

In most polytypic terms, the typerec branch for iso-recursive µ? will be the same
as the evaluation rule for equi-recursive µ?.3 For example, the µ? branch for size
is below. The difference between it and the rule for equi-recursive types is an
η-expansion around x[µ?α]f that allows us to insert the term coercion unroll .

µ? ⇒ Λα:? → ?.
λx:(∀β: ? .T (β → int) → T (αβ → int)).

fix f :T (µ?α → int).
λy:T (µ?α). x [µ?α] f (unroll y)

The argument α is the body of the recursive type, and the argument x is the result
of typerec over that body. The definition of size for a recursive type should be
a recursive function that accepts an argument, y, of a recursive type, unrolls it so
that it is of type T (α(µ?α)), and calls x to produce size for this object. The call
to x needs an argument that computes the size of the parameter β to α—in this
case, the parameter is µ?α, so the argument I need is the result I am computing
in the first place. Therefore, I use fix to name this result f and supply it to x.

Now I have all of the pieces to write length for lists. The list type constructor
is expressed with a recursive type as λα: ? .µ?(λβ: ? . unit +(α × β)). As before,

3In Section 6.3.2 I discuss a term that is not.

154

the application size[list] is of type

∀α: ? .T (α → int) → T ((list α) → int).

and to produce length, I supply the constant function one that will be employed
at each node of the list.

length = Λα: ? .size[list][α](λx:α.1)

Nested datatypes

While the types themselves grow more complicated, nothing much needs to change
to generalize to parameterized recursive types. In this case, recursive types are
created with the µκ type constructor below.

µκ : ((κ → ?) → (κ → ?)) → (κ → ?)

Parameterized recursive types are often useful in programming languages to
describe nested datatypes. Nested datatypes are a powerful technique of represent-
ing constraints about the formation of datatypes [BM98, Oka98, BP99b, Oka99].
In general they may be described as parameterized datatypes in ML or Haskell
in which the recursive type is applied to some type other than the parameterized
variable. For example, even though Tree is a parameterized datatype when written
in Haskell below,

data Tree a = Node | Leaf ((a, a), Tree a)

it is not a nested datatype as it may be described by a regular recursive type.

Tree = λα: ? .µ?(λβ: ? .1 + ((α× α)× β))

A simple example of a nested datatype is a power tree. This datatype only
represents complete binary trees. Power trees are defined in Haskell by the follow-
ing datatype definition, where the recursive type Pow is applied to the pair (a,a)
instead of just the type variable a.

data Pow a = Zero a | Succ (Pow (a,a))

We must use the µ?→? type constructor to describe power trees.

Pow = µ?→? (λβ:? → ?.λα: ? .α + β(α× α))

Every power tree stores a complete binary tree. If the tree has 2n elements, then
the prefix of the data representation is the number n in unary.

155

p2 = Succ (Zero (1,2))

p4 = Succ (Succ (Zero ((1,2), (3, 4))))

p8 = Succ (Succ (Succ (Zero (((1,2),(3,4)), ((5,6),(7,8))))))

We can define a size function for power trees below, parameterized by f the
size function for the type a as below.

powersize :: (a -> Int) -> (Pow a -> Int)

powersize f (Zero t) = f t

powersize f (Succ p) = powersize (\(x,y) -> f x + f y) p

If the power tree is the Zero constructor, we apply f to its argument, as it is of
type a. Otherwise, if the tree is the Succ constructor, its argument is of type Pow

(a,a). Therefore we should call powersize recursively with a function from (a,a)

to Int. Note that this function powersize requires polymorphic recursion in order
to type check, as the recursive call to powersize is instantiated at the type (a,a)

instead of just a).
Defining such operations over nested datatypes is a tricky process [BM98,

BP99a]. However, by adding a branch for the type constructor µ?→? into the defini-
tion of size, then powersize may be developed automatically. If σ = T (α → int),
then µ?→? branch should be of type:

[α.σ]〈µ?→? : ((? → ?) → (? → ?)) → ? → ?〉

Expanding the definition, this type is:

∀α:(? → ?) → (? → ?).[α.σ]〈α : (? → ?) → ? → ?〉
→ [α.σ]〈µ?→?α : ? → ?〉

= ∀α:(? → ?) → (? → ?).[α.σ]〈α : (? → ?) → ? → ?〉
→ ∀β: ? .T (β → int) → T (µ?→?αβ) → int)

The branch for size for this operator is very similar to that of µ, it uses fix to create
a sizing function, g, for µ?→?’s, then unrolls the argument, and uses r, instantiating
β with µ?→?α and then passing it g.

µ?→? ⇒ Λα:(? → ?) → (? → ?).
λr:(∀β:? → ?.[α.σ]〈β : ? → ?〉 → ∀γ: ? .T (γ → int) → T (αβγ) → int).
fix g : [α.σ]〈µ?→?α : ? → ?〉.

Λγ: ? . λf :T (γ → int). λx:T (µ?→?αγ).
r [µ?→?α] g [γ] f (unroll x)

156

6.2.2 F2 polymorphism

The type constructor constants ∀?and ∃? (of kind (? → ?) → ?) use higher-
order abstract syntax [PE88] to describe polymorphic and existential types of
F2 [Gir72, Rey83]. These types are a subset of the polymorphic and existential
types of LI. They may only abstract types instead of constructors of any kind. The
relationship between these type constructors and the corresponding types are:

∆ ` T (∀?c) = ∀α: ? .T (cα) ∆ ` T (∃?c) = ∃α: ? .T (cα)

I can extend size with a branch for ∃?. In this branch, we need to provide a
function to calculate the size of the hidden type, so I use the constant function
zero:4

∃? ⇒ Λα:? → ?.λr:(∀β: ? .T (β → int) → T (αβ → int)).

λx:T (∃α). let〈β, y〉 = unpack x in r [β] (λx:β.0) y

With size I was fortunate that I could compute the value of size for the hidden
type of an existential without analyzing it, as it was a constant function. How-
ever, for many polytypic functions, this is not the case, and the function I pass
to operate on the hidden type is itself polytypic. In fact, often it is the polytypic
function itself, called recursively. This is not surprising, considering the impred-
icative nature of ∀?and ∃? types: since the quantifiers range over all types I need
an appropriate definition at all types.

For example, consider the simple function copy in Figure 6.2 that creates an
identical version of its argument. At base types, it is an identity function, at higher
types, it breaks apart its argument and calls itself recursively.

6.2.3 Typing properties of LH

The rules for the static and dynamic semantics are appropriate because they satisfy
type preservation: looking at the four operational rules for typerec, we can see that
no matter which one applies, if the original term was well-typed then the resulting
term is also well-typed with the same type. Furthermore, a closed, well-typed
typerec term is never stuck; for any type constructor argument, one of the four
operational rules must apply. These two properties may be used to syntactically
prove type safety for this language [WF94].

4Because size operates over data-structures, the extension of size to polymorphic types is
a little dubious. However, my observation that the size of all types is constant means that I
can provide a branch for polymorphic types. I need to supply the size of the abstract type, no
matter its identity; since this value is a constant over all types, I can just use the size of int .

157

fix copy : ∀α : ?.T (α → α).
Λα : ?. typerec[α.T (α → α)] α of
int ⇒ λi: int .i
→ ⇒ Λα: ? .λrα:T (α → α).Λβ: ? .λrβ:T (β → β).

λf :T (α → β).rβ ◦ f ◦ rα

× ⇒ Λα: ? .λrα:T (α → α).Λβ: ? .λrβ:T (β → β).
λx:T (α× β).〈rα(π1x), rβ(π2x)〉

µ? ⇒ Λα:? → ?.λr:∀β: ? .T (β → β) → T (αβ → αβ).
fix f :T (µ?α → µ?α).λx:T (µ?α). roll (r [µ?α] f (unroll x))

∀? ⇒ Λα:? → ?.λr:∀β: ? .T (β → β) → T (αβ → αβ).

λx:T (∀?α).Λβ: ? .r [β] (copy [β]) (x[β])

∃? ⇒ Λα:? → ?.λr:∀β: ? .T (β → β) → T (αβ → αβ).λx:T (∃?α).

let〈β, y〉 = unpack x in pack〈β, r [β] (copy [β]) y〉 as ∃β: ? .αβ

Figure 6.2: Example: copy

Lemma 6.2.1 (Substitution) We must prove four properties:

1. If ∆, β:κ; Γ[α.σ] ` ∆′ | η | ρ and ∆ ` c : κ then ∆[α.σ[c/β]]; Γ[c/β] ` ∆′ |
η[c/β] | ρ[c/β].

2. If ∆, α:κ; Γ ` e : σ and ∆ ` c : κ then ∆; Γ[c/α] ` e[c/α] : σ[c/α].

3. If ∆; Γ, x:σ′[α.σ] ` ∆′ | η | ρ and ∆; Γ ` e′ : σ′ then ∆; Γ[α.σ] ` ∆′ | η[e′/x] |
ρ

4. If ∆; Γ, x:σ′ ` e : σ and ∆; Γ ` e′ : σ′ then ∆; Γ ` e[e′/x]

Proof

We prove the first two parts by simultaneous induction on the derivations

∆, β:κ; Γ [α.σ] ` ∆′ | η | ρ and ∆, α:κ; Γ ` e : σ

with a case analysis on the last step. Because part two is similar to the substitution
lemma for LI, we only include the case for typerec. The proofs of the second two
parts are by simultaneous induction on the derivations

∆; Γ, x:σ′ [α.σ] ` ∆′ | η | ρ and ∆; Γ, x:σ′ ` e : σ

158

Those proofs follow analogously to the proofs of the first two parts, so we do not
detail them here.

1. In the base case,

∆; Γ[c/β][α.σ] ` ∅ | ∅ | ∅

Otherwise, assume

∆, β:κ; Γ[α.σ] ` ∆′ | η | ρ ∆, β:κ; Γ ` c′ : κ′

∆, β:κ; Γ ` e : [α.σ]〈c′ : κ′〉 γ 6∈ Dom(∆, ∆′)

By induction ∆; Γ[c/β][α.σ] ` ∆′ | η[c/β] | ρ[c/β]
By Lemma 2.5.3 ∆ ` c′[c/β] : κ′

By Part 2 ∆; Γ[c/β] ` e[c/β] : ([α.σ]〈c : κ′〉)[c/β]

Therefore we may conclude

∆; Γ[c/β][α.σ[c/β]] ` ∆′, γ:κ | (η, γ:e)[c/β] | (ρ, γ:c′)[c/β]

2. Assume the last rule of the derivation was:

∆, β:κ, α:? ` σ
∆, β:κ; Γ[α.σ] ` ∆′ | η | ρ

∆, β:κ, ∆′ ` c′ : κ′

∆, β:κ; Γ ` e⊕ : [α.σ]〈⊕ : κ⊕〉 (∀e⊕ ∈ e)

∆, β:κ; Γ ` typerec[α.σ][∆′, η, ρ] c′ of e : [α.σ]〈ρ(c′) : κ′〉

By Lemma 2.5.3 ∆, α:? ` σ[c/β]
By Part 1 ∆; Γ[c/β][α.σ[c/β]] ` ∆′ | η[c/β] | ρ[c/β]
By Lemma 2.5.3 ∆, ∆′ ` c′[c/β] : κ′

By induction ∆; Γ[c/β] ` e⊕[c/β] : ([α.σ]〈⊕ : κ⊕〉)[c/β] (∀e⊕ ∈ e)

Therefore we may conclude

∆; Γ[c/β] ` (typerec[α.σ][∆′, η, ρ] c′ of e)[c/β] : ([α.σ]〈ρ(c′) : κ′〉)[c/β]

�

Lemma 6.2.2 (Subject Reduction) If ` e : σ and e 7→ e′ then ` e′ : σ.

Proof

159

Again proof is by induction on the derivation ` e : σ. We only show the case
involving typerec. Assume the last rule was

α:? ` σ
α.σ ` ∆′ | η | ρ

∆′ ` c : κ
` e⊕ : [α.σ]〈⊕ : κ⊕〉 (∀e⊕ ∈ e)

` typerec[α.σ][∆′, η, ρ] c of e : [α.σ]〈ρ(c) : κ〉

case typerec[α.σ][∆′, η, ρ] β of e 7→ η(β)

By assumption, ` η(β) : [α.σ]〈ρ(β) : ∆(β)〉.

case typerec[α.σ][∆′, η, ρ] ⊕ of e 7→ e⊕

By assumption, ` e⊕ : [α.σ]〈⊕ : κ⊕〉.

case κ = κ1 → κ2 and

typerec[α.σ][∆′, η, ρ] (λβ:κ1.c1) of e
7→ Λγ:κ1.λx:[α.σ]〈γ : κ1〉.

typerec[α.σ][∆′, β:κ1, η, β:x, ρ, β:γ] c of e.

We wish to show that

γ:κ1; x:[α.σ]〈γ : κ1〉
` typerec[α.σ][∆′, β:κ1, η, β:x, ρ, β:γ] c of e

: [α.σ]〈ρ, β:γ(c1) : κ2〉

This follows as ∆′, β:κ1 ` c1 : κ2 and as

[α.σ] ` ∆′ | η | ρ
γ:κ1 ` γ : κ1

γ:κ1; x:([α.σ]〈γ : κ1〉) ` x : [α.σ]〈γ : κ1〉
γ:κ1; x:([α.σ]〈γ : κ1〉) [α.σ] ` ∆′, β:κ1 | η, β:x | ρ, β:γ

case The argument to typerec is an application c1c2.

typerec[α.σ][∆′, η, ρ] (c1c2) of e 7→
(typerec[α.σ][∆′, η, ρ] c1 of e)[ρ(c2)](typerec[α.σ][∆′, η, ρ] c2 of e)

We wish to show

` (typerec[α.σ][∆′, η, ρ] c1 of e)[ρ(c2)](typerec[α.σ][∆′, η, ρ] c2 of e)
: [α.σ]〈ρ(c1c2) : κ〉

Suppose ∆′ ` c1 : κ′ → κ. The above follows from the following three
judgments:

160

1. ` (typerec[α.σ][∆′, η, ρ] c1 of e) : [α.σ]〈c1 : κ′ → κ〉
This result follows from the preconditions of typerec.

2. ` ρ(c2) : κ′

This result follows by substitution, as ∆′ ` c2 : κ′

3. ` (typerec[α.σ][∆′, η, ρ] c2 of e) : [α.σ]〈c2 : κ′〉
This result follows from the preconditions of typerec.

�

Lemma 6.2.3 (Progress) If ` e : σ and e is not a value then there exists an e′

such that e 7→ e′.

As long as every well-typed typerec expression steps, the Progress Lemma fol-
lows from that of LI. This fact is true because for each form of constructor argument
to typerec (variable, application, abstraction, or operator), there is a rule of the
operational semantics.

Theorem 6.2.4 (Type Soundness) If ∅ ` e : σ and e 7→∗ e′ then e′ is not stuck.

Proof

See Theorem 2.5.8. �

6.2.4 Model theoretic properties

Furthermore, we would like to make precise the notion that the term language
interprets the type language. In order to do so, we must define an appropriate
notion of equality for the term language, so that we can prove that equality in the
type language is preserved by equality in the term language. What should this
equivalence relations between terms be?

As is typical for programming language, the only relationship given outright
between terms is evaluation (besides syntactic equality modulo α-conversion, of
course). We could extend this relation to an equivalence relation as follows

e ≡7→ e′
def
= e 7→∗ v and e′ 7→∗ v

However, this equivalence is too fine. Two functions may not be considered equal
even if they are extensionally equal—for every pair of equivalent arguments they
produce equivalent results. Therefore, we need to extend this notion of equivalence
to include this idea of extensionality.

161

To do so, we define kind-indexed relations V [[·]] and C[[·]] below. We will use
C[[·]] to define what we mean by equivalence. However, the entire relation we define
will not quite be an equivalence relation, only portion of it restricted to terms that
terminate with values. We will consider non-terminating terms to be related to
every other term.

Definition 6.2.5

V [[?]] = {(v, v) | ∅ ` v : [c]〈c′ : ?〉}
V [[κ1 → κ2]] = {(v1, v2)| ∅ ` v : [c]〈c′ : κ1 → κ2〉 and ∅ ` v2 : [c]〈c′ : κ1 → κ2〉

for all (v′1, v
′
2) ∈ V [[κ1]] for all ∅ ` c1 = c2 : κ1,

(v1[c1]v
′
1, v2[c2]v

′
2) ∈ C[[κ2]] }

C[[κ]] = {(e, e′) | ∅ ` e : [c]〈c′ : κ〉 and ∅ ` e′ : [c]〈c′ : κ〉
e 7→∗ v & e′ 7→∗ v′& (v, v′) ∈ V [[κ]] }

Definition 6.2.6 Define e ≈C e′ if either (e, e′) ∈ C[[κ]] or e diverges or e′ diverges.

Proposition 6.2.7 We observe (without proof) a few trivial properties about these
relations:

1. V [[κ]] is an equivalence relation on closed well-typed terms.

2. C[[κ]] is an equivalence relation on closed well-typed terms.

3. If (v, v′) ∈ V [[κ]], then (v, v′) ∈ C[[κ]].

4. If e 7→∗ e′, then (e, e′) ∈ C[[κ]].

5. If e diverges, then e ≈C e′ for all e′.

Now that we have a version of equivalence, we may define a collection of Henkin
models for the type language, using the closed, well-typed portion of the term
language.

For any c such that ∅ ` c : ? → ?, and for any e such that e⊕ ∈ [c]〈⊕ : κ⊕〉,
we define the following typed applicative structure (also called a pre-frame) Ac,e =
(Aκ,Appκ1,κ2 ,Const) :

• Aκ is { [e]C[[κ]] | ∅ ` e : [c]〈c′ : κ〉 for some ∅ ` c′ : κ} ∪ {⊥}

• Appκ1,κ2 e1 e2 is e1[c2]e2, when ∅ ` e2[c]〈c2 : κ2〉.

• Const ⊕ is e⊕

162

We must show that such an applicative structure satisfies the property of exten-
sionality :

For all f, g ∈ Aκ1→κ2 , if Appf d ≈C App g d for all d ∈ Aκ1 , then f ≈C g

We can show this property by unwinding the definitions. Suppose f, g are in
Aκ1→κ2 . If either f or g diverge, the property is trivially true. Otherwise, if
f 7→∗ vf and g 7→∗ vg. We want to show that (vf , vg) ∈ V [[κ1 → κ2]]. This is true
if, for all (d1, d2) ∈ V [[κ1]], (vf [c]d1, vg[d]d2) ∈ C[[κ2]]. As (d1, d2) ∈ V [[k1]], d1 ≈C d2.
Therefore f [c]d1 ≈C f [c]d2 which implies that (vf [c]d1, vg[c]d2) ∈ C[[κ2]].

Finally we may extend our typed applicative structure to an environment model
by supplying a meaning function Ac,e[[·]]· from kinding derivations and environ-
ments, to elements of the model. This meaning function is defined only over
environments that satisfy the type context ∆ (written η ` ∆). We define that
notion using the judgment we have previously defined.

η ` ∆ if and only if there exists a ρ such that c ` ∆ | η | ρ

Now we may define the meaning function using typerec, and this ρ:

Ac,e[[∆ ` c′ : κ]]η = typerec[∆, η, ρ] c e

Our model satisfies the environment model condition if the meaning function
Ac,e[[·]]· satisfies the following properties.

Ac,e[[∆ ` ⊕ : κ]]η ≈C Const ⊕
Ac,e[[∆, α:κ ` α : κ]]η ≈C η(α)
Ac,e[[∆ ` c1c2 : κ]]η ≈C App(Ac,e[[∆ ` c1 : κ1 → κ2]]η)

(Ac,e[[∆ ` c2 : κ1]]η)
Ac,e[[∆ ` λα:κ.c : κ1 → κ]]η≈C the unique f such that ∀d ∈ Aκ1 ,

App fd ≈C Ac,e[[∆, α:κ ` c : κ2]]η, α:d

The first three properties follow trivially from the definition. Consider the
fourth property, we must show that: ∀d ∈ Aκ1

App Ac,e[[∆ ` λα:κ.c : κ1 → κ]]η d ≈C Ac,e[[∆, α:κ ` c : κ2]]η, α:d

This proposition reduces to

(typerec[∆, η, ρ](λα:κ.c) e) [c′] d ≈C typerec[∆, α:κ, η, α:d, ρ, α:c′] c e

(where ∅ ` d : [c]〈c′ : κ1〉) which follows immediately. Because uniqueness follows
from extensionality, we are done.

A number of important properties hold for environment models of the simply
typed lambda calculus. The most important of these is that equality is preserved
by the model.

163

Table 6.3: LH: Semantics for multiplace typerec

Γ ` e : σ

Γ; c ` Γ′ | η | ρ1 | . . . | ρn

Γ, Γ′ ` c′ : κ Γ ` c : ?n → ?
Γ ` e⊕ : c〈κ⊕〉n⊕ . . .⊕ (∀e⊕ ∈ e)

Γ ` typerecn[α.σ][Γ′, η, ρ1 . . . ρn] e of e : c〈κ〉nρ1(c
′) . . . ρn(c′)

e 7→ e′

typerecn[α.σ][Γ′, η, ρ1, . . . , ρn] ⊕ of e 7→ η⊕

typerecn[α.σ][Γ′, η, ρ1, . . . , ρn] α of e 7→ η(α)

typerecn[α.σ][Γ′, η, ρ1, . . . , ρn] (c1c2) of e
7→ (typerecn[α.σ][Γ′, η, ρ1, . . . , ρn] c1 of e) [ρ1(c2)] . . . [ρn(c2)]

(typerecn[α.σ][Γ′, η, ρ1, . . . , ρn] c2 of e)

typerecn[α.σ][Γ′, η, ρ1, . . . , ρn] (λα:κ.c′) of e
7→ Λβ1:κ. . . . Λβn:κ.λx:c〈κ〉nβ1 . . . βn.

(typerecn[α.σ][Γ′, α:κ, η, α:x, ρ1, α:β1, . . . , ρn, α:βn] c′ of e)

Corollary 6.2.8 (Soundness) If ∆ ` c = c′ : κ then for any η ` ∆,

Ac,e[[∆ ` c : κ]]η ≈C Ac,e[[∆ ` c′ : κ]]η.

This property means that we can change the argument to typerec to an equiv-
alent constructor at any point and the term will still evaluate roughly the same.
There is an issue with non-termination—because our term equality equated non-
termination with any term, it is possible for a typerec over one constructor to
diverge, and one over an equivalent constructor not to. However, by moving to a
call-by-name operational semantics, we may avoid this problem.

6.3 Multiplace logical relations

The definition of polykinded types [α.σ]〈c′ : κ〉 follows the definition of a unary
logical relation over type constructors indexed by the kind κ. In order to

164

write some polytypic functions (such as map and zip), Hinze observed that I need
logical relations over multiple type constructors. To support multiplace relations
in this framework, we generalize [α.σ]〈c′ : κ〉. For an n-place relation, c must take
n arguments, each of kind ?. I abbreviate c’s kind as ?n → ?.

c〈?〉nc1 . . . cn = T (c c1 . . . cn)
c〈κ1 → κ2〉nc1 . . . cn = ∀β1:κ1. . . .∀βn:κ1.c〈κ1〉nβ1 . . . βn → c〈κ2〉n(c1β1) . . . (cnβn)

Changing this definition forces us to generalize typerec, expanding ρ to a set of
type environments ρ1 . . . ρn, and extending the judgment Γ; c ` Γ′ | η | ρ as below.
I use this set of type environments in the modified operational semantics to provide
substitutions for the n type arguments in a type application. Furthermore, on type
abstraction, n type variables are abstracted, and all environments, ρ1 . . . ρn, are
extended with these variables (see Table 6.3).

Γ; c ` ∅ | ∅ | ∅1 | . . . | ∅n

Γ; c ` Γ′ | η | ρ1 . . . ρn Γ ` c1 : κ . . . Γ ` cn : κ
Γ ` e : [α.σ]〈c1 . . . cn : κ〉 α 6∈ Dom(Γ, Γ′)

Γ; c ` Γ′, α:κ | η, α:e | ρ1, α:c1 | . . . | ρn, α:cn

6.3.1 Example: map

For example, a generalized version of the function map can be defined using
typerec2, with type ∀α:? → ?.(→)〈? → ?〉2α α. The definition of this function
is essentially a two-place version of copy. If map is instantiated with the type
constructor list, the result is the standard map over lists with type :

(→)〈? → ?〉2list list = ∀α: ? .∀β: ? .(α → β) → (list α → list β).

map = typerec[λα1: ? .λα2: ? .α1 → α2] α of
int ⇒ λi: int .i
→ ⇒ undefined
× ⇒ Λα1, α2: ? .λrα:T (α1 → α2).Λβ1, β2: ? .λrβ:T (β1 → β2).

λx:T (α1 × β1).〈rα(π1x), rβ(π2x)〉
µ? ⇒ Λα1, Λα2:? → ?.λr:∀β1, β2: ? .T (β1 → β2) → T (α1β2 → α2β2).

fix f :T (µ?α1 → µ?α2).λx:T (µ?α1). roll (r [µ?α1][µα2] f (unroll x))
∀? ⇒ Λα1, Λα2:? → ?.λr:(∀β1, β2: ? .T (β1 → β2) → T (α1β1 → α2β2)).

λx:T (∀?α1).Λβ: ? .r[β][β] (λy:β.y) (x[β])

∃? ⇒ Λα1, α2:? → ?.λr:(∀β1, β2: ? .T (β1 → β2) → T (α1β1 → α2β2)).
λx:T (∃?α1).

let〈β, y〉 = unpack x in pack〈β, r[β][β] (λz:β.z) y〉 as ∃β: ? .αβ

165

Unlike copy, there is no fix surrounding map to provide a recursive call in the
cases for ∀? and ∃?. The typerec that comprises map when applied to a constructor
of kind ? is an identity function, so it makes sense that in each of these branches
r is called with an identity function.

6.3.2 Example: typetostring

A surprising observation is that there are useful functions when n = 0, such as
typetostring below. In this code, gensym creates a unique string for each variable
name, and let x = e1 in e2 is the usual abbreviation for (λx:σ.e2)e1.

typetostring : ∀α : ?. string .
typetostring = Λα : ?. typerec0[string] α of

int ⇒ "int"

→ ⇒ λx : string .λy : string ."("x ++" -> " ++y ++")"

× ⇒ λx : string .λy : string ."("x ++" * " ++y ++")"

µ? ⇒ λr : string → string .
let x = gensym() in "mu" ++x ++"." ++(rx)

∀? ⇒ λr : string → string .
let x = gensym() in "all" ++x ++"." ++(rx)

∃? ⇒ λr : string → string .
let x = gensym() in "ex" ++x ++"." ++(rx)

Note, this example does not follow the pattern of iso-recursive types, which
would be µ? ⇒ λr: string → string . fix f : string .rf. In that case, the string rep-
resentation of a recursive type would be infinitely long, witnessing the fact that a
recursive type is an infinitely large type. I could have also written this code using
typerec1, but it would have been clumsy in the branches for quantified types. In
these branches, r would be of type ∀α:?. string → string instead of string → string
as above, so a dummy type argument must be supplied when r is used.

6.4 Kind polymorphism

Why is there a distinction between types σ, and type constructors c, necessitating
the irritating conversion T (c)? The reason is that not all types are analyzable.
In particular, we cannot analyze polymorphic types where the kind of the bound
variable is not ?, only those types created with the constructor ∀?. Trifonov et
al.[TSS00] (hereafter TSS) use the term fully reflexive to refer to a calculus where

166

Table 6.4: LH: Additions for kind polymorphism

κ ::= . . . | χ | ∀χ.κ
⊕ ::= . . . | ∀ | ∃ | ∀+

c ::= . . . | Λχ.c | c[κ] | c〈κ〉nc1 . . . cn

σ ::= . . . | ∀+χ.σ
e ::= . . . | Λ+χ.e | e[κ]+

analysis operations are applicable to all types, and argue that this property is
important for a type analyzing language.

A naive idea to make this language fully reflexive would be to limit poly-
morphism to that of F2, i.e., allow polymorphic types only of the form ∀α: ? .σ.
However, then I cannot express the type of the e∀? branch as it quantifies over
a constructor of kind ? → ?. I could then extend the language to allow types
that quantify over constructors of kind ? → ?, and add a constructor (∀3) of kind
((? → ?) → ?) → ?, but then the e∀3 branch would quantify over variables of kind
(? → ?) → ?. In general, I have a vicious cycle: for each type that I add to the
calculus, I need a more complicated type to describe its branch in typerec. I could
break this cycle by adding an infinite number of type constructors ∀κ, thereby al-
lowing construction of all polymorphic types. However, then typerec would require
an infinite number of branches to cover all such types.

TSS avoid having an infinite number of branches for polymorphic types by
introducing kind polymorphism in their type-analyzing language LP. By holding
the kind of the bound variable abstract, they are able to write one branch for
all such types. Furthermore, kind polymorphism is necessary in their calculus to
analyze polymorphic types. As their analysis is based on induction over the kind ?,
they cannot handle ∀?with a negative occurrence of ? in the kind of its argument.
With kind polymorphism, the ∀ constructor has kind ∀χ.(χ → ?) → ?, without
such a negative occurrence.

The LH version of typerec, as it is not based on induction, can already analyze
∀?. So their second motivation for kind polymorphism does not apply. However,
in this system with kind-indexed types, I do have a separate and additional reason
for adding kind polymorphism—the higher-order typerec term is naturally kind
polymorphic and I would like to express that fact in the type system.

Like TSS, I include two forms of kind polymorphism: As in the LU language, I
extend the type constructor language to F2, by adding kind variables χ and poly-
morphic kinds ∀χ.κ, and adding type constructors supporting kind abstraction
(Λχ.c) and application c[κ]. This polymorphism allows us to express the kind of

167

the ∀ and ∃ constructors as ∀χ.(χ → ?) → ?. Next, I also allow terms to abstract
(∀+χ.e) and apply (e[κ]+) kinds, so that the ∀ and ∃ branches of typerec may be
polymorphic over the domain kind. Furthermore, I introduce a new constructor
∀+ to describe the type of kind-polymorphic terms. This constructor is also rep-
resented with higher-order abstract syntax: it is of kind (∀χ.?) → ?, where its
argument describes how the type depends on the abstract kind χ.

To extend type analysis to polymorphic kinds I must extend the definition of
[α.σ]〈α : κ〉 for the new kind forms χ and ∀χ.κ. Therefore, the type constructor
language now contains polykinded types and the following axioms to the equality
judgment for type constructors, including one to deal with polymorphic kinds :

∆ ` c〈?〉nc1 . . . cn = cc1 . . . cn : ?

∆ ` c〈κ1 → κ2〉nc1 . . . cn =
∀[κ1](λα1:κ1. . . .∀[κ1](λαn:k1.c〈κ1〉nα1 . . . αn → c〈κ2〉n(c1α1) . . . (cnαn)) . . .) : ?

∆ ` c〈∀χ.κ〉nc1 . . . cn = ∀+(Λχ.c〈κ〉n(c1[χ]) . . . (cn[χ])) : ?

Furthermore, the operational semantics of typerec must cover arguments that
are kind abstractions or kind applications. By the above definition, typerec must
produce a kind polymorphic term when reaching a kind polymorphic construc-
tor. Therefore, an argument to typerec of a polymorphic kind pushes the typerec
through the kind abstraction. Likewise, when typerec reaches a kind application
during analysis, it propagates the analysis through.

typerecn[α.σ][∆, η, ρ] (Λχ.c) of e 7→ Λ+χ. typerecn[α.σ][∆, η, ρ] (c[χ]) of e

typerecn[α.σ][∆, η, ρ] (c[κ]) of e 7→ (typerecn[α.σ][∆, η, ρ] c of e)[κ]+

With kind polymorphism, we can express the type of size precisely.

∀+χ.∀α:χ.T ([λβ: ? .β → int]〈α : χ〉).
The definition of size can also extend size to general existential types. Before, as
∃? only hides type constructors of kind ?, the constant zero function was the size
of the hidden type. Here, because the hidden type constructor may be of any kind,
this branch uses a recursive call to define size for the hidden type.

∃ ⇒ Λ+χ.Λα:χ → ?.λr:(∀β:χ.[α.σ]〈β : χ〉 → T (αβ → int)).
λx:T (∃[χ]α).

let 〈β, y〉 = unpack x in r [β] (size[χ][β]) y

168

6.4.1 Analysis of polymorphic types

In Section 6.2 showed that the operation of higher-order typerec over product
types mirrored LI’s operational semantics. How does analysis of polymorphic and
existential types differ when typerec is viewed as an induction over the structure
of types, as in TSS, and when typerec is viewed as an interpretation of the type
language?

In the first case, (which I will distinguish by typereci) we have the following
operational rule for polymorphic types; when c′ is analyzed, its argument β is also
examined with the same analysis.

typereci[α.σ] (∀[κ]c′) of e 7→ e∀ [κ]+[c′] (Λβ:κ. typereci[α.σ] (c′β) of e)

Alternatively, with higher-order typerec, derives the following rule for polymorphic
types that is not identical to the rule above. In this case, the result of analysis of
the argument to c′ may be supplied in the term argument x.

typerec[α.σ][∆, η, ρ] (∀[κ]c′) of e 7→∗

e∀ [κ]+[c′] (Λβ:κ.λx:T ([α.σ]〈β : κ〉).
typerec[α.σ][∆, α:κ, η, α:x, ρ, α:β] (c′α) of e)

However, many examples of polytypic functions defined by higher-order typerec
(such as copy) create a fixed point of the Λ-abstracted typerec term, and it is this
fixed point applied to β that eventually supplied for x. In that case, as above, the
argument to c′ is examined with the same analysis.

So, besides the ability to define operations over higher-order type constructors
(such as size and map), typerec in LH has additional expressiveness over typereci:
more flexibility in the analysis of quantified types. Type analyzing operations in
LH are not required to call themselves recursively on the hidden type variable in an
existential package, or on the arbitrary type argument to a polymorphic term. For
example, a serializer written in LH could keep abstract parts of a data structure
hidden:

abstract tostring(pack〈int , 〈2, 3〉〉 as ∃α: ? .α× int)

could return "(<hidden object>, 3)".
This difference also shows up in the following example, which uses typetostring

to demonstrate the limits of intensional type analysis. With typereci it is impossible
to implement a version of typetostring that it may display all types. LH can
do a little better: as before, it may display polymorphic types. However, LH also
runs into trouble with kind polymorphism.

169

6.4.2 Example: typetostring

Unfortunately, even though the constructor language is much more expressive, it
is impossible to extend typetostring in LH to create strings of constructors of all
kinds. As kind polymorphism is parametric, it cannot differentiate constructors
with polymorphic kinds. However, by giving typetostring a kind-polymorphic type,
it may extend type functions and to types formed with ∀.

typetostring : ∀+χ.∀α:χ.T (string〈χ〉0)

How can typetostring produce strings of higher-order type constructors? When χ
is not ?, the result of typetostring is not a string . However, it may analyze the
result type string〈χ〉0 to produce a string when χ is a function kind.

Using a technique similar to type-directed partial evaluation [Dan96] we may
reify a term of type string〈χ〉0 into a string. The functions app and lam are
necessary to create string abstractions and applications.

lam : (string → string) → string app : string → string → string
lam = λx: string → string .

let b = gensym() in
”(lambda” ++b ++”.” ++(xb) ++”)”

app = λx: string .λy: string .
”(” ++x ++” ” ++y ++”)”

Below, let c = λα: ? .(α → string)× (string → α)

ReifyReflect = typerec[α.σ] α of
string ⇒ 〈λy: string .y, λy: string .y〉
→ ⇒ Λα1: ? .λr1:cα1.Λα2: ? .λr2:cα2.

let〈reify1, reflect1〉 = r1

〈reify2, reflect2〉 = r2 in
〈λy:α1 → α2. lam(reify2 ◦ y ◦ reflect1),

λy: string .reflect2 ◦ app y ◦ reify1〉

The result of reify , the first component of ReifyReflect above, composed with
typetostring is a string representation of the long βη-normal form of the type
constructor. What if that constructor has a polymorphic kind? There is not
a reasonable branch for ReifyReflect in the case of string〈∀χ.κ〉0 because para-
metric kind polymorphism prevents us from writing analogous functions klam :
(∀+χ. string) → string and kapp : string → ∀χ+. string . If the argument to type-
tostring is a kind polymorphic constructor, the best that we can do is return a
constant string.

ReifyReflect is also necessary to create string representations of polymorphic
types. In the previous version of typetostring, for the constructor ∀?, the inductive

170

argument r was of type string → string . With kind polymorphism, the type of
the argument to r (T (string〈χ〉0)) is dependent on χ the kind abstracted by ∀. In
order to call r, we need to manufacture a value of this type–we need to reflect a
string into the appropriate argument for the inductive call in typetostring:

∀ ⇒ Λ+χ. Λα:χ → ?. λr:T (string〈χ〉0) → string .
let 〈reify , reflect〉 = ReifyReflect [string〈χ〉0]

v = gensym () in "all" ++ v ++ "." ++ (r (reflect v))

Again, because ReifyReflect is limited to kinds of the form ? or κ1 → κ2, it can
only print the polymorphic types of Fω(i.e., types such as ∀[? → ?](λα:? → ?.c),
but not ∀[∀χ.κ](λα:∀χ.κ.c)). And just as there is not extension of ReifyReflect
to kind-polymorphic constructors, there is no extension of typetostring to kind-
polymorphic types (those formed by ∀+).

Is this calculus fully reflexive? Yes. The types of this language are isomorphic to
the constructors of kind ?, so there is no reason not to combine the two syntactic
categories of type and type constructor. What this example shows is there is
another property that we would like our systems to possess. In order to be able
to write typetostring is should be possible for typerec to fully discriminate between
all types. What this property means is that it is possible in this language to write
a program that produces a different value for every type argument. An example
of such a program is typetostring in LI.

There is a trade-off to be made. Either a calculus can be fully reflexive, or it can
be fully discriminative. The previous non-example gives an informal justification
that the kind-polymorphic calculus is not fully discriminative. Furthermore, TSS’s
language is also not fully discriminative.

However, kind polymorphism is not entirely to blame. If LH had added a
predicative variant of kind-polymorphism, preventing type constructors such as
∀[Λχ.κ]c, and had not included ∀+ in the type constructor language, the language
would again be fully-discriminative. However, without the ∀+ constructor the
calculus would also not be fully reflexive.

6.5 Related work

In lifting type analysis to higher-order constructors, this work is related to work
on induction over datatypes with embedded function spaces and more specifically
to those datatypes representing higher-order abstract syntax. Meijer and Hut-
ton [MH95] describe how to extend catamorphisms to datatypes with embedded
functions by simultaneously computing an inverse (an anamorphism). Fegaras and
Sheard [FS96] employ a different technique, noting that when the analyzed function

171

is parametric, an inverse is not required. TSS employ this technique for the type
level analysis of recursive types in the language LQ [TSS00], using a special kind
to enforce that the argument to µ? is a parametric type function. Likewise, in a
language for expressing induction over higher-order abstract syntax, Despeyroux et
al. [DL01, DPC97], use a modal type discipline to indicate parametric functions.
Because of the phase distinction between types and terms in the calculus of this
paper, all analyzed type functions are parametric (as only terms analyze types)
and so I do not require such additional typing machinery.

6.6 Chapter summary

In this chapter, I provide an operational semantics for type constructor polytypism,
by extending typerec to cover higher-order types. By casting these operations
in a type-passing framework, I may extend polytypic definitions over these type
constructors (such as size and map) to languages where type abstraction cannot
be specialized away at compile time. With type passing, I may also extend the
domain of polytypic definitions to include first-class polymorphic and existential
types, as I do for size and typetostring. With the addition of kind polymorphism
and the inclusion of polykinded types as a form of type constructor, I allow the
types of polytypic operations to be explicitly and accurately described. Finally,
by extending typerec to constructors of polymorphic kind I allow the analysis of
constructors such as ∀ and ∃ in a flexible manner.

Chapter 7

Representing higher-order type
analysis

In the last chapter, I developed the calculus LH for analyzing higher-order and
polymorphic type constructors with typerec. However, that calculus was an ex-
tension of LI and therefore did not possess the type-erasure semantics of LIR or
any of its semantic benefits. The goal of this chapter is to develop a type-erasure
version of higher-order type analysis.

To simplify the presentation, this chapter concentrates on the language of Sec-
tion 6.2. It does not include the later extensions with multiplace typerec and
kind polymorphism, although there are no technical restrictions to including these
constructs in an erasure calculus.

7.1 Kind-directed execution: The LK language

In the previous chapter, in order to extend typerec to higher kinds, we defined its
operational semantics as an interpreter of the type language. This interpretation
operates syntactically. It maps type variables to term variables (using an envi-
ronment), type abstractions to term abstractions and type applications to term
applications.

The goal of this chapter is to change the process of interpreting the type lan-
guage with the term language from run time to compile time. The process of phase
splitting in Chapter 3 is also an interpretation of the constructor language with
the term language. Again type abstraction is mapped to term abstraction, type
application to term application and type variables to term variables.

In the type-erasure language, typerec must still interpret the term language
to produce the correct result. There are problems with an analogous syntactic

172

173

operational semantics for a phase-split version of the language. In Chapter 3,
we defined the representation of a type constructor λα:κ.c as Λα:κ.λxα:R〈α :
κ〉.R|c|. In the last chapter, the syntactic form of typerec’s argument determined
the evaluation rule:

typerec(λα:κ.c) 7→h ...

In a type-erasure version, typerec would have to determine that its argument was
a type abstraction surrounding a term abstraction.

typerec(Λα:κ.λxα:R〈α : κ〉.e) 7→ ...

However, this rule may not cover every representation of a type constructor. Evalu-
ation of the representation argument to typerec may not always produce a syntactic
λ as the subterm of the type abstraction. For example, the term

Λα:κ.((λy.y)(λxα:R〈α : κ〉.e))

is also well-typed as the representation of a type constructor. However, because
evaluation will not reduce the application ((λy.y)(λxα:R〈α : κ〉.e)) under the Λα:κ,
this term will be stuck. Therefore, we will not be able to prove the Progress Lemma
for this language. In most languages, including this one, evaluation is a process
that is defined only over closed terms. We would have to greatly redefine what it
means to evaluate expressions if we allowed a rule to reduce the body of a type
abstraction.

As a precursor to the erasure version of the calculus, we first present an opera-
tional semantics for higher-order typerec that is directed by the kind of its argument
as well as its syntax. This semantics does not examine the syntactic form of its
argument when the argument is of higher kind. Therefore, we can phase split it
into a type-erasure version in Section 7.3.

We call the LH language with this new operational semantics LK. Because
this semantics is kind directed, we annotate the kind of the argument on the
typerec term. Otherwise, there are no differences between the syntax and static
semantics of LH and LK. Furthermore, this new operational semantics, though it
may proceed in a different order than that of LH, will eventually produce the same
value. Section 7.1.2 formalizes a proof of this fact.

Table 7.3 contains the LK operational semantics. Two relations define this
semantics: the standard small step relation 7→k and a new relation ⇒k for inter-
preting typerec when its argument is in a special form called a path. A path is
a constructor that is in weak-head normal form, i.e., a constructor such that no
weak-head reductions apply (see Table 7.1). It is not difficult to show that a path

174

Table 7.1: Weak-head reduction

c wh c′

[whr-β]
(λα:κ.c1)c2 wh c1[c2/α]

[whr-cong]
c1 wh c′1

c1c2 wh c′1c2

must be either an operator, a variable1 or a path applied to another constructor:

p ::= ⊕ | α | p c

Table 7.2 describes the evaluation of a path. This evaluation is syntax directed,
and the four rules are reminiscent of (7→h) evaluation of typerec in the last chapter.
Variables are interpreted by the environment and operators index the appropriate
branches. Path evaluation continues through type application, fully expanding
each application.

Path evaluation is used in the small-step operation of typerec. For arguments
of kind ?, typerec first weak-head normalizes its argument and then employs path
evaluation. For constructors of function kind (not necessarily a lambda term) path
evaluation reduces the kind of its argument to typerec to a simpler kind by applying
it to a new variable bound in typerec’s context.

7.1.1 Typing properties of LK

Like the operational semantics of the previous chapter, these new rules preserve the
well-formedness of terms. In other words, if ∅ ` e : σ and e 7→k e′ then ∅ ` e′ : σ.
Furthermore, for any argument c to typerec, one of these rules applies.

Lemma 7.1.1 (Subject Reduction for LK) Suppose

∅ ` typerec[κ][α.σ][∆, η, ρ] c e : [α.σ]〈ρ(c) : κ〉.

1. If c is a path and typerec[κ][α.σ][∆, η, ρ] c e ⇒k e then ∅ ` e : [α.σ]〈ρ(c) : κ〉.

2. If typerec[κ][α.σ][∆, η, ρ] c e 7→k e then ∅ ` e : [α.σ]〈ρ(c) : κ〉.

Proof

1During evaluation, this variable must be bound by an enclosing typerec.

175

Table 7.2: LK: Path evaluation

e ⇒k e′

[pv-var]
typerec[κ][α.σ][∆, η, ρ] β e ⇒k η(β)

[pv-const]
typerec[κ][α.σ][∆, η, ρ] ⊕ e ⇒k e⊕

[pv-app]
∅ ` c2 : κ1 typerec[κ1 → κ][α.σ][∆, η, ρ] c1 e ⇒k e

typerec[κ][α.σ][∆, η, ρ] (c1c2) e
⇒k e [ρ(c2)] (typerec[κ1][α.σ][∆, η, ρ] c2 e)

1. Proof by induction on the path c.

2. Proof by case analysis of κ.
�

Lemma 7.1.2 (Progress for LK) Suppose

∅ ` typerec[κ][α.σ][∆, η, ρ] c e : [α.σ]〈ρ(c) : κ〉

1. If c is a path then there exists an e′ such that typerec[κ][α.σ][∆, η, ρ] c e ⇒k e′.

2. There exists an e′ such that typerec[κ][α.σ][∆, η, ρ] c e 7→k e′.

Proof

1. Proof by induction on the path c.

2. Proof by case analysis of κ.
�

7.1.2 Correspondence with LH

Next we show that this new kind-directed operational semantics evaluates in a
manner that is similar to the that of the previous chapter. We can identify the
typerec terms of LH and LK, as they only differ by the kind annotation. These
languages have the same syntax and static semantics, but they have two different
notions of evaluation.

176

Table 7.3: LK: Operational semantics

e 7→k e′

[ev-β]
(λx:σ.e)e′ 7→ e[e′/x]

[ev-app]
e1 7→ e′1

e1e2 7→ e′1e2

[ev-ty-β]
(Λα:κ.e)[c] 7→ e[c/α]

[ev-tapp] e 7→ e′

e[c] 7→ e′[c]

[ev-trec-type]

c weak-head normalizes to p
typerec[?][α.σ][∆, η, ρ] p e ⇒k e

typerec[?][α.σ][∆, η, ρ] c e 7→k e

[ev-trec-arrow]
typerec[κ1 → κ2][α.σ][∆, η, ρ] c e
7→k Λβ:κ1. λxβ:[α.σ]〈β : κ1〉.

typerec[κ2][α.σ][∆, γ:κ1, η, γ:xβ, ρ, γ:β] (cγ) e

177

The following lemma states that path evaluation produces an equivalent term
with respect to ≈C, the definition of equivalence of the last chapter.

Lemma 7.1.3 For all ∆ ` p : κ, and ∆′; Γ ` typerec[κ][∆, η, ρ] p e : [c]〈ρ(p) : κ〉

if typerec[κ][∆, η, ρ] p e ⇒k e then e ≈C typerec[∆, η, ρ] p e.

Proof

By induction on typerec[κ][∆, η, ρ] p e ⇒k e.

case (pv-var) typerec[κ][∆, η, ρ] α e ⇒k η(a) and typerec[κ][∆, η, ρ] α e 7→ η(a)
so

η(a) ≈C typerec[κ][∆, η, ρ] α e

case (pv-const) Analogous to the variable case.
typerec[κ][∆, η, ρ] ⊕ e ⇒k e⊕ and typerec[κ][∆, η, ρ] ⊕ e 7→ e⊕ so

e⊕ ≈C typerec[κ][∆, η, ρ] ⊕ e.

case (pv-app)

typerec[κ][∆, η, ρ] p′ e ⇒k e

typerec[κ][∆, η, ρ] p′c e ⇒k e [ρ(c)] (typerec[κ′][∆, η, ρ] ce)

By induction, e ≈C typerec[∆, η, ρ] p′ e. By definition,

e [ρ(c)] (typerec[∆, η, ρ] c e)
≈C (typerec[κ][∆, η, ρ] p′ e) [ρ(c)] (typerec[∆, η, ρ] c e).

As
(typerec[κ][∆, η, ρ] (p′c) e)
7→h (typerec[κ][∆, η, ρ] p′ e) [ρ(c)] (typerec[∆, η, ρ] c e)

they are equivalent under ≈C. By transitivity, we have the desired equiva-
lence.

�

Using the previous lemma about path evaluation, we may show that when a
typerec term evaluates using the rules of LK, then the resulting term is equivalent
to the typerec term with respect to the rules of LH.

178

Lemma 7.1.4 For all ∆ ` c : κ, and ∆′; Γ ` typerec[κ][∆, η, ρ] c e : [c′]〈ρ(c) : κ〉

if typerec[κ][∆, η, ρ] c e 7→k e then e ≈C typerec[∆, η, ρ] c e.

Proof

case (κ ≡ ?) Say c weak head normalizes to p, and typerec[?][∆, η, ρ] p e ⇒k e.
Then typerec[?][∆, η, ρ] c e 7→k e. By the previous lemma,

e ≈C typerec[?][∆, η, ρ] p e.

As ∆ ` c = p : ?, by soundness

typerec[?][∆, η, ρ] c e ≈C typerec[?][∆, η, ρ] p e.

By transitivity
e ≈C typerec[?][∆, η, ρ] c e,

case (κ ≡ κ1 → κ2) Say α is not free in c. As ∆ ` c = λα:κ1.cα : κ1 → κ2, then

typerec[∆, η, ρ] c e ≈C typerec[∆, η, ρ] (λα:κ1.cα) e

Since both

typerec[κ1 → κ2][∆, η, ρ] c e 7→k

Λβ:κ.λx:[γ.σ]〈β : κ〉. typerec[∆, α:κ, η, α:x, ρ, α:β] (cα) e

and
typerec[∆, η, ρ] (λα:κ.cα) e 7→h

Λβ:κ.λx:[γ.σ]〈β : κ〉. typerec[∆, α:κ, η, α:x, ρ, α:β] (cα) e

the result follows.
�

Theorem 7.1.5 (Dynamic Correctness) If ∅ ` e : int then if e 7→∗
k v then

e 7→∗
h v.

Proof

Proof is by induction on n, the number of steps in e 7→n
k v. If n is zero then the

result follows trivially. Say e 7→k e′ and e′ 7→n
k v. By induction e′ 7→∗

h v. If e is not
a typerec term the result follows trivially. Say e is typerec[κ][∆, η, ρ] c e. By the
previous lemma, e′ ≈C typerec[κ][∆, η, ρ] c e. By definition of ≈C, as e′ 7→∗

h v then
typerec[κ][∆, η, ρ] c e 7→∗

h v. �

179

Table 7.4: LKR: Syntax

(kinds) κ ::= ? | κ1 → κ1

(cons) c ::= ⊕ | α | λα:κ.c | c1c2 | R
(types) σ ::= T (c) | int | σ1 → σ2 | ∀α:κ.σ | Rc1c2 | . . .
(exps) e ::= i | x | λx:c.e | e1e2 | fix f :σ.e | Λα:κ.e | e[c] | . . .

| R⊕ | typerec[κ][c] e e | untyrec[κ][c] e e
(paths) p ::= R⊕[c] | untyrec[κ][c′] e e | p [c] e1e2

Table 7.5: Translation of LK to LKR

Type translation
|T (c)| = T (c)
| int | = int

|σ1 → σ2| = |σ1| → |σ2|
|∀α:κ.σ| = ∀α:κ.R̂〈α : κ〉 → |σ|

Term translation
|i| = i

|λx:σ.e| = λx:|σ|.|e|
| fix f :σ.v| = fix f :|σ|.|v|

|e1e2| = |e1||e2|
|Λα:κ.e| = Λα:κ.λxα:R̂〈α : κ〉.|e|

|e[c]| = |e| [c] R̂|c|
| typerec[κ][∆, ρ, η][c′] c e| = typerec[κ][c′] R|c|(∅,c′,(∆,ρ,|η|,|e|)) |e|

7.2 Phase-splitting LK

I next present a type-erasure version of higher-order type analysis, called LKR,
which uses terms to represent the LK type language. The semantics of this lan-
guage is mostly determined by a phase-splitting translation of LK, so for presen-
tation I develop it by deriving it from that translation. For reference, the syntax,
static semantics and dynamic semantics of LKR language are listed in Tables 7.4,
7.7, and 7.8.

We make one small modification to LK in order to support the phase-splitting
translation. Instead of using a type σ with free variable α to describe the return
type of a typerec expression, we replace this annotation with a type constructor

180

c′ of kind ? → ?. The reason for this restriction is discussed below. Polykinded
types indexed by c′ (called the return constructor) are defined in much the same
way as with the [α.σ] annotation:

[c′]〈c : ?〉 = T (c′c)
[c′]〈c : κ1 → κ2〉 = ∀α:κ1.[c

′]〈α : κ1〉 → [c′]〈cα : κ2〉

The phase-splitting translation appears in Table 7.5. It is very similar to the
mapping in Chapter 3 from LI to LIR. As before, the goal of the translation is
to replace the argument c to typerec with its term representation. To create this
representation, we must have available the representations of all free type variables
that may appear in c′. Therefore, whenever any type variable α is abstracted, its
term representation xα is also abstracted. Whenever a type is instantiated, its
term representation is also supplied.

In this translation, we require the following three auxiliary definitions, discussed
in the rest of this section. If c is a type argument to a polymorphic term, we must
be able to create its representation, which we notate R̂|c|. We must also define

the type of this representation, notated R̂〈c : κ〉 where κ is the kind of c. Other-
wise, if c is analyzed by typerec, we define its representation as R|c|(∅,c′,(∆,ρ,|η|,|e|)),
parameterized by the components of the typerec.

Why does the erasure version of typerec not have any environments for the free
variables in the constructor c? In LK, the environment η records that a variable
α should be interpreted by some term eα. Here, a term variable (call it yα) stands
for α in the representation of c. Instead of storing in some separate structure a
mapping from yα to eα, in LKR, we substitute eα for yα in the representation. That
way, when we evaluate e to a path, we do not need to evaluate it in the presence
of free variables (such as yα).

However, as we analyze the representation of c, we must remember where yα

was so that we may directly return eα, instead of trying to interpret it as well.
Therefore, we need to wrap eα in a place holder—a special term whose only purpose
is to mark the presence of eα. In this calculus, we include a new construct, called
untyrec, for this purpose. When typerec reaches this place holder, eα is returned.

typerec[κ][c′] (untyrec[κ][c′] eα e) e 7→ eα

We also can replace the type environment ρ by substitution. In LK, the type
constructor language serves two purposes: describing terms and indexing typerec.
Consequently, we were forced to delay type instantiations so that they would not
interfere with the operation of typerec. However, in LKR, term representations are
used by typerec, so we are free to eagerly substitute these type instantiation.

181

The difference between using the environments in LK and using substitution
(and the place holder) with LKR is apparent in the rule for analyzing constructors
of higher kind. In LK, we interpret a constructor function as a term function. In
the body of this function, we analyze this constructor by applying it to a fresh
variable β. The environment, η, of this analysis is extended so that β will be
interpreted as the argument to the function y. Furthermore, if cβ is ever used as
a type we use ρ to replace β with α.

typerec[κ1 → κ2][c
′][∆, η, ρ] c e 7→κ

Λα:κ.λy:[c]〈α : κ〉.
typerec[κ2][c

′][∆, β:κ, η, β:y, ρ, β:α] (cβ) e

In the LKR version of this rule below, assume that e is the representation of
c. The operation of this rule also produces a polymorphic function. Because of
phase-splitting, this function abstracts xα, the representation of α, as well as y.
The representation e expects the type α (and its representation xα) as well as its
interpretation (untyrec[κ1][c] y e).

typerec[κ1 → κ2][c
′] e e 7→HR

Λα:κ.λxα:R̂〈α : κ〉.λy:|[c′]〈α : κ〉|.
typerec[κ2][c

′] (e [α] xα (untyrec[κ1][c
′] y e)) e

7.2.1 A parameterized representation type

For type soundness, we must restrict what terms can be the arguments to untyrec—
if an arbitrary term were allowed it is not guaranteed that an analysis of a untyrec
term would result in a term of the correct type. Essentially, untyrec coerces any
term into a type representation. This coercion is sound if we record what analysis
we are allowed to do of this representation. Therefore the LKR version of the
R type must be parameterized with an extra argument to describe the result
of type analysis allowed for that representation (see Table 7.7). Because this
extra argument is a type constructor (of kind ? → ?) we may abstract it. (It is
for this reason that we have changed the result annotation of typerec from [α.σ]
to [c]). When a term representation is polymorphic over this result constructor,
for example, if it is of type ∀β:? → ?.Rβc, then the term may be used for any
analysis. The following notation stands for this polymorphic type lifted to higher
constructors:

Definition 7.2.1 R̂〈c : κ〉 def
= ∀β:? → ?.|[Rβ]〈c : κ〉|

182

7.2.2 Defining term representations of type constructors

Table 7.6: Representation of constructor language

Ψ = (∆, ρ, η, e) | •
Θ = (∆′, c′, Ψ)

R̂|c| = Λα:? → ?.R|c|(∅,α,•)

R| ⊕ |Θ = R⊕[c′]

R|α|Θ =


untyrec[∆(α)][c′] η(α) e if Ψ is not • and α ∈ Dom ∆
yα if α ∈ Dom ∆′

xα[c′] otherwise

R|λα:κ.c1|Θ = Λα:κ.λxα:R̂〈α : κ〉.λyα:|[Rc′]〈α : κ〉|.R|c1|(∆′,α:κ,c′,Ψ)

R|c1c2|Θ = R|c1|Θ [ρ(c2)] R̂|ρ(c2)| R|c2|Θ

There are two sorts of term representations in this calculus. The first sort, called
open representations, represent types that are in the process of being analyzed, i.e.
terms that represent arguments to typerec: R|c|(∅,c′,(∆,ρ,|η|,|e|)) (described below).
They are called open because they may contain free variables for which the LK
typerec provides an interpretation. These representations are of type |[Rc′]〈c : κ〉|,
where the index c′ indicates the result type of analysis. Such representations may
be used only in an analysis that produces a result of type |[c′]〈c : κ〉|. The reason
is because, inside these representations, there may be untyrec terms holding the
results of analysis of the free variables—and those results must agree with c′.

The second sort of term representations are the closed representations, R̂|c|, of

type R̂〈c : κ〉 = ∀β:? → ?.|[Rβ]〈c : κ〉|. These representations are not arguments
to typerec—they are polymorphic with respect to the result constructor of any
possible analysis. That polymorphism must be instantiated to the appropriate
type constructor before they may be analyzed. Because untyrec terms depend
on this instantiation, term representations of this sort cannot have any untyrec
expressions as subterms, and are hence closed.2

2Here the polymorphism of the return constructor acts like a closure operator and is similar
to the modal box types of Schürmann, Pfenning, and Despeyroux[SDP01],[DL01]. These types
play a role in induction over higher-order abstract syntax.

183

We may construct the closed representation as a special case of the open repre-
sentation, defined as R|c|Θ in Table 7.6. The parameter Θ describes the context of
this representation (∆′), the return constructor (c′), and whether this is an open or
closed representation Ψ. If this is an open representation, Ψ = (∆, ρ, η, e), holding
the context, environments and branches from an enclosing context. In that event,
the translation may construct an appropriate untyrec placeholder for variables in
∆. Otherwise, for a closed representation Ψ = •.

The tricky part of this translation is the case for variables. If the constructor
variable is in ∆ (if Ψ is not •) then the variable was bound by an enclosing typerec,
and there is a binding for it within η. This result should be wrapped by an untyrec
so that analysis should produce the correct result. Otherwise, if the variable is in
∆′, then this variable is bound by some type-level λ, and there will be a closed
representative yα. As this representative is specialized to c′, we can immediately
return it. Otherwise, this variable was bound by some term-level Λ, and there is
some associated xα that represents it. However this representative is polymorphic
over the return constructor, so we need to instantiate it with c′.

The representations of type-level abstractions are polymorphic functions, ab-
stracting both the closed representations xα and the open representations yα. Like-
wise, the representations of type-level applications provide both the closed and
open representations of the type argument, c2. Note that we use ρ to substitute
for any type variables in c2.

For example, the closed representation of λα: ? .α× int is below.

Λβ:? → ?.Λα: ? .λxα:R̂〈α : ?〉.λyα:|[β]〈α : ?〉|.
R×[β] [α] xα yα [int] Rint (Rint [β])

In this representation, we instantiate R× with the return constructor β, the first
component of the product type α, along with its open representation xαand its
closed representation yα, and the second component of the product type int , along
with its open representation Rint and its closed representation Rint [β].

7.3 The LKR language

7.3.1 Static semantics

Table 7.7 shows the static semantics for the representation terms, typerec and
untyrec. If ⊕ is an arbitrary type constructor constant, such as int , ×, or →, in
LKR, R⊕ is its term representation. If ⊕ is of kind κ⊕, then the type of R⊕ is
R̂〈⊕ : κ⊕〉.

184

Table 7.7: LKR: Static semantics

∆ ` c : κ

[c-R]
∆ ` R : (? → ?) → ? → ?

∆ ` σ = σ′

[ceq-R] ∆ ` c : ? → ? ∆ ` τ : ?
∆ ` T (R c τ) = R c τ

[ceq-alltype]
∆ ` c : ? → ?

∆ ` T (∀? c) = ∀α: ? .R̂〈α : κ〉 → T (cα)

∆ ` σ

[t-R] ∆ ` c : ? → ? ∆ ` τ : ?
∆ ` R c τ

∆; Γ ` e : σ

[e-tyrep]
∆; Γ ` R⊕ : R̂〈⊕ : κ⊕〉

[e-typerec]

∆ ` c : κ
∆ ` c′ : ? → ?
∆; Γ ` e⊕ : |[c′]〈⊕ : κ⊕〉| (e⊕ ∈ e)
∆; Γ ` e : |[Rc′]〈c : κ〉|
∆; Γ ` typerec[κ][c′] e e : |[c′]〈c : κ〉|

[e-untyrec]

∆ ` c : κ
∆ ` c′ : ? → ?
∆; Γ ` e⊕ : |[c′]〈⊕ : κ⊕〉| (e⊕ ∈ e)
∆; Γ ` e : |[c′]〈c : κ〉|
∆; Γ ` untyrec[κ][c′] e e : |[Rc′]〈c : κ〉|

185

Table 7.8: LKR: Operational semantics for typerec

e ⇒HR e′

[pv-var]
typerec[κ][c′] (untyrec[κ][c′] e e) e′ ⇒HR e

[pv-const]
typerec[κ][c′] (R⊕[c′]) e ⇒HR e⊕

[pv-app]
typerec[κ1 → κ][c′] p e ⇒HR e′

typerec[κ][c′] (p [c] e1 e2) e ⇒HR e′ [c] e1 (typerec[κ1][c
′] e2 e)

e 7→HR e′

[ev-trec-path]
typerec[?][c′] p e ⇒HR e′

typerec[?][c′] p e 7→HR e′

[ev-trec-cong] e 7→ e′

typerec[?][c′] e e 7→HR typerec[?][c′] e′ e

[ev-trec-arrow]
typerec[κ1 → κ2][c

′] e e 7→HR

Λα:κ1.λxα:R̂〈α : κ1〉.λy:|[c′]〈α : κ1〉|.
typerec[κ2][c

′] (e [α] (Λβ:? → ?.xα[β]) (untyrec[κ1][c
′] y e)) e

The last two formation rules in the table are for typerec and untyrec. In these
rules, the branches are of the same types as in the previous languages. However,
the argument to typerec must be a term representation, and the result of untyrec
is also a term representation. From the typing judgment, observe these two terms
are inverses of each other, coercing between |[Rc′]〈c : κ〉| and |[c′]〈c : κ〉|.

7.3.2 Dynamic semantics

Table 7.8 presents the dynamic semantics of the erasure language. Again reduction
is divided between reduction of paths p (notated by ⇒) and the kind-directed small
step reduction (notated by 7→). A path in this language is the term representation
of a path in LK. It is the representation of an operator, the representation of a

186

variable with untyrec, or the representation of a path application, where e1 is the
closed representation of path argument c, and e2 is the open representation.

The rules for path evaluation and the small-step semantics for typerec are a
translation of the rules of LK. For example as R⊕[c′] is the translation of the path
⊕, as in LK, path evaluation produces e⊕. The only exception is for typerec when
the argument is of higher-kind. Instead of applying the representation e to xα as
we discussed earlier, we η-expand that variable to Λβ:? → ?.xα[β]. This small
change simplifies the proof of dynamic correctness.

7.4 An example

As an example of a function written in this language, Figure 7.1 contains the
function copy from the previous chapter. Like before, this function analyzes its
type argument α to return a copying function for objects of type α.

This function demonstrates the differences between LK and LKR. First, all type
abstractions in this version of copy are immediately followed by an abstraction
of a term representation. For example, not only does copy abstract α, it also
abstracts its representation xα. It is this representation xα that is the argument to
typerec. Because xα is polymorphic over the return type of analysis (it is of type

R̂〈α : ?〉 = ∀γ:? → ?.Rγα), it must be instantiated with λβ: ? .β → β before it
may be analyzed.

Compare the µ? branch in the LKR version with that of LK below.

µ? ⇒ Λα:? → ?.
λr:(∀β: ? .T (β → β) → T (αβ → αβ)).

fix f :T (µ?α → µ?α).λx:T (µ?α).
roll (r [µ?α] f (unroll x))

In the LKR version, we need to abstract the representation of α. Furthermore,
because r quantifies over the type β, it also requires the representation of β. So
when r is instantiated with µ?α, it must also be supplied with the representation
of µ?α as well.

What is the representation of µ?α? It is (Λβ.Rµ? [β][α] xα (xα[β])). This rep-
resentation must be applicable for any iteration, so it must abstract the return
type constructor β. The representation of µ?α is the representation of µ?, Rµ? [β],
applied to the closed representation of α, which is xα, then applied to the open
representation of α in this context, which is xα[β].

187

fix copy : (∀α: ? .R̂〈α : ?〉 → T (α → α)).

Λα: ? .λxα:R̂〈α : ?〉.
typerec[?][λβ.β → β] (xα[λβ.β → β]) of
int ⇒ λi: int .i

→ ⇒ Λα: ? .λxα:R̂〈α : ?〉.λrα:T (α → α).

Λβ: ? .λxβ:R̂〈β : ?〉.λrβ:T (β → β).
λf :T (α → β).rβ ◦ f ◦ rα

× ⇒ Λα: ? .λxα:R̂〈α : ?〉.λrα:T (α → α).

Λβ: ? .λxβ:R̂〈β : ?〉.λrβ:T (β → β).
λx:T (α× β).〈rα(π1x), rβ(π2x)〉

µ? ⇒ Λα:? → ?.λxα:R̂〈α : ? → ?〉.
λr:(∀β: ? .R̂〈β : ?〉 → T (β → β) → T (αβ → αβ)).

fix f :T (µ?α → µ?α).λx:T (µ?α).
roll (r [µ?α] (Λβ.Rµ? [β][α] xα (xα[β]))

f (unroll x))

∀? ⇒ Λα:? → ?.λxα:R̂〈α : ? → ?〉.
λr:(∀β: ? .λxβ:R̂〈β : ?〉.T (β → β) → T (αβ → αβ)).

λx:T (∀?α).

Λβ: ? .λxβ:R̂〈β : ?〉.r[β] xβ (copy [β] xβ)(x [β] xβ)

∃? ⇒ Λα:? → ?.λxα:R̂〈α : ? → ?〉.
λr:(∀β: ? .R̂〈β : ?〉 → T (β → β) → T (αβ → αβ)).

λx:T (∃?α).
let〈β, 〈xβ, y〉〉 = unpack x in

pack〈β, 〈xβ, r[β] xβ (copy [β] xβ) y〉〉
as ∃β: ? .R̂〈β : ?〉 × αβ

Figure 7.1: Example: Erasure version of copy

Now compare the ∀? branch in the LKR version with that of LK below:

∀? ⇒ Λα:? → ?.
λr:(∀β: ? .T (β → β) → T (αβ → αβ)).

λx:T (∀?α).
Λβ: ? .r [β] (copy [β])(x[β])

188

Again r requires the representation of β. This example shows the difference be-
tween the interpretation of ∀? in LK and in LKR. In LK

T (∀?α) = ∀β: ? .T (αβ)

while in LKR, the interpretation of the ∀? constructor must take into account the
type translation (see Table 7.7):

T (∀?α) = ∀β: ? .R̂〈β : ?〉 → T (αβ).

This change in interpretation is necessary in order to copy in LKR. In the
calls to r and to copy in this branch, we must supply not just the type β, but its
representation as well. With this rule, the resulting function in this branch must
be of type

(∀β: ? .R̂〈β : ?〉 → T (αβ)) → (∀β: ? .R̂〈β : ?〉 → T (αβ)).

Therefore we may abstract xβ in the last line of the branch, and use it as the
needed arguments.

7.5 Typing properties of LKR

In order to prove type safety of this language we will need to show the usual subject
reduction and progress lemmas.

As before, type transformation commutes with substitution.

Lemma 7.5.1 |σ|[c/α]= |σ[c/α]|

The substitution only occurs inside constructors buried in the type σ below. These
constructors are unchanged by type transformation.

As is standard, LKR possesses the same substitution properties as the previous
languages.

Lemma 7.5.2 (Substitution) 1. If ∆, α:κ′ ` c : κ and ∆ ` c′ : κ′ then
∆ ` c[c′/α] : κ.

2. If ∆, α:κ′ ` c1 = c2 : κ and ∆ ` c′ : κ′ then ∆[c′/α] ` c1[c
′/α] = c2[c

′/α] : κ.

3. If ∆, α:κ ` σ and ∆ ` c : κ then ∆[c/α] ` σ[c/α].

4. If ∆, α:κ ` σ = σ′ and ∆ ` c : κ then ∆[c/α] ` σ[c/α] = σ′[c/α].

5. If ∆, α:κ; Γ ` e : σ and ∅; ∅ ` c : κ then ∆; Γ[c/α] ` e[c/α] : σ[c/α].

189

6. If ∆; Γ, x:σ′ ` e : σ and ∅; ∅ ` e′ : σ′ then ∆; Γ ` e[e′/x] : σ.

Proof

The proofs these substitution lemmas are more straightforward than that of LH
because typerec (and untyrec) do not bind any type or term variables. Therefore, I
will only give the case for untyrec for the proof of constructor substitution in term
judgments.

case e-typerec. Suppose

∆, α:κ′ ` c1 : κ
∆, α:κ′ ` c′ : ? → ?
∆, α:κ′; Γ ` e⊕ : |[c′]〈⊕ : κ⊕〉| (e⊕ ∈ e)
∆, α:κ′; Γ ` e : |[c′]〈c1 : κ〉|

∆, α:κ′; Γ ` untyrec[κ][c′] e e : |[Rc′]〈c1 : κ〉|

By induction

∆ ` c1[c/α] : κ
∆ ` c′[c/α] : ? → ?
∆; Γ[c/α] ` e⊕[c/α] : |[c′]〈⊕ : κ⊕〉|[c/α] (e⊕ ∈ e)
∆; Γ[c/α] ` e[c/α] : |[c′]〈c1 : κ〉|[c/α]

Therefore ∆; Γ[c/α] ` (untyrec[κ][c′] e e)[c/α] : |[c′]〈c1 : κ〉|[c/α].

�

Lemma 7.5.3 (Subject Reduction for paths) If

∅; ∅ ` typerec[κ][c′] e e : [c′]〈c : κ〉

and if e is a path and typerec[κ][c′] e e ⇒HR e′ then ∅; ∅ ` e′ : [c′]〈c : κ〉.

Proof

By induction on typerec[κ][c′] e e ⇒HR e′.

case pv-var Here, e is (untyrec[κ][c′] e′ e′) and path evaluation steps to e′. As
the left hand side was well typed, then by inversion ∅; ∅ untyrec[κ][c′] e′ e′ :
|[Rc′]〈c : κ〉|. Again by inversion ∅; ∅e : |[c′]〈c : κ〉|, the type of the left hand
side.

190

case pv-const In this case, e is Rint [c
′] and path evaluation steps to e⊕. As

Rint [c
′] : |[c′]〈⊕ : κ⊕〉|, then ∅; ∅ ` typerec[κ⊕][c′] Rint [c

′] e : |[c′]〈⊕ : κ⊕〉|.
By inversion of this judgment, we derive that the result has the same type:
∅; ∅ ` e⊕ : |[c′]〈⊕ : κ⊕〉|.

case pv-app Finally e is p [c2] e1 e2 and path evaluation steps to

e′ [c] e1 (typerec[k1][c
′] e2 e)

when typerec[κ1 → κ][c′] p e ⇒HR e′. By inversion,

∅; ∅ ` p [c2] e1 e2 : |[Rc′]〈c1c2 : κ〉|

and by inversion of this judgment we know:

∅ ` c1 : κ1 → κ
∅; ∅ ` p : |[Rc′]〈c1 : κ1 → κ〉|
∅ ` c2 : κ1

∅; ∅ ` typerec[κ1 → κ][c′] e1 : R̂〈c2 : κ1〉
∅; ∅ ` typerec[κ1 → κ][c′] e2 : |[Rc′]〈c2 : κ1〉|

From the above, we may conclude ∅; ∅ ` typerec[κ1 → κ][c′] p e : |[c′]〈c1 :
κ1 → κ〉| so by induction, e′ is also of type |[c′]〈c1 : κ1 → κ〉|. By definition,

this type is equal to ∀α:κ1.R̂〈α : κ1〉 → |[c′]〈α : κ1〉| → |[c′]〈c1a : |〉. Therefore,
after the type and term applications we may show that

∅; ∅ ` p [c2] e1 e2 : |[c′]〈c1c2 : κ〉|

�

Lemma 7.5.4 (Subject Reduction) If ∅; ∅ ` e : σ and e 7→ e′ then ∅; ∅ ` e′ : σ.

Proof

By induction on e 7→ e′. Below are the cases in which e is a typerec term, so
typerec[κ][c′] e e 7→HR e′.

then

case ev-trec-path This case follows directly by the previous lemma.

case ev-trec-cong This case follows directly by induction.

191

case ev-trec-arrow In this case, e represents the constructor c of kind κ1 → κ,
so we wish to show that ∅; ∅ ` e′ : |[c′]〈c : κ1 → κ〉|, where e′ is

Λα:κ1.λxα:R̂〈α : κ1〉.λy:|[c′]〈α : κ1〉|.
typerec[κ][c′] (e [α](Λβ:? → ?.xα[β]) (untyrec[κ1][c

′] y e))e

By inversion
∅ ` c′ : ? → ?
∅ ` c : κ1 → κ∅; ∅ ` e : |[c′]〈c : κ1 → κ〉|
∅; ∅ ` e⊕ : |[c′]〈c : κ1 → κ〉|

Let ∆′; Γ′ = ∆, α:κ1; Γ, xα:R̂〈α : κ1〉, y:|[c′]〈α : κ1〉|. From the above we may
show

∆′; Γ′ ` (untyrec[κ1][c
′] y e) : |[Rc′]〈α : κ1〉|

as e is of type ∀α:κ1.R̂〈α : κ1〉 → |[c′]〈α : κ1〉| → |[c′]〈cα : κ〉|, we can show

∆′; Γ′ ` e [α] (Λβ:? → ?.xα[β]) (untyrec[κ1][c
′] y e) : |[c′]〈cα : κ〉|

Therefore e′ has the correct type.

�

Because our calculus is call-by-name, we have not yet defined the value forms.
However, we need that definition in order to state the Progress lemma.

Definition 7.5.5 (LKR values)

v ::= i | λx:σ.e | fix f :σ.e | Λα:κ.e | p

For progress we must show a special form of the canonical forms lemma:

Lemma 7.5.6 If ∅ ` e : R c′ c and e is a value then e is a path.

Proof is by examination of the value forms : integers, term and type abstractions
cannot produce a term of type R c′ c.

We also need the same canonical forms lemma as in LI:

Lemma 7.5.7 (Canonical forms) If ∅ ` v : σ then

If ∅ ` σ = int then v is i.

If ∅ ` σ = σ1 → σ2 then v is either λx:σ1.e or (fix f :(σ1 → σ2).v
′)[c1] · · · [cn].

If ∅ ` σ = ∀α:κ.σ1 then v is either Λα:κ.v′ or (fix f :(α:κ.σ1).v
′)[c1] · · · [cn].

192

Lemma 7.5.8 (Progress for LKR) If ∅ ` e : σ then either e is a value or there
exists an e′ such that e 7→ e′.

Proof

By induction on ∅ ` e : σ. Consider the case where ∅ ` typerec[κ][α.σ]e′e : [Rc′]〈c :
κ〉. If κ is κ1 → κ2 then [ev-trec-arrow] applies. Otherwise, if e is not a path then
it must not be a value so by induction the term steps by [ev-trec-cong]. Otherwise,
if e is a path, then one of the three path evaluation rules applies.

�

7.6 Correctness of the embedding of LK

7.6.1 Static correctness

The static correctness of this translation can be shown in a manner similar to
that of the translation from LI to LIR, in Chapter 3. Because we essentially
have two versions of type representations—one for constructors that may have
variables bound by an enclosing typerec, and one for constructors that are in other
contexts, we must have two lemmas about the type soundness of the translation.
Furthermore, we have two translations of ∆ to produce the context for the type
representations variables. In the first case, the translation is specialized by a return
type constructor. The type of each representation variable must be specialized to
this constructor. In the second case, for those variables bound by a term-level
type abstraction (Λ), the types of the representations must be polymorphic over
the return type.

|∆, α:κ|c = |∆|c, yα : |[c]〈α : κ〉|

|∆, α:κ| = |∆|, xα : R̂〈α : κ〉
In the following two lemmas, we show that the representation of a LK con-

structor c is well-typed. The free variables of c may be bound in many different
situations. We let ∆1 refer to all of those bound by enclosing term-level type
abstractions (Λ), ∆2 refer to variables bound by type level type abstractions (λ),
and ∆3 list variables bound by enclosing typerec expressions. There are two ver-
sions of this lemma: this first for when the constructor does not appear inside of a
typerec, and the second, when we must add the Ψ component to the representation.
Much of the proof of this lemma is similar to the proof of Lemma 3.4.2, that the
representation of a constructor in LIR is of the correct type.

Lemma 7.6.1 Let ∆ = ∆1, ∆2. If

193

1. ∆ ` c : κ

2. ∆1, ∆2 ` c′ : ? → ?

then
∆1∆2; |∆1|, |∆2|c′ ` R|c|(∆2,c′,•) : |[Rc′]〈c : κ〉|

Lemma 7.6.2 Let ∆ = ∆1, ∆2, ∆3 and Ψ = (∆3, |η|, ρ, |e|). If

1. ∆ ` c : κ

2. ∆1, ∆2 ` c′ : ? → ?

3. ∆1, ∆2; Γ[c′] ` ∆3 | η | ρ

4. ∆1, ∆2; Γ ` e⊕ : [c]〈⊕ : κ⊕〉 for (e⊕ ∈ e).

then
∆1∆2; |∆1|, |∆2|c′ ` R|c|(∆2,c′,Ψ) : |[Rc′]〈ρ(c) : κ〉|

Proof

The proofs of both of these lemmas are very similar, by induction on the derivation
of ∆ ` c : κ. In fact, the second lemma is a generalization of the first. We state
them separately as the second requires the first lemma in the case of constructor
applications, but the proofs of both follow the form below.

case (c-var) For the first lemma, there are two cases of variables corresponding
to the contexts that could bind them.

• In the first case, α is bound by a Λ abstraction and is in ∆1. Therefore,
R|α|(∆2,c′,Ψ) = xα[c′]. The binding for xα comes from the translation of
|∆1|: as xα is of type

∀β:? → ?.|[Rβ]〈α : κ〉|,

the representation is of type |[Rc′]〈α : κ〉|.
• Say α is bound by a constructor abstraction and is in ∆2. Then the rep-

resentation of α is yα, which has the appropriate type by the translation
|∆2|c.

• In the second lemma, α could additionally be bound by ∆3, the con-
text in a typerec expression. In this case, the representation of α is
untyrec[κ][c′] |η(α)| |e|. Because the environment η is well-formed, as
are the branches e, the type of the term is |[Rc′]〈α : κ〉|.

194

case (c-const) By definition

∆ ` R⊕ : ∀β:? → ?.|[Rβ]〈⊕ : κ〉| ∆ ` c : ? → ?

∆ ` R⊕[c′] : |[Rc′]〈⊕ : κ〉|

case (c-app) Say the last step of the derivation was

∆ ` c1 : κ′ → κ ∆ ` c2 : k′

∆ ` c1c2 : κ

The proofs of the two lemmas are not exactly the same for this case. For the
first lemma, we know by induction that the type of R̂|c1| is

|[Rc′]〈c1 : κ′ → κ2〉| = ∀α:κ′.R̂〈α : κ′〉 → |[Rc′]〈α : κ′〉| → |[Rc]〈c1α : κ〉|

and the type of R̂|c2| is |[Rc]〈c2 : κ′〉|. Therefore the type of

R̂|c1| [c2] R̂|c2| R̂|c2|

is [Rc′]〈c1c2 : κ〉.
For the second lemma, the case proceed similarly, except that we must show
that the type of R̂|ρ(c2)| is R̂〈ρ(c2) : κ′〉. Because ∆1, ∆2 ` ρ(c2) : κ′ (by
LI constructor substitution), we may conclude this judgment using the first
lemma.

Therefore the type of

R|c1|Θ [ρ(c2)] R̂|ρ(c2)| R|c2|Θ

is [Rc′]〈ρ(c1c2) : κ〉.

case (c-abs) Say the last step of the derivation was

∆1, ∆2, α:κ′, ∆3 ` c : κ

∆1, ∆2, ∆3 ` λα:κ′.c : κ′ → κ

By induction, we may conclude

∆1, ∆2, α:κ′; |∆1|, |∆2|c, yα:|[Rc′]〈α : κ′〉| ` R|c|Θ : |[Rc′]〈ρ(c) : κ〉|

With weakening, this leads to

∆1, ∆2; |∆1|, |∆2|c `
Λα:κ.λxα:R̂〈α : κ〉.λyα:|[Rc′]〈α : κ′〉|.R|c|Θ :

∀α:κ′.R̂〈α : κ〉 → |[Rc′]〈α : κ〉| → |[Rc′]〈ρ(c) : κ〉|

As ρ(c) = (λα:κ′.ρ(c))α, we have produced the correct result type.

195

�

Lemma 7.6.3 If ∆; Γ ` e : τ then ∆; |∆|, |Γ| ` |e| : |τ |

Proof

Proof is by induction on ∆; Γ ` e : τ .

case t-tfn

[t-tfn]
∆, α:κ; Γ ` e : σ

∆; Γ ` Λα:κ.e : ∀α:κ.σ
(α 6∈ Dom(∆))

We need to prove that

∆; |∆|, |Γ| ` Λα:κ.λxα:R̂〈α : κ〉.|e| : ∀α:κ.R̂〈α : κ〉 → |σ|

By induction,
∆, α:κ; |∆|, xα:R̂〈α : κ〉, |Γ| ` |e| : |σ|

case t-tapp
∆; Γ ` e : ∀α:κ.σ ∆ ` c : κ

∆; Γ ` e[c] : σ[c/α]

By induction ∆; |∆|, |Γ| ` |e| : ∀α:κ.(∀β:? → ?.|[Rβ]〈α : κ〉|) → |σ|. Let β
be free in c. By Lemma 7.6.1, ∆, β : ? → ?; |∆| ` R|c|(∅,β,•) : |[Rβ]〈c : κ〉|
(note that as β is free in c, we may drop xβ from the term context), so
∆; |∆| ` Λβ:? → ?.R|c|(∅,β,•) : ∀β:κ.|[Rβ]〈c : κ〉|, Therefore,

∆; |∆|, |Γ| ` |e| [c] R̂|c| : |σ|[c/α]

case t-trec Suppose the term is

∆; Γ ` e⊕ : [c′]〈⊕ : κ⊕〉
∆, ∆′ ` c : κ

∆; Γ; c′ ` ∆′ | η | ρ
∆ ` c′ : ? → ?

∆; Γ ` typerec[κ][∆′, η, ρ][c′] c e : [c′]〈ρ(c) : κ〉

We want to show that

∆:|∆|; |Γ| ` typerec[κ][c′] R|c|(∅,c′,(∆′,|η|,ρ,|e|)) e : |[c′]〈ρ(c) : κ〉|

this follows as we may conclude by substitution ∆ ` ρ(c) : κ, by the previ-
ous lemma, ∆; |∆| ` R|c|(∅,c′,(∆′,|η|,ρ,|e|)) : |[Rc′]〈ρ(c) : κ〉|, and by induction
∆; |∆|, |Γ| ` e⊕ : |[c′]〈⊕ : κ⊕〉|.

�

196

Table 7.9: Type β-equivalence

Type-β

(Λβ:? → ?.e)[c] ≡E e[c/β]

Symmetry

e′ ≡E e
e ≡E e′

Congruence rules

i ≡E i x ≡E x R⊕ ≡E R⊕

e ≡E e′

λx:σ.e ≡E λx:σ.e′
e1 ≡E e′1 e2 ≡E e′2

e1e2 ≡E e′1e
′
2

e ≡E e′

Λα:κ.e ≡E Λα:κ.e′
e ≡E e′

e[c] ≡E e′[c]

e ≡E e′ e⊕ ≡E e′⊕
typerec[κ][c] e e ≡E typerec[κ][c] e′ e′

e ≡E e′ e⊕ ≡E e′⊕
untyrec[κ][c] e e ≡E untyrec[κ][c] e′ e′

7.6.2 Dynamic correctness

We will prove operational correctness up to the definition in Table 7.9 of equiva-
lence of result terms. The symbol≡E relates two LKR terms that differ only by type
β-expansions. This notion of equivalence does not weaken our dynamic-correctness
result as all equal terms differ only in the type annotations. All equivalent terms
have the same erasure, so we can argue that they all model the same computation.

The reason that we can prove operational correctness only up to this notion of
equivalence is because of how substitution interacts with the definition of repre-
sentation. We would like substitution to commute with representation, but that is
not the case.

R|c1[c2/α]|(∆,c,•) 6= R|c1|(∆,c,•)[c2/α][R̂|c2|/xα]

For example, if c1 is α then the left hand side equals R|c2|(∆,c,•) while the right

hand side equals (xα[c])[R̂|c2|/xα] = (Λβ:? → ?.R|c2|(∆,β,•))[c].

Proposition 7.6.4 By examination of the definition of ≡E , we assert the following
properties of this relation:

197

1. ≡E is an equivalence relation.

2. If e1 ≡E e2 then e[e1/x] ≡E e[e2/x].

3. If e1 ≡E e2 then e1[e/x] ≡E e2[e/x].

4. If e is not of the form (Λβ:? → ?.e1)[c] and e ≡E e′ then e′ 7→∗ e′′ where e′′

has the same outermost form as e and e′′ ≡E e.

Lemma 7.6.5 (Weakening) If α is not free in c, then for any ∆, c, c′, Ψ,

R|c|(∆,α:κ,c′,Ψ) = R|c|(∆,c′,Ψ)

Proof

Examination of the definition of R|c|Θ. �

Lemma 7.6.6 (Substitution of closed constructors) If ∆, α:κ2 ` c1 : κ1 and
∅ ` c2 : κ2 then

R|c1[c2/α]|(∆,c,•) ≡E R|c1|(∆,c,•)[c2/α][R̂|c2|/xα]

Proof

Proof by structural induction on c.

case c1 ≡ ⊕ Trivial.

case c1 ≡ α
R|α[c2/α]|(∆,c,•)= R|c2|(∆,c,•)

≡E (Λβ.R|c2|(∅,β,•))[c]

= R|α|(∆,c,•)[c2/α][R̂|c2|/xα]

This case relies on the fact that as c2 is closed then R|c2|(∅,c,•) = R|c2|(∆,c,•).

case c1 ≡ β When β 6∈ ∆,

R|β[c2/α]|(∆,c,•) = xβ[c] = R|β|(∆,c,•)[c2/α][R̂|c2|/xα]

otherwise, when β ∈ ∆,

R|β[c2/α]|(∆,c,•) = yβ = R|β|(∆,c,•)[c2/α][R̂|c2|/xα]

198

case c1 ≡ c′c′′

R|c′c′′[c2/α]|(∆,c,•)

= R|c′[c2/α]|(∆,c,•) [c′′[c2/α]] R̂|c′′[c2/α]| R|c′′[c2/α]|(∆,c,•)

≡E (R|c′|(∆,c,•)[c
′′] R̂|c′′| R|c′′|(∆,c,•))[c2/α][R̂|c2|/xα]

as by induction

R|c′[c2/α]|(∆,c,•) ≡E R|c′|(∆,c,•)[c2/α][R̂|c2|/xα]

(Λβ.R|c′′[c2/α]|(∅,β,•)) ≡E (Λβ.R|c′′|(∅,β,•))[c2/α][R̂|c2|/xα]

R|c′′[c2/α]|(∆,c,•) ≡E R|c′′|(∆,c,•)[c2/α][R̂|c2|/xα]

case c1 ≡ λβ:κ′.c′ This case follows straightforwardly by induction.

R|λβ:κ′.c′[c2/α]|(∆,c,•)

= Λβ:κ′.λxβ:R̂〈β : κ′〉.λyβ:|[Rc]〈β : κ′〉|.R|c′[c2/α]|(∆,β:κ′,c,•)

≡E (Λβ:κ′.λxβ:R̂〈β : κ′〉.λyβ:|[Rc]〈β : κ′〉|.
R|c′|(∆,β:κ′,c,•))[c2/α][R̂|c2|/xα]

= R|λβ:κ′.c′|(∆,c,•)[c2/α][R̂|c2|/xα]

�

Lemma 7.6.7 (Open substitution) Let Ψ = (∆′, η, ρ, e). If ∆, α:κ′ ` c1 : κ
and ∆ ` c2 : κ′ then

R|c1[c2/α]|(∆,c,Ψ) ≡E R|c1|(∆,α:κ′,c,Ψ)[ρ(c2)/α][R̂|ρ(c2)|/xα][R|c2|(∆,c,Ψ)/yα]

Proof

Proof by induction on c. For notational convenience, let Θ = (∆, c, Ψ) and let

Σ = [ρ(c2)/α][R̂|ρ(c2)|/xα][R|c2|Θ/yα].

case c1 ≡ ⊕ Trivial.

case c1 ≡ α
R|α[c2/α]|Θ = R|c2|Θ = yαΣ

case c1 ≡ β If β ∈ ∆,
R|β[c2/α]|Θ = yβ = yβΣ

otherwise if β is bound by a typerec, β ∈ ∆′,

R|β[c2/α]|Θ= (untyrec[∆′(β)][c] η(β) e)
= R|β|(∆,α:κ,c,Ψ)Σ

otherwise
R|β[c2/α]|Θ = xβ[c] = xβ[c]Σ

199

case c1 ≡ c′c′′

R|c′c′′[c2/α]|Θ
= R|c′[c2/α]|Θ [ρ(c′′[c2/α])] R̂|ρ(c′′[c2/α])| R|c′′[c2/α]|Θ
≡E (R|c′|(∆,α:κ,c,Ψ) [ρ(c′′)] R̂|ρ(c′′)| R|c′′|(∆,α:κ,c,Ψ))Σ
= R|c′c′′|(∆,α:κ,c,Ψ)Σ

As by induction and the previous lemma

R̂|ρ(c′′[c2/α])| = R̂|ρ(c′′)|Σ

case c1 ≡ λβ:κ.c′ Follows straightforwardly by induction. The only tricky thing
to notice is that R|c2|(∆,β:κ′,c,Ψ) = R|c2|(∆,c,Ψ) as β is not free in c2, by the
bound variable convention.

R|λβ:κ′.c′[c2/α]|(∆,c,Ψ)

= Λβ:κ′.λxβ:R̂〈β : κ′〉.λyβ:|[Rc]〈β : κ′〉|.R|c′[c2/α]|(∆,β:κ′,c,Ψ)

≡E (Λβ:κ′.λxβ:R̂〈β : κ′〉.λyβ:|[Rc]〈β : κ′〉|.
R|c′|(∆,β:κ′,c,Ψ))[ρ(c2)/α][R̂|ρ(c2)|/xα][R|c2|(∆,β:κ′,c,Ψ)/yα]

= R|λβ:κ′.c′|(∆,c,Ψ)Σ

�

Lemma 7.6.8 If ∆ ` c1 : κ and c1 wh c2 then for all e1 ≡E R|c1|(∆,c′,Ψ),
e1 7→∗ e2 and e2 ≡E R|c2|(∆,c′,Ψ).

Proof

Proof by induction on c1 wh c2.
Suppose (λα:κ.c3)c4 wh c3[c4/α]. Then

e1 7→∗ (Λα:κ.λxα:R̂〈α : κ〉.λyα:|[Rc′]〈α : κ〉|.R|c3|(∆,α:κ,c′,Ψ))[ρ(c4)] e5 e6

where e5 ≡E R̂|ρ(c4)| and e6 ≡E R|c4|(∆,c′,Ψ).

(Λα:κ.λxα:R̂〈α : κ〉.λyα:|[Rc′]〈α : κ〉|.R|c3|(∆,α:κ,c′,Ψ)) [ρ(c4)] e5 e6

7→∗ R|c3|(∆,α:κ,c′,Ψ))[ρ(c4)/α] [e5/xα] [e6/yα]

≡E R|c3|(∆,α:κ,c′,Ψ))[ρ(c4)/α] [R̂|ρ(c4)|/xα] [R|c4|(∆,c′,Ψ)/yα]

By the above open substitution lemma, this is η-equivalent to R|c3[c4/α]|(∆,c′,Ψ).

200

Otherwise, suppose c3c4 wh c′3c4. By induction, if e3 ≡E R|c3|(∆,c′,Ψ), then
e3 7→∗ e′3 and e′3 ≡E R|c′3|(∆,c′,Ψ). So

e1 7→∗ e3 [ρ(c4)] e5 e6

7→∗ e′3 [ρ(c4)] e5 e6

≡E R|c′3|(∆,c′,Ψ) [ρ(c4)] R̂|ρ(c4)| R|c4|(∆,c′,Ψ)

= R|c′3c4|(∆,c′,Ψ)

where e5 ≡E R̂|ρ(c4)| and e6 ≡E R|c4|(∆,c′,Ψ). �

Corollary 7.6.9 If c weak head normalizes to p, and e ≡E R|c|(∆,c,Ψ) then e 7→∗

p′ ≡E R|p|(∆,c,Ψ), where p′ is a path.

Lemma 7.6.10 (Operational path correctness) If

1. ∅ `κ typerec[κ][c′][∆, η, ρ] p e : σ

2. typerec[κ][c′][∆, η, ρ] p e ⇒k e

3. e′ ≡E |e|

4. p′ ≡E R|p|(∅,c′,(∆,|η|,ρ,|e|)) is a LKR path

then
typerec[κ][c′] p′ e′ ⇒HR e2 ≡E |e|.

Proof

Proof by induction on p.

case p ≡ α In this case, p′ must be the term untyrec[κ][c′] eα e′′ where e′′ ≡E |e|
and eα ≡E |η(α)|. Therefore

typerec[κ][c′] (untyrec[κ][c′] eα e′′)e′ ⇒HR eα

.

case p ≡ ⊕ In this case, p′ must be R⊕[c′] as no other equivalent term is a path.
So

typerec[κ][c′] R⊕[c′] e′ ⇒HR e′⊕ ≡E |e⊕|

201

case p ≡ (p1 c) So p′ must be p′1 [c] ec e′c, where p′1 ≡E R|p′|Θ is a path, ec ≡E

R̂|η(c)| and e′c ≡E (R|c|Θ). Assume typerec[κ][c′][∆, η, ρ] p1 e ⇒k e. By
induction typerec[κ][c′] p′1e

′ ⇒HR e1 ≡E |e|. Therefore

typerec[κ][c′] (p′1 [c] ec e′c) e′⇒HR e1 [c] ec (typerec[κ][c′] e′ce
′)

≡E |e| [c] R̂|η(c)|(typerec[κ][c′] (R|c|Θ)e)
= |e [c] (typerec[κ′][c′][∆, η, ρ] c e)|

�

Lemma 7.6.11 (Operational typerec correctness) Let Ψ = ∆, η, ρ.
If typerec[κ][c′][Ψ] c e 7→ e and e1 ≡E | typerec[κ][c′][Ψ] c e| then e1 7→∗ e2 ≡E |e|.

Proof

By definition e1 7→∗ typerec[κ][c′] ec e′, where ec ≡E R|c|(∅,c′,Ψ), and e′ ≡E |e|.
Proof by induction on κ. If κ is ?, then suppose c weak-head normalizes to p.

Then by Lemma 7.6.9 ec 7→∗
HR pc ≡E R|p|(∅,c′,Ψ). By the previous lemma, path

evaluation produces the correct result.
Otherwise, suppose κ ≡ κ1 → κ2. Let ec ≡E R|c|(∅,c′,Ψ), and e′ ≡E |e| be such

that
e1 7→∗ typerec[κ1 → κ2][c

′] ec e′

7→ Λβ:κ1.λxβ:R̂〈α : κ1〉.λyβ:|[c′]〈β : κ1〉|.
typerec[κ1][c

′](ec [β] (Λγ.xβ[γ]) (untyrec[κ2][c
′] yβ e′)) e′

Let Ψ′ = (∆, α:κ1, η, α:yβ, ρ, α:β). As

typerec[κ1 → κ2][c
′][Ψ] c e 7→ Λβ:κ1.λyβ : [c′]〈β : κ1〉. typerec[κ2][c

′][Ψ′] (cα),

we need to show that

|Λβ:κ1.λyβ:[c′]〈β : κ1〉. typerec[κ2][c
′][Ψ′] (cα) e|

= Λβ:κ1.λxβ:R̂〈β : k1〉.λyβ:|[c′]〈β : κ1〉|. typerec[κ2][c
′] R|(cα)|(∅,c′,Ψ′) e

≡E Λβ:κ1.λxβ:R̂〈β : κ1〉.λyβ:|[c′]〈β : κ1〉|.
typerec[κ2][c

′] (ec [β] (Λγ.xβ[γ]) (untyrec[κ1][c
′] yβ e′)) e′

This follows because

R|cα|(∅,c′,Ψ′)= R|c|(∅,c′,Ψ′) [ρ(α)] R̂|ρ(α)| R|α|(∅,c′,Ψ′)

= R|c|(∅,c′,Ψ′) [β] (Λγ.xβ[γ]) (untyrec[κ2][c
′] (η(α)) |e|)

= R|c|(∅,c′,Ψ) [β] (Λγ.xβ[γ]) (untyrec[κ2][c
′] yβ |e|)

≡E ec [β] (Λγ.xα[γ]) (untyrec[κ2][c
′] yβ e′)

�

202

Lemma 7.6.12 (Constructor substitution) If ∆, α:κ; Γ ` e : σ and ∆ ` c : κ,

then |e[c/α]| ≡E |e|[c/α][R̂|c|/xα].

Lemma 7.6.13 (Term substitution) If ∆, ; Γ, x : σ′ ` e : σ and ∆; Γ ` e′ : σ′,
then |e[e′/x]| = |e|[|e′|/x].

Lemma 7.6.14 (Operational correctness) If ∅ ` e1 : σ and e1 7→k e2 then if
e′1 ≡E |e1|, e′1 7→∗

HR e′2 ≡E |e2|.

Proof

Proof by induction on e1 7→k e2.

case ev-β

(λx:σ.e3)e4 7→ e3[e4/x]

Say e′1 ≡E |(λx:σ.e3)e4|. So e′1 7→∗ (λx:σ.e′3)e
′
4 where |e3| ≡E e′3 and |e4| ≡E

e′4. This steps to e′3[e
′
4/x] ≡E |e3|[|e4|/x]. By term substitution, this equals

|e3[e4/x]|.

case ev-app
e3 7→ e′3

e3e4 7→ e′3e4

Say e′1 ≡E |e3e4| 7→∗ e5e6 where e5 ≡E |e3| and e6 ≡E |e4|. By induction
e5 7→∗ e′5 ≡E |e′3|. So e5e6 7→∗ e′5e6 ≡E |e′3||e4| = |e′3e4|.

case ev-ty-β

(Λα:κ.e)[c] 7→ e[c/α]

Say e′1 ≡E |(Λα:κ.e)[c]| 7→∗ (Λα:κ.λxα:R̂〈α : κ〉.e′)[c]ec where e′ ≡E |e| and

ec ≡E R̂|c|. This term 7→∗ e′[c/α][ec/xα] ≡E |e|[c/α][R̂|c|/xα]. By the substi-
tution lemma, this result ≡E |e[c/α]|.

case ev-tapp
e 7→ e′

e[c] 7→ e′[c]

Follows from induction.

case e is a typerec term. Follows from lemma 7.6.11.

�

203

fix copy : (∀α: ? .R̂〈α : ?〉 → T (α → α)).

Λα: ? .λxα:R̂〈α : ?〉.
typerec[?][λβ.β → β] (xα[λβ.β → β]) of
int ⇒ λi: int .i
→ ⇒ Λα: ? .λrα:T (α → α).

Λβ: ? .λrβ:T (β → β).
λf :T (α → β).rβ ◦ f ◦ rα

× ⇒ Λα: ? .λrα:T (α → α).
Λβ: ? .λrβ:T (β → β).

λx:T (α× β).〈rα(π1x), rβ(π2x)〉
µ? ⇒ Λα:? → ?.

λr:(∀β: ? .T (β → β) → T (αβ → αβ)).
fix f :T (µ?α → µ?α).λx:T (µ?α).

roll (r [µ?α]
f (unroll x))

∀? ⇒ Λα:? → ?.
λr:(∀β: ? .T (β → β) → T (αβ → αβ)).

λx:T (∀?α).

Λβ: ? .λxβ:R̂〈β : ?〉.r[β] (copy [β] xβ)(x [β] xβ)
∃? ⇒ Λα:? → ?.

λr:(∀β: ? .T (β → β) → T (αβ → αβ)).
λx:T (∃?α).

let〈β, 〈xβ, y〉〉 = unpack x in
pack〈β, 〈xβ, r[β] xβ (copy [β] xβ) y〉〉
as ∃β: ? .R̂〈β : ?〉 × αβ

Figure 7.2: Example: Alternate erasure version of copy

7.7 An alternative version

The type-erasure language in this section is complicated by the fact that we must
support all code written in LK. However, just as we could define both the primitive
recursive typerec and the iterative typerecit in Chapter 5, there is an analogous
typerecit for this language. Furthermore, all of the examples of Chapter 6 may be
written in this simpler language. For example, Figure 7.2 contains copy written in
this language.

The difference between these two versions is again in the types of the branches
of typerecit. Like before, if ⊕ is of kind κ⊕, the e⊕ branch of typerecit is of type

204

[c′]〈⊕ : κ⊕〉 instead of |[c′]〈⊕ : κ⊕〉|—we do not provide the representations of any
type arguments to that branch. For example, in typerecit, the e× branch is of type
∀α: ? .c′α → ∀β: ? .c′β. → c′(α× β).

[e-typerecit]

∆ ` c : κ
∆ ` c′ : ? → ?
∆; Γ ` e⊕ : [c′]〈⊕ : κ⊕〉 (e⊕ ∈ e)
∆; Γ ` e : [Rc′]〈c : κ〉
∆; Γ ` typerecit[κ][c′] e e : [c′]〈c : κ〉

Because we do not need these extra representations during the operation of
typerec, we do not have to include them in the representations of type constructors.
For example, R⊕ is of type ∀β: ? .[Rβ]〈⊕ : κ⊕〉 instead of ∀β: ? .|[Rβ]〈⊕ : κ⊕〉|.
Likewise, the syntax for path application does not include the first representation
argument.

p ::= R⊕[c] | untyrecit[κ][c′] e e | p [c] e2

When we create the representation of a constructor abstraction or application,
we do not pass this argument around.

R|λα:κ.c1|Θ = Λα:κ.λyα:[Rc]〈α : κ〉.R|c1|(∆′,α:κ,c,Ψ)

R|c1c2|Θ = R|c1|Θ [ρ(c2)] R|c2|Θ

Evaluation of path applications or higher-order constructors also omits this repre-
sentation.

[pv-app0]
typerecit[κ1 → κ][c′] p e ⇒HR e′

typerecit[κ][c′] (p [c] e2) e ⇒HR0 e′ [c] (typerec[κ1][c
′] e2 e)

[ev-trec-arrow0]
typerecit[κ1 → κ2][c

′] e e 7→HR

Λα:κ.λy:[c′]〈κ : α〉.
typerecit[κ1][c

′] (e [α] (untyrecit[κ2][c
′] y e)) e

What needs further study is whether anything written with typerec may be
written with typerecit through some sort of pairing operation. If it turns out
that typerecit is not as expressive, then we must decide whether the limitations
in expressiveness are true limitations. I have yet to encounter an example that
requires the full capabilities of LKR.

Furthermore, Chapter 5 presented an encoding of the typerecit version of LIR,
within LU. It also seems interesting to investigate an analogous encoding of LKR
with LU.

205

7.8 Chapter summary

In this chapter, I have developed a type-erasure language supporting higher-order
intensional type analysis. The first hurdle was to develop a kind-directed opera-
tional semantics for typerec, so that we do not need to rely on the syntactic prop-
erties of the representations of higher-kinds. This operational semantics draws
inspiration from Stone and Harper’s language with singleton kinds [SH00], which
in turn was inspired by Coquand’s approach to βη-equivalence for a type theory
with Π types and one universe [Coq91]. Because equivalence of constructors in
Stone and Harper’s language strongly depends on the kind at which they are com-
pared, their procedure drives the kind of the compared terms to the base form
before weak-head normalizing and comparing structurally.

The second hurdle with creating the type-erasure language was that we did not
want to define a version of reduction for terms with free variables. Instead, we
chose to directly replace those variables with a place holder for the result of their
interpretation. This place holder draws inspiration from the calculi of Fegaras and
Sheard [FS96] and of Trifonov et al. [TSS00]. Fegaras and Sheard designed their
calculus to extend iterations to datatypes with function spaces, employing a place
holder as the trivial inverse of the iterator. Trifonov et al. adapted this idea in a
type-level Typerec for recursive types. Like the parameterized return constructor
of the R-type in this calculus, they parameterize the return kind of a Typerec
iteration.

Chapter 8

Summary and Directions for
Future Research

The ability to represent and analyze compile-time abstractions at run-time is cru-
cial to the implementation of modern systems. This thesis is the first step in a
research program to provide a principled basis for such activity and an exploration
of the language constructs necessary to support it in a type-safe manner. How do
the languages discussed in this thesis contribute to the understanding of run-time
type analysis? To answer this question it is important to review the important
features of a language that supports such type analysis.

• It should have a type-erasure semantics. In order to preserve the distinction
between compile-time descriptions and run-time data it is important that
the types of the language have no computational effect. In order to support
this separation, there must be some sort of dependency between the type
language and their term representations. The languages LIR, LXR and LKR
each demonstrate how that dependency may be formalized for each of the
LI, LX and LH languages.

• The mechanism for run-time type analysis should be easy to incorporate into
the language. Support for run-time type analysis is of no use if it interferes
with other desirable language features. Furthermore, if it is difficult to prove
correct and implement, it is not likely to be added to many programming
languages. In Chapter 5, I show that it is not the case for typecase in the
LIR language. In that chapter, I describe how that language may be encoded
using higher-order polymorphism. Such polymorphism (at least at the term
level) is already a common feature of many programming languages. For
example, Cheney and Hinze have used similar techniques to encode type
representations into the Haskell language [CH02].

206

207

• All types of the language should be analyzable. If there is a limitation in
what types may be represented, then the reflective programs will suffer in
their applicability. For example, the LI language does not allow the analysis
of polymorphic, existential, recursive and other types with binding structure.
Therefore, even though one can implement dynamic types with LI, terms with
such types may not be coerced to that dynamic type. In both Chapter 4 and
Chapter 6, I address the problem of analyzing types with binding structure.

• It should extend to static information beyond the types of the language. Fi-
nally, many programming languages have very rich type constructor lan-
guages, and reflecting those constructor languages at run-time is important
for many applications. The LX language of Chapter 4 demonstrates how
constructor-language datatypes (perhaps representing the type system of a
different programming language) may be analyzed at run-time. Likewise,
Chapter 6 reflects constructor functions to the term level to be used in the
definition of polytypic operations over parameterized data structures.

8.1 Future directions in type analysis

While this thesis represents significant progress in the understanding of run-time
type analysis, there are still a few issues that deserve further examination.

8.1.1 Type-level type analysis

The generalization of typerec to be an interpreter of the type language in Chap-
ter 6 did not include the type level operator Typerec. While it is possible to add
LI’s Typerec (or the more expressive Typerec operator of Trifonovet al.[TSS00]),
doing so is of limited utility. The purpose of Typerec is describe the type of poly-
typic functions, and if those functions are defined over higher-order constructs,
than Typerec also needs to be applicable to higher-order constructors. Hinze et
al. [HJL02] provide a number of examples of higher-order polytypic term defi-
nitions that require higher-order polytypic type definitions. However, adding a
Typerec operator that may analyze higher-order constructors is difficult. Naively
adding a self-interpreter to the typed lambda calculus destroys strong normaliza-
tion, which means that type equality will be undecidable. However, there are
typing mechanisms to prevent non-termination by limiting analysis to functions
that themselves do not do analysis. For example, the modal system of Despey-
roux et al. [DL01, DPC97] discriminates between parametric and non-parametric
functions. Trifonov employ a similar mechanism in LQ [TSS00] in order to analyze
recursive types at the type level.

208

8.1.2 Structural type analysis in practice

While intensional type analysis has traditionally been used in the context of type-
based compilation, we would like to incorporate this system in an expressive user
language. To do so, we must consider type inference. Furthermore, because this
framework depends on a type-passing semantics, it is important to determine its
actual run-time cost with respect to compile-time specialization. Finally, because
this language supports the analysis of types with binding structure, it may be
applicable to adding polytypic programming to object-oriented languages, such as
Java. While Java uses the names of classes for dynamic type dispatch, my extension
would allow the examination of the structure of the class as well. This would
provide a principled basis for reflection, and would allow polytypic operations,
such as data-structure traversals, object cloning, and structural equality, to be
expressed more concisely.

8.2 Future application areas

In the future, I intend both to continue my study of the foundations of typed
programming languages and to apply those results broadly to existing and emerging
practical problems. Currently, I am interested in the following application areas.

8.2.1 Type-based program verification

Karl Crary and I have already made contributions in the area of using expressive
type systems to specify and verify properties of programs with work on resource
bound certification [CW00]. A limiting factor in this line of research is flexibility
in the security-policy specification. Currently, the security policy is contained and
implied by the specific type system used to type check the program. In order
to make this sort of verification feasible we must separate the policy from the
type system of the language. Another line of research that must be considered
is the trade-off between user annotation of types and automatic type-inference.
How much extra information are users willing to add to their code? Yet the more
sophisticated we make the type-inference engine (which is in essence an automated
theorem prover), the less they will understand the reasons why type inference fails
to verify their program.

8.2.2 Extension frameworks for statically-typed languages

The proliferation of domain specific languages has reinforced the idea that there
is no perfect language suited for every task. At the same time, programmers are

209

(rightly so) becoming more dependent on sophisticated development environments,
debuggers and static checkers to aid their development process. Supporting these
new facilities for every new “little language” is quite impossible, so some untyped
or dynamically typed languages have included support (in the form of a macro
system) for extension. However, the challenges of extending a statically typed
language with new type constructs as well as verifying that new term forms always
produce well-typed programs have previously prevented the development of similar
extension mechanisms.

BIBLIOGRAPHY

[ABHR99] Mart́ın Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke.
A core calculus of dependency. In Twenty-Sixth ACMSIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
147–160, San Antonio, Texas, January 1999.

[ACHA90] Stuart F. Allen, Robert L. Constable, Douglas J. Howe, and
William E. Aitken. The semantics of reflected proof. In Fifth IEEE
Symposium on Logic in Computer Science, pages 95–105, Philadel-
phia, Pennsylvania, June 1990. IEEE Computer Society Press.

[ACPP91] Mart́ın Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin.
Dynamic typing in a statically-typed language. ACM Transactions
on Programming Languages and Systems, 13(2):237–268, April 1991.

[ACPR95] Mart́ın Abadi, Luca Cardelli, Benjamin Pierce, and Didier Rémy. Dy-
namic typing in polymorphic languages. Journal of Functional Pro-
gramming, 5(1):111–130, January 1995.

[AFH94] Shail Aditya, Christine Flood, and James Hicks. Garbage collection
for strongly-typed languages using run-time type reconstruction. In
1994 ACM Conference on Lisp and Functional Programming, pages
12–23, Orlando, June 1994.

[AFM97] Ole Agesen, Stephen N. Freund, and John C. Mitchell. Adding type
parameterization to the Java language. In ACM Symposium on Ob-
ject Oriented Programming: Systems, Languages, and Applications
(OOPSLA), pages 49–65, Atlanta, GA, 1997.

[App92] Andrew W. Appel. Compiling with Continuations. Cambridge Uni-
versity Press, 1992.

210

211

[Arm97] Joe Armstrong. The development of Erlang. In Proceedings of the
ACM SIGPLAN International Conference on Functional Program-
ming (ICFP ’97), pages 196–203, 1997.

[Aug98] Lennart Augustsson. Cayenne–a language with dependent types. In
Third ACM SIGPLAN International Conference on Functional Pro-
gramming, pages 239–250, September 1998.

[Bar84] Hendrik P. Barendregt. The Lambda Calculus, its Syntax and Seman-
tics. North Holland, second edition, 1984.

[Bar92] Henk P. Barendregt. Lambda calculi with types. In Samson Abram-
sky, Dov M. Gabbay, and Thomas S. E. Maibaum, editors, Handbook
of Logic in Computer Science, volume 2, pages 117–309. Clarendon
Press, Oxford, 1992.

[BB85] Corrado Böhm and Allessandro Berarducci. Automatic synthesis of
typed Λ-programs on term algebras. Theoretical Computer Science,
39:135–154, 1985.

[BBC+97] Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant,
Jean-Christophe Filliâtre, Eduardo Giménez, Hugo Herbelin, Gérard
Huet, César Muñoz, Chetan Murthy, Catherine Parent, Christine
Paulin-Mohring, Amokrane Säıbi, and Benjamin Werner. The Coq
proof assistant reference manual: Version 6.1. Technical Report RT-
0203, INRIA-Rocquencourt, CNRS and ENS Lyon, 1997.

[BH97] Michael Brandt and Fritz Henglein. Coinductive axiomatization of
recursive type equality and subtyping. In Roger Hindley, editor, Proc.
3d Int’l Conf. on Typed Lambda Calculi and Applications (TLCA),
Nancy, France, April 2-4, 1997, volume 1210, pages 63–81. Springer-
Verlag, 1997.

[BM98] Richard Bird and Lambert Meertens. Nested datatypes. In Pro-
ceedings 4th Int. Conf. on Mathematics of Program Construction,
MPC’98, Marstrand, Sweden, 15–17 June 1998, volume 1422 of Lec-
ture Notes in Computer Science, pages 52–67, 1998.

[BOSW98] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler.
Making the future safe for the past: Adding genericity to the Java pro-
gramming language. In Craig Chambers, editor, Object Oriented Pro-
gramming: Systems, Languages, and Applications (OOPSLA), pages
183–200, Vancouver, BC, 1998.

212

[BP99a] Richard Bird and Ross Paterson. Generalised folds for nested
datatypes. Formal Aspects of Computing, 11(2):200–222, 1999.

[BP99b] Richard S. Bird and Ross Paterson. De Bruijn notation as a nested
datatype. Journal of Functional Programming, 9(1):77–91, 1999.

[BS91] Ulrich Berger and Helmut Schwichtenberg. An inverse of the eval-
uation functional for typed lambda-calculus. In R. Vemuri, editor,
Proceedings of the Sixth Annual IEEE Symposium on Logic in Com-
puter Science, pages 203–211, Los Alamitos, 1991. IEEE Computer
Society Press.

[CAB+86] Robert L. Constable, Stuart F. Allen, H. Mark Bromley, W. Rance
Cleaveland, James F. Cremer, Robert W. Harper, Douglas J. Howe,
Todd B. Knoblock, Nax Paul Mendler, Prakash Panangaden, James T.
Sasaki, and Scott F. Smith. Implementing Mathematics with the Nuprl
Proof Development System. Prentice-Hall, 1986.

[Car86] Luca Cardelli. Amber. In Guy Coisineau, Pierre-Louis Curien, and
Bernard Robinet, editors, Combinators and Functional Programming
Languages, volume 242 of Lecture Notes in Computer Science, pages
48–70. Springer-Verlag, 1986.

[CDG+89] Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill
Kalsow, and Greg Nelson. Modula-3 report (revised). Technical Re-
port 52, Digital Equipment Corporation, Systems Research Center,
November 1989.

[CF92] Robin Cockett and Tom Fukushima. About Charity. Yellow Series
Report No. 92/480/18, Department of Computer Science, The Uni-
versity of Calgary, June 1992.

[CFJW00] Henry Cejtin, Matthew Fluet, Suresh Jagannathan, and Stephen
Weeks. MLton User Guide, April 2000. http://www.mlton.org/

HTML/main.html.

[CH02] James Cheney and Ralf Hinze. Poor man’s dynamics and gener-
ics. Available from http://www.informatik.uni-bonn.de/~ralf/

publications.html, June 2002.

[CHJ+01] Dave Clarke, Ralf Hinze, Johan Jeuring, Andres Löh, and Jan de Wit.
The Generic Haskell user’s guide. Technical Report UU-CS-2001-26,
Utrecht University, 2001.

213

[Chu40] Alonzo Church. A formulation of the simple theory of types. Journal
of Symbolic Logic, 5:56–68, 1940.

[CK02] Manuel M. T. Chakravarty and Gabriele Keller. Functional array fu-
sion. In Proceedings of the Sixth ACM SIGPLAN International Con-
ference on Functional Programming, pages 205–216, Florence, Italy,
September 2002. ACM Press.

[Coi87] Pierre Cointe. Metaclasses are first class: The ObjVlisp model. In
Proceedings of the ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), pages 156–167, Or-
lando, FL, 1987.

[COM02] Microsoft COM technologies, January 2002. http://www.

microsoft.com/com/default.asp.

[Con82] Robert L. Constable. Intensional analysis of functions and types.
Technical Report CSR-118-82, Department of Computer Science, Uni-
versity of Edinburgh, June 1982.

[Coq91] Thierry Coquand. An algorithm for testing conversion in type theory.
In Gérard Huet and Gordon Plotkin, editors, Logical Frameworks,
pages 255–277. Cambridge University Press, 1991.

[Coq94] Thierry Coquand. A new paradox in type theory. In Dag Prawitz,
Brian Skyrms, and Dag Westerst̊ahl, editors, Logic, Methodology and
Philosophy of Science IX : Proceedings of the Ninth International
Congress of Logic, Methodology, and Philosophy of Science, Uppsala,
Sweden, August 7-14, 1991, volume 134, pages 555–570. Elsevier, Am-
sterdam, 1994.

[CPM88] Thierry Coquand and Christin Paulin-Mohring. Inductively defined
types. In P. Martin-Löf and G. Mints, editors, COLOG-88 Interna-
tional Conference on Computer Logic, volume 417 of Lecture Notes
in Computer Science, pages 50–66, Tallinn, USSR, December 1988.
Springer-Verlag.

[CS98] Robert Cartwright and Guy L. Steele, Jr. Compatible genericity with
run-time types for the Java programming language. In Craig Cham-
bers, editor, ACM Symposium on Object Oriented Programming: Sys-
tems, Languages, and Applications (OOPSLA), Vancouver, British
Columbia, pages 201–215. ACM, 1998.

214

[CW99a] Karl Crary and Stephanie Weirich. Flexible type analysis. In Pro-
ceedings of the Fourth ACM SIGPLAN International Conference on
Functional Programming, pages 233–248, Paris, September 1999.

[CW99b] Karl Crary and Stephanie Weirich. Flexible type analysis (extended
version). Technical report, Department of Computer Science, Cornell
University, 1999.

[CW00] Karl Crary and Stephanie Weirich. Resource bound certification. In
Twenty-Seventh ACMSIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 184–198, Boston, MA, January
2000.

[CWM98] Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional poly-
morphism in type erasure semantics. In Proceedings of the Third ACM
SIGPLAN International Conference on Functional Programming, vol-
ume 34 of ACM SIGPLAN Notices, pages 301–313, Baltimore, MD,
September 1998. An extended and revised version of this paper is
[CWM02].

[CWM02] Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional poly-
morphism in type erasure semantics. In Journal of Functional Pro-
gramming, 2002. To appear.

[CZ84] Robert L. Constable and Daniel R. Zlatin. The type theory of
PL/CV3. ACM Transactions on Programming Languages and Sys-
tems, 6(1):94–117, January 1984.

[Dan96] Olivier Danvy. Type-directed partial evaluation. In POPL’96: The
23rd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, St. Petersburg, Florida, January 1996, pages 242–
257, 1996.

[DL01] Joëlle Despeyroux and Pierre Leleu. Recursion over objects of func-
tional type. Mathematical Structures in Computer Science, 11:555–
572, 2001.

[DM95] Francois-Nicola Demers and Jacques Malenfant. Reflection and logic,
functional and object-oriented programming: a short comparative
study. In IJCAI ’95 Workshop on Reflection and Metalevel Archi-
tectures and their Applications in AI, pages 29–38, August 1995.

215

[DPC97] Joëlle Despeyroux, Frank Pfenning, and Carsten Schürmann. Primi-
tive recursion for higher-order abstract syntax. In Third International
Conference on Typed Lambda Calculi and Applications, volume 1210
of Lecture Notes in Computer Science, pages 147–163, Nancy, France,
April 1997. Springer-Verlag.

[dRS84] Jim des Rivieres and Brian Cantwell Smith. The implementation of
procedurally reflective languages. In Conference Record of the 1984
ACM Symposium on LISP and Functional Programming, pages 331–
347, Austin, Texas, 1984. ACM Press.

[DRW95] Catherine Dubois, François Rouaix, and Pierre Weis. Extensional
polymorphism. In Twenty-Second ACMSIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pages 118–129, San
Francisco, January 1995.

[Dyb91] Peter Dybjer. Inductive sets and families in Martin-Löf’s type the-
ory and their set-theoretic semnatics. In Gerard Huet and Gordon
Plotkin, editors, Logical Frameworks, pages 280–306. Prentice Hall,
1991.

[Fef62] Solomon Feferman. Transfinite recursive progressions of axiomatic
theories. Journal of Symbolic Logic, 27(3):259–316, September 1962.

[FS96] Leonidas Fegaras and Tim Sheard. Revisiting catamorphisms over
datatypes with embedded functions (or, programs from outer space).
In Conf. Record 23rd ACM SIGPLAN/SIGACT Symp. on Princi-
ples of Programming Languages, POPL’96, St. Petersburg Beach, FL,
USA, 21–24 Jan. 1996, pages 284–294. ACM Press, New York, 1996.

[Gan86] Robin O. Gandy. An early proof of normalization by A.M. Turing.
In J. Roger Seldin and Jonathan R. Hindley, editors, Introduction to
Combinators and λ-Calculus, London Mathematical Society Student
Texts, pages 453–455. Cambridge University Press, Cambridge, 1986.

[GHC02] The GHC Team. The Glasgow Haskell Compiler User’s Guide, version
5.02 edition, 2002. Available at http://www.haskell.org/ghc/.

[Gir71] Jean-Yves Girard. Une extension de l’interprétation de Gödel à
l’analyse, et son application à l’élimination de coupures dans l’analyse
et la théorie des types. In J. E. Fenstad, editor, Proceedings of the
Second Scandinavian Logic Symposium, pages 63–92. North-Holland
Publishing Co., 1971.

216

[Gir72] Jean-Yves Girard. Interprétation fonctionelle et élimination des
coupures de l’arithmétique d’ordre supérieur. Ph.D. dissertation, Uni-
versité Paris VII, 1972.

[GJS96] James Gosling, Bill Joy, and Guy Steele. The Java Language Specifi-
cation. Addison-Wesley, 1996.

[GLP00] Vladimir Gapeyev, Michael Y. Levin, and Benjamin C. Pierce. Re-
cursive subtyping revealed. In 2000 ACM SIGPLAN International
Conference on Functional Programming, pages 221–232, Montreal,
September 2000.

[Göd31] Kurt Gödel. Über formal unentschiedbare sätze der principia mathe-
matica und verwandter systeme, I. Monatshefte für Mathematik und
Physik, 38:173–98, 1931.

[Gre98] Dale Green. Trail: The reflection API. In Mary Campione, Kathy
Walrath, Alison Huml, and Tutorial Team, editors, The Java Tu-
torial Continued: The Rest of the JDK(TM). Addison-Wesley Pub
Co, 1998. http://java.sun.com/docs/books/tutorial/reflect/

index.html.

[Har95] John Harrison. Metatheory and reflection in theorem proving: A
survey and critique. Technical Report CRC-053, SRI, February 1995.

[Har01] Robert Harper. Programming languages: Theory and prac-
tice. Unpublished, draft available at http://www.cs.cmu.edu/~rwh/
plbook/, 2001.

[HHJW96] Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and
Philip L. Wadler. Type classes in Haskell. ACM Transactions on
Programming Languages and Systems, 18(2):109–138, March 1996.

[Hin00] Ralf Hinze. Polytypic values possess polykinded types. In Roland
Backhouse and J.N. Oliveira, editors, Proceedings of the Fifth Inter-
national Conference on Mathematics of Program Construction (MPC
2000), pages 2–27, Ponte de Lima, Portugal, July 2000.

[HJ00] Ralf Hinze and Simon Peyton Jones. Derivable type classes. In Gra-
ham Hutton, editor, Proceedings of the Fourth Haskell Workshop,
Montreal, Canada, September 17, 2000, volume 41.1 of Electronic
Notes in Theoretical Computer Science. Elsevier Science, August 2000.

217

[HJL02] Ralf Hinze, Johan Jeuring, and Andres Löh. Type-indexed data types.
In Bernhard Möller Eerke Boiten, editor, Proceedings of the Sixth
International Conference on Mathematics of Program Construction
(MPC 2002), pages 148–174, Dagstuhl, Germany, July 2002.

[HM95] Robert Harper and Greg Morrisett. Compiling polymorphism using
intensional type analysis. In Twenty-Second ACMSIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 130–141,
San Francisco, January 1995.

[HMM90] Robert Harper, John C. Mitchell, and Eugenio Moggi. Higher-order
modules and the phase distinction. In Seventeenth ACMSIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
341–354, San Francisco, January 1990.

[Hur95] Antonious J. C. Hurkens. A simplification of Girard’s paradox. In
Mariangiola Dezani-Ciancaglini and Gordon Plotkin, editors, Second
International Conference on Typed Lambda Calculi and Applications,
TLCA ’95, volume 902 of Lecture Notes in Computer Science, pages
266–278, Edinburgh, United Kingdom, April 1995. Springer-Verlag.

[HWC01] Michael Hicks, Stephanie Weirich, and Karl Crary. Safe and flexible
dynamic linking of native code. In R. Harper, editor, Types in Compi-
lation: Third International Workshop, TIC 2000; Montreal, Canada,
September 21, 2000; Revised Selected Papers, volume 2071 of Lecture
Notes in Computer Science, pages 147–176. Springer, 2001.

[ISO94] International Organisation for Standardisation and International Elec-
trotechnical Commission. International Standard ISO/IEC 8652:1995
Ada Reference Manual: Language and Standard Libraries, 6.0 edition,
December 1994.

[ISO98] International Organisation for Standardization and International
Electrotechnical Commission. ISO/IEC 14882:1998 Information
Technology–Programming Languages–C++, September 1998.

[ISO99] International Organisation for Standardization and International
Electrotechnical Commission. ISO/IEC 9899:1999 Programming
Languages–C, December 1999.

[Jan00] Patrik Jansson. Functional Polytypic Programming. Ph.D. disser-
tation, Chalmers University of Technology and Gteborg University,
2000.

218

[Jav02] JavaBeans: The only component for Java technology, May 2002.
http://java.sun.com/products/javabeans/.

[Jay95] C. Barry Jay. A semantics for shape. Science of Computer Program-
ming, 25(2–3):251–283, 1995.

[JBM98] C. Barry Jay, Gianna Bellè, and Eugenio Moggi. Functorial ML.
Journal of Functional Programming, 8(6):573–619, November 1998.

[Jeu95] J. Jeuring. Polytypic pattern matching. In FPCA95: Conference
on Functional Programming Languages and Computer Architecture,
pages 238–248, 1995.

[JJ97] Patrick Jansson and Johan Jeuring. PolyP – a polytypic program-
ming language extension. In Twenty-Fourth ACMSIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 470–482,
Paris, France, 1997.

[JJ98] Patrik Jansson and Johan Jeuring. Functional pearl: Polytypic unifi-
cation. Journal of Functional Programming, 8(5):527–536, September
1998.

[JJ99] Patrik Jansson and Johan Jeuring. Polytypic compact printing and
parsing. In European Symposium on Programming, volume 1576 of
Lecture Notes in Computer Science, pages 273–287, 1999.

[JJ00] Patrik Jansson and Johan Jeuring. A framework for polytypic pro-
gramming on terms, with an application to rewriting. In Workshop on
Generic Programming (WGP2000), Ponte de Lima, Portugal. Utrecht
University, 2000. Technical Report UU-CS-2000-19.

[Jon92] Mark P. Jones. A theory of qualified types. In Bernd Krieg-Bruckner,
editor, ESOP ’92, 4th European Symposium on Programming, Rennes,
France, February 1992, Proceedings, volume 582, pages 287–306.
Springer-Verlag, New York, N.Y., 1992.

[Jon97] Mark P. Jones. First-class polymorphism with type inference. In
Conference Record of POPL ’97: The 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 483–496,
Paris, France, 15–17 1997.

[JP99] Trevor Jim and Jens Palsberg. Type inference in systems of re-
cursive types with subtyping. Available at citeseer.nj.nec.com/

jim97type.html, 1999.

219

[JR99] Mark P Jones and Alastair Reid. Hugs 98 : A functional program-
ming system based on Haskell 98 : User Manual. Yale Haskell Group
and Oregon Graduate Institute of Science and Technology, Septem-
ber 1999. Available at http://cvs.haskell.org/Hugs/downloads/

hugs.pdf.

[KCJR98] Richard Kelsey, William Clinger, and editors Jonathan Rees. Revised5

report on the algorithmic language Scheme. Higher-Order and Sym-
bolic Computation, 11(1):7–105, September 1998.

[KdRB91] Gregor Kiczales, Jim des Rivieres, and Daniel Bobrow. The Art of
the Meta-Object Protocol. The MIT Press, 1991.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In Mehmet Akşit and Satoshi Matsuoka, edi-
tors, Proceedings of the European Conference on Object-Oriented Pro-
gramming (ECOOP), volume 1241 of Lecture Notes in Computer Sci-
ence, pages 220–242. Springer-Verlag, June 1997.

[KPS93] Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. Efficient
recursive subtyping. In Conference Record of the Twentieth Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 419–428, Charleston, South Carolina, 1993.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming
Language, Second Edition. Prentice Hall, Inc., 1988.

[Lam83] Butler Lampson. A description of the Cedar language. Technical
Report CSL-83-15, Xerox Palo Alto Research Center, 1983.

[Ler92] Xavier Leroy. Unboxed objects and polymorphic typing. In Nine-
teenth ACMSIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 177–188, 1992.

[LM91] Xavier Leroy and Michel Mauny. Dynamics in ML. In J. Hughes, ed-
itor, Functional Programming Languages and Computer Architecture,
5th ACM Conference, volume 523, pages 406–426. Springer-Verlag,
Berlin, Heidelberg, New York, 1991.

[Mae87] Pattie Maes. Concepts and experiments in computational reflection.
In Proceedings of the 2nd Annual Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications (OOPSLA 87), (Or-
lando, FL), pages 147–155, October 1987.

220

[MBL97] Andrew C. Myers, Joseph A. Bank, and Barbara Liskov. Parameter-
ized types for Java. In Conference Record of POPL ’97: The 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 132–145, New York, NY, 1997.

[Mee92] Lambert G. L. T. Meertens. Paramorphisms. Formal Aspects of Com-
puting, 4(5):413–424, 1992.

[Men87] Paul Francis Mendler. Inductive Definition in Type Theory. Ph.D.
dissertation, Department of Computer Science, Cornell University,
Ithaca, New York, September 1987.

[Men91] Nax Paul Mendler. Inductive types and type constraints in the second-
order lambda calculus. Annals of Pure and Applied Logic, 51(1–
2):159–172, 1991.

[MFH95] Greg Morrisett, Matthias Felleisen, and Robert Harper. Abstract
models of memory management. In FPCA95: Conference on Func-
tional Programming Languages and Computer Architecture, pages 66–
77, La Jolla, CA, June 1995.

[MFP91] Erik Meijer, Maarten M. Fokkinga, and Ross Paterson. Functional
programming with bananas, lenses, envelopes and barbed wire. In
FPCA91: Conference on Functional Programming Languages and
Computer Architecture, volume 523 of Lecture Notes in Computer Sci-
ence, pages 124–144. Springer-Verlag, 1991.

[MH95] Erik Meijer and Graham Hutton. Bananas in space: Extending fold
and unfold to exponential types. In FPCA95: Conference on Func-
tional Programming Languages and Computer Architecture, pages
324–333, La Jolla, CA, June 1995.

[MH97] Greg Morrisett and Robert Harper. Semantics of memory manage-
ment for polymorphic languages. In A. D. Gordon and A. M. Pitts, ed-
itors, Higher Order Operational Techniques in Semantics. Cambridge
University Press, 1997.

[Mil78] Robin Milner. A theory of type polymorphism in programming. Jour-
nal of Computer and System Sciences, 17(3):348–375, 1978.

[Mit96] John C. Mitchell. Foundations for Programming Languages. The MIT
Press, 1996.

221

[ML75] Per Martin-Löf. An intuitionistic theory of types: Predicative part.
In Proceedings of the Logic Colloquium, 1973, volume 80 of Studies
in Logic and the Foundations of Mathematics, pages 73–118. North-
Holland, 1975.

[MMH96] Yasuhiko Minamide, Greg Morrisett, and Robert Harper. Typed clo-
sure conversion. In Twenty-Third ACMSIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pages 271–283, St.
Petersburg, Florida, January 1996.

[Mor95] Greg Morrisett. Compiling with Types. Ph.D. dissertation, Carnegie
Mellon University, School of Computer Science, Pittsburgh, Pennsyl-
vania, December 1995.

[MP88] John C. Mitchell and Gordon D. Plotkin. Abstract types have ex-
istential type. ACM Transactions on Programming Languages and
Systems, 10(3):470–502, July 1988.

[MSS01] Stefan Monnier, Bratin Saha, and Zhong Shao. Principled scavenging.
In Proceedings of SIGPLAN 2001 Conference on Programming Lan-
guages Design and Implementation, ACM SIGPLAN Notices, pages
81–91, Snowbird, Utah, June 2001. ACM Press.

[MTC+96] Greg Morrisett, David Tarditi, Perry Cheng, Chris Stone, Robert
Harper, and Peter Lee. The TIL/ML compiler: Performance and
safety through types. In Workshop on Compiler Support for Systems
Software, Tucson, February 1996.

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML (Revised). The MIT Press, Cambridge,
Massachusetts, 1997.

[MWCG99] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From Sys-
tem F to typed assembly language. ACM Transactions on Program-
ming Languages and Systems, 21(3):528–569, May 1999. An earlier
version appeared in the 1998 Symposium on Principles of Program-
ming Languages.

[NN92] Flemming Nielson and Hanne Riis Nielson. Two-Level Functional
Languages, volume 34 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 1992.

222

[Oka98] Chris Okasaki. Purely Functional Data Structures. Cambridge Uni-
versity Press, 1998.

[Oka99] Chris Okasaki. From fast exponentiation to square matrices: An ad-
venture in types. In 1999 ACM SIGPLAN International Conference
on Functional Programming, pages 28–35, Paris, France, September
1999.

[OL96] Martin Odersky and Konstantin Läufer. Putting type annotations to
work. In Conference Record of POPL ’96: The 23rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, St.
Petersberg Beach, Florida, pages 54–67, New York, N.Y., 1996.

[PA93] Gordon Plotkin and Mart́ın Abadi. A logic for parametric polymor-
phism. In International Conference on Typed Lambda Calculi and
Applications, pages 361–375, 1993.

[PCHS00] Leaf Petersen, Perry Cheng, Robert Harper, and Chris Stone. Imple-
menting the TILT internal language. Technical Report CMU-CS-00-
180, Carnegie Mellon University Computer Science, December 2000.

[PE88] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In
1988 ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 199–208, Atlanta, GA, USA, June 1988.

[PH99] Simon Peyton Jones and John Hughes. Report on the program-
ming language Haskell 98, a non-strict purely functional language.
Technical Report YALEU/DCS/RR-1106, Yale University, Depart-
ment of Computer Science, February 1999. Available from http:

//www.haskell.org/definition/.

[Pie02] Benjamin C. Pierce. Types and Programming Languages. The MIT
Press, 2002.

[PL91] Simon Peyton Jones and John Launchbury. Unboxed values as first
class citizens in a non-strict functional programming language. In
FPCA91: Conference on Functional Programming Languages and
Computer Architecture, pages 636–666, New York, NY, August 1991.
ACM Press.

[PM93] Christin Paulin-Mohring. Inductive definitions in the system Coq -
rules and properties. In Marc Bezem and Jan Friso Groote, editors,
Proceedings of the conference Typed Lambda Calculi and Applications,

223

number 664 in Lecture Notes in Computer Science, pages 328–345,
1993. LIP research report 92-49.

[Pou93] Eigil Rosager Poulsen. Representation analysis for efficient imple-
mentation of polymorphism. Masters dissertation, DIKU, University
of Copenhagen, April 1993.

[PPM90] Frank Pfenning and Christin Paulin-Mohring. Inductively defined
types in the Calculus of Constructions. In Proceedings of Mathemat-
ical Foundations of Programming Semantics, volume 442 of Lecture
Notes in Computer Science, pages 209–228. Springer-Verlag, 1990.

[PT98] Benjamin C. Pierce and David N. Turner. Local type inference. In
Conference Record of POPL 98: The 25TH ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, San Diego, Cal-
ifornia, pages 252–265, New York, NY, 1998.

[Rey83] John C. Reynolds. Types, abstraction and parametric polymorphism.
In Information Processing ’83, pages 513–523. North-Holland, 1983.
Proceedings of the IFIP 9th World Computer Congress.

[Rey84] John C. Reynolds. Polymorphism is not set-theoretic. In Proceedings
of the International Symposium on Semantics of Data Types, volume
173 of Lecture Notes in Computer Science, pages 145–156. Springer-
Verlag, 1984.

[Rue92] Fritz Ruehr. Analytical and Structural Polymorphism Expressed Us-
ing Patterns Over Types. Ph.D. dissertation, University of Michigan,
1992.

[Rue98] Fritz Ruehr. Structural polymorphism. In Roland Backhouse and
Tim Sheard, editors, Informal Proceedings Workshop on Generic Pro-
gramming, WGP’98, Marstrand, Sweden, 18 June 1998., 1998.

[S9́7] Géraud Sénizergues. The equivalence problem for deterministic push-
down automata is decidable. In Twenty-Fourth International Collo-
quium on Automata, Languages, and Programming, volume 1256 of
Lecture Notes in Computer Science, pages 671–681, Bologna, Italy,
July 1997. Springer-Verlag.

[SDP01] Carsten Schürmann, Joëlle Despeyroux, and Frank Pfenning. Primi-
tive recursion for higher-order abstract syntax. Theoretical Computer
Science, 266(1–2):1–58, September 2001.

224

[SH00] Chris Stone and Robert Harper. Deciding type equivalence in a
language with singleton kinds. In Twenty-Seventh ACMSIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
214–225, Boston, MA, USA, January 2000.

[Sha97a] Zhong Shao. Flexible representation analysis. In 1997 ACM SIG-
PLAN International Conference on Functional Programming, pages
85–98, Amsterdam, June 1997.

[Sha97b] Zhong Shao. An overview of the FLINT/ML compiler. In 1997 ACM
SIGPLAN Workshop on Types in Compilation, Amsterdam, June
1997. Published as Boston College Computer Science Department
Technical Report BCCS-97-03.

[She93] Tim Sheard. Type parametric programming. Technical Report CSE
93-018, Oregon Graduate Institute, 1993.

[Smi84] Brian Cantwell Smith. Reflection and semantics in LISP. In Four-
teenth ACMSIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 23–35, 1984.

[Sol78] Marvin Solomon. Type definitions with parameters (extended ab-
stract). In Fifth ACMSIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 31–38, Tucson, Arizona, January
1978.

[Ste90] Guy L. Steele Jr. Common Lisp the Language, 2nd Edition. Digital
Press, 1990.

[Str97] Bjarne Stroustrup. The C++ Programming Language (Third Edi-
tion). Addison Wesley Longman, Reading, MA, 1997.

[STS00] Bratin Saha, Valery Trifonov, and Zhong Shao. Fully reflexive in-
tensional type analysis in type erasure semantics. In Third ACM
SIGPLAN Workshop on Types in Compilation, Montreal, September
2000.

[SU99] Zdzis law Sp lawski and Pawe l Urzyczyn. Type fixpoints: Iteration vs.
recursion. In Fourth ACM SIGPLAN International Conference on
Functional Programming, pages 102–113, Paris, France, September
1999.

225

[Tai67] William W. Tait. Intensional interpretation of functionals of finite
type. Journal of Symbolic Logic, 32:198–212, 1967.

[Tar96] David Tarditi. Design and Implementation of Code Optimizations
for a Type-Directed Compiler for Standard ML. Ph.D. dissertation,
Carnegie Mellon School of Computer Science, 1996. Available as
CMU-CS-97-108.

[TMC+96] David Tarditi, Greg Morrisett, Perry Cheng, Chris Stone, Robert
Harper, and Peter Lee. TIL: A type-directed optimizing compiler for
ML. In 1996 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 181–192, May 1996.

[Tol94] Andrew Tolmach. Tag-free garbage collection using explicit type pa-
rameters. In 1994 ACM Conference on Lisp and Functional Program-
ming, pages 1–11, Orlando, June 1994.

[TSS00] Valery Trifonov, Bratin Saha, and Zhong Shao. Fully reflexive inten-
sional type analysis. In Fifth ACM SIGPLAN International Confer-
ence on Functional Programming, pages 82–93, Montreal, September
2000.

[TU96] Jerzy Tiuryn and Pawel Urzyczyn. The subtyping problem for second-
order types is undecidable. In Proceedings of the IEEE Symposion on
Logic in Computer Science (LICS 96), pages 74–85, New Brunswick,
New Jersey, 1996. IEEE Computer Society Press.

[Ves97] Møans Vestin. Genetic algorithms in Haskell with polytypic program-
ming. Masters dissertation, Göteborg University, 1997.

[WA99] Daniel C. Wang and Andrew W. Appel. Safe garbage collection =
regions + intensional type analysis. Technical report, Princeton, July
1999.

[WA01] Daniel C. Wang and Andrew W. Appel. Type-preserving garbage
collectors. In Proceedings of SIGPLAN 2001 Conference on Program-
ming Languages Design and Implementation, ACM SIGPLAN No-
tices, pages 166–178, Snowbird, Utah, June 2001. ACM Press.

[WB89] Philip Wadler and Stephen Blott. How to make ad-hoc polymor-
phism less ad-hoc. In Sixteenth ACMSIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 60–76. ACM Press,
1989.

226

[Wei00] Stephanie Weirich. Type-safe cast: Functional pearl. In Proceedings
of the Fifth ACM SIGPLAN International Conference on Functional
Programming, pages 58–67, Montreal, September 2000.

[Wei01] Stephanie Weirich. Encoding intensional type analysis. In D. Sands,
editor, Programming Languages and Systems: 10th European Sympo-
sium on Programming, ESOP 2001 Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2001 Gen-
ova, Italy, April 2-6, 2001, volume 2028 of Lecture Notes in Computer
Science, pages 92–106. Springer, 2001.

[Wei02] Stephanie Weirich. Higher-order intensional type analysis. In
Daniel Le Métayer, editor, Programming Languages and Systems: 11th
European Symposium on Programming, ESOP 2002 Held as Part of
the Joint European Conferences on Theory and Practice of Software,
ETAPS 2002 Grenoble, France, April 8-12, 2002, pages 98–114, 2002.

[Wel99] Joe B. Wells. Typability and type checking in system F are equivalent
and undecidable. Ann. Pure Appl. Logic, 98(1–3):111–156, 1999.

[WF94] Andrew K. Wright and Matthias Felleisen. A syntactic approach to
type soundness. Information and Computation, 115:38–94, 1994.

[WY88] Takuo Watanabe and Akinori Yonezawa. Reflection in an object-
oriented concurrent language. In ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages and Applications,
pages 306–315, 1988.

[Yan98] Zhe Yang. Encoding types in ML-like languages. In 1998 ACM
SIGPLAN International Conference on Functional Programming, vol-
ume 34 of ACM SIGPLAN Notices, pages 289–300, Baltimore, MD,
September 1998.

