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Abstract

Intensional polymorphism, the ability to dispatch to different routines based on types at run time,
enables a variety of advanced implementation techniques for polymorphic languages, including tag-free
garbage collection, unboxed function arguments, polymorphic marshalling, and flattened data structures.
To date, languages that support intensional polymorphism have required a type-passing (as opposed to
type-erasure) interpretation where types are constructed and passed to polymorphic functions at run time.
Unfortunately, type-passing suffers from a number of drawbacks: it requires duplication of constructs
at the term and type levels, it prevents abstraction, and it severely complicates polymorphic closure
conversion.

We present a type-theoretic framework that supports intensional polymorphism, but avoids many of
the disadvantages of type passing. In our approach, run-time type information is represented by ordinary
terms. This avoids the duplication problem, allows us to recover abstraction, and avoids complications
with closure conversion. In addition, our type system provides another improvement in expressiveness; it
allows unknown types to be refined in place thereby avoiding certain beta-expansions required by other
frameworks.

1 Introduction

Type-directed compilers use type information to enable optimizations and transformations that are impos-
sible (or prohibitively difficult) without such information [13, 11, 18, 2, 23, 25, etc.]. However, type-directed
compilers for some languages such as Modula-3 and ML face the difficulty that some type information cannot
be known at compile time. For example, polymorphic code in ML may operate on inputs of type α where α
is not only unknown, but may in fact be instantiated by a variety of different types.

In order to use type information in contexts where it cannot be provided statically, a number of advanced
implementation techniques process type information at run time [11, 18, 28, 20, 25]. Such type information
is used in two ways: behind the scenes, typically by tag-free garbage collectors [28, 1], and explicitly in
program code, for a variety of purposes such as efficient data representation and marshalling [18, 11, 26]. In
this paper we focus on the latter area of applications.

To lay a solid foundation for programs that analyze types at run time, Harper and Morrisett devised an
internal language, called λML

i , that supports the first-class intensional analysis1 of types (following earlier
work by Constable [3, 4]). The λML

i language and its derivatives were then used extensively in the high-
performance ML compilers TIL/ML [27, 17] and FLINT [26]. The primary novelty of λML

i is the presence
of “typecase” operators at the level of terms and types, that allow computations and type expressions to
depend upon the values of other type expressions at run time.

1Type analysis is “intensional” when types are analyzed by the structure of their names, rather than by what terms they
contain. This approach is critical for practicality.
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Supporting intensional type analysis (and the use of type information at run time in general) seems to require
semantics where types are constructed and passed to polymorphic functions during computation. However,
there are a number of practical and theoretical reasons why type-passing is unattractive:

• A type-passing language such as λML

i requires that type information always be constructed and passed
to polymorphic functions. This framework can result in considerable overhead if types are rarely
examined at run time, and, as we discuss later, it makes abstraction impossible.

• Type passing results in considerable complexity in language semantics, due in large part to the number
of semantic devices that must be duplicated for both terms and types. For example, in semantics that
make memory allocation explicit [19, 20] a central device is a formal heap in which data is stored; in
a type-erasure framework one such heap suffices, but when types are passed it is necessary to add a
second heap (and all the attendant machinery) for type data.

• Type passing also greatly complicates low-level intermediate languages, again due in large part to the
duplication of computational devices at the type level, and also to the need to support mixed-phase
devices (constructs with both type and term level components). This can pose a serious problem
for typed intermediate languages, because these devices can disrupt the essential symmetries on which
elegant type systems depend. For example, a type-passing semantics for Typed Assembly Language [21]
requires additional instructions for allocating and initializing types, which in turn requires the typing
machinery for allocation and initialization to be lifted an additional level into the kind structure.

• As a particularly important example of the preceding issue, type passing severely complicates typed
closure conversion (compare the type-passing system of Minamide et al. [15] to the type-erasure sys-
tem of Morrisett et al. [21]). In a type-erasure framework, the partial application of a polymorphic
function to a type may still be considered a value (since the application has no run-time significance),
which means that closed code may simply be instantiated with its type environment when a closure is
created. In a type-passing framework, the instantiation with a type environment can have some run-
time effect, so it must be delayed until the function is invoked. Consequently, closures must include
a type environment, necessitating complicated mechanisms including abstract kinds and translucent
types [15].

In this paper we propose a typed calculus, called λR, that ameliorates the problems of type passing without
sacrificing intensional type analysis. If run-time type dispatch is supported, then clearly on some level types
must be passed. The fundamental idea behind our approach is to construct and pass terms that represent
types instead of the types themselves. The connection between a type τ and its term representation e is
made in the static semantics by assigning e the special type R(τ ). Semantically, we may interpret R(τ ) as
a singleton type that contains only the representation of τ .

This framework resolves the difficulties with type passing semantics discussed above. In particular, as
representations of types are simply terms, we can use the pre-existing term operations to deal with run-time
type information in languages and their semantics. Furthermore, we can eliminate the difficulties associated
with polymorphic closure conversion, as we show in Section 5. Finally, our approach enables the choice not
to pass representations. In turn, this choice allows us to eliminate the overhead of constructing and passing
representations of types where it is not necessary.2

Perhaps more importantly, the ability not to pass types allows abstraction and parametricity to be recovered.
In most type systems, abstraction may be achieved by hiding the identity of types either through parametric
polymorphism [22] or through existential types [16]. However, when all types are passed and may be analyzed
(as in λML

i ), the identity of types cannot be hidden and consequently abstraction is impossible. In contrast, a
λR type can be analyzed only when its representation is available at run time, so abstraction can be achieved
simply by not supplying type representations.

2In fact, the TIL/ML compiler already finds it necessary to use annotations that mark whether a type must be passed at
run-time. Our system provides a formal basis for that mechanism.
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For example, consider the type ∃α.α. When all types may be analyzed, this type implements a dynamic
type; an expression of this type provides an object of some unknown type, and that unknown type’s identity
can be determined at run time by analyzing α. In λR, as in most other type systems, ∃α.α implements
an abstract type (in this particular example, a useless abstract type), because no representation of α is
provided. Dynamic types are implemented in λR by including a representation of the unknown type, as in
∃α. R(α)× α.

1.1 Expressiveness

In the interest of clarity of presentation, we express λR as an extension of Harper and Morrisett’s λML

i and
focus on their differences. The principal difference is the restriction of type analysis to those types for which
representations are provided. This change does not diminish the expressiveness of our calculus; λML

i may be
translated in a straightforward syntax-directed manner into λR, as described in Section 4.

Moreover, the λR calculus incorporates an additional improvement in expressiveness over λML

i that is inde-
pendent of explicit type passing: In λML

i , information gained by analyzing a type is not propagated to other
variables having that type. Consequently, when analyzing a type α with the interest of processing an object
of type α, it is necessary to create a function with argument type α and then apply that function to the
object of interest. In other words, the type system of λML

i requires the use of beta-expansions that are not
operationally necessary. In λR we resolve this shortcoming by strengthening the typing rule for typecase so
that it refines types in place.

1.2 Overview

The remainder of this paper is organized as follows: In Section 2 we review the λML

i calculus. We then present,
in Section 3, our λR calculus and discuss its formal semantics, including representation terms, R-types, and
the strengthened typecase rule. As examples of its expressiveness, we give an embedding of λML

i in λR, in
Section 4, and in Section 5, we discuss the simplification of polymorphic closure conversion by explicit type
passing. We end with related work and conclusions in Sections 6 and 7. In the appendices we relate our
typed semantics to an untyped one through type erasure (Appendix A), and provide the formal operational
and static semantics (Appendices B and C.)

2 Intensional Type Analysis

Suppose we wanted to efficiently store an array of boolean values. Most computer architectures require that
memory accesses are a word at a time, but it is a terrible waste of space to store booleans as integers. The
solution is to pack thirty two booleans into one word and use bit manipulations to retrieve the correct value.
To subscript from a packed boolean array, we might use the following function (with << for shift left, & for
bitwise and, and <> for inequality):

val bitsub : array[int] * int -> bool =
fn (a,i) =>
sub(a,i div 32) & (1<<(i mod 32)) <> 0

This function is fine when we know a given array contains boolean values, but we would like code polymorphic
over all arrays to be able to use this mechanism. Below we define a new array constructor, PackedArray,
which will produce an array of integers to hold booleans, and an ordinary array for other types. We also
define an associated subscript operation, packedsub, which calls bitsub on arrays of booleans and the
ordinary subscript operator on arrays of other types. These constructs can be created with intensional type
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analysis, where in both cases an argument type is examined with a “typecase” form:

type PackedArray[α] =
Typecase α of
bool => array[int]
| => array[α]

val packedsub : ∀α. PackedArray[α] * int -> α =
Fn [α] =>
typecase α of
bool => bitsub
| => sub

2.1 The λML
i calculus

To formalize the tools of intensional type analysis, we begin by summarizing Harper and Morrisett’s λML

i

calculus [11]. The λML

i calculus provides these tools in a form that is relatively simple, but already quite
powerful.

The syntax of λML

i appears below (modified slightly for presentation). The backbone is a predicative variant
of Girard’s Fω [8, 7] in which the quantified type ∀α:κ.σ ranges only over type constructors and “small”
types (i .e., monotypes), which do not include the quantified types. The type analysis operators are Typerec
and typecase at the constructor and term levels respectively.

(kinds) κ :: = Type | κ1 → κ2

(con′s) c :: = α | λα:κ.c | c1c2 | int | c1 → c2 | c1 × c2 |
Typerec c (cint , c→, c×)

(types) σ :: = c | σ1 → σ2 | σ1 × σ2 | ∀α:κ.σ

(terms) e :: = i | x | λx:σ.e | fix f :σ.v | e1e2 |
〈e1, e2〉 | π1e | π2e | Λα:κ.v | e[c] |
typecase[α.σ] c of

int ⇒ eint

β → γ ⇒ e→
β × γ ⇒ e×

(values) v :: = i | λx:σ.e | fixx:σ.v | 〈v1, v2〉 | Λα:κ.v

Figure 1: Syntax of λML

i

Occasionally, for brevity, we will write typecase terms as

typecase[α.σ] c (eint, βγ.e→, βγ.e×).

As an example of the use of type analysis in λML

i (with the addition of another base type, string), consider
the function tostring , presented in Figure 2. This function uses typecase to produce a string representation
of a data object. For example, the call tostring [int ] 3 returns the string “3”. As we cannot provide any infor-
mation about the implementation of functions, we just return the word “function” when one is encountered,
as in the call:

tostring [(int → int) × int] 〈λx:int. x + 1, 3〉
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fix tostring : (∀α:Type. α → string).
Λα:Type.
typecase[δ.δ → string] αof

int ⇒ int2string
string ⇒ λobj :string.obj
β → γ ⇒

λobj :(β → γ)."function"
β × γ ⇒

λobj :(β × γ).
"<" ^ (tostring[β](π1 obj )) ^ "," ^ (tostring[γ](π2 obj )) ^ ">"

Figure 2: The function tostring

which returns
“〈function, 3〉”.

When the argument to tostring is a product type, the function calls itself recursively. In this branch, the
type variables β and γ are bound to the types of the first and second components of the tuple, so that the
recursive call can be instantiated with the correct type.

The typecase form has a type annotation for type checking without type inference; the annotation [α.σ]
indicates that given a type constructor argument c, the typecase computes a value with type σ[c/α] (where
this syntax denotes the capture-avoiding substitution of c for α in σ). In this example, each arm returns a
function from δ to string , where δ is replaced by the appropriate type, such as int in the int branch, and
β × γ in the product branch.

With this intuition, the typing rule for typecase is the natural one (but we will see that this rule is
unnecessarily restrictive):

Γ � c : Type
Γ, α:Type � σ type
Γ � eint : σ[int/α]
Γ, β:Type, γ:Type � e→ : σ[β → γ/α]
Γ, β:Type, γ:Type � e× : σ[β × γ/α]

Γ �




typecase[α.σ] c of
int ⇒ eint

β → γ ⇒ e→
β × γ ⇒ e×


 : σ[c/α]

Often, to compute the result type σ of a typecase expression the constructor-level Typerec on the argument
α will be required. Typerec allows the creation of new types by similar intensional analysis. Several examples
of its use appear in Harper and Morrisett [11], including type-directed data layout, marshalling and unboxing.

While recursion in the term-level typecase is handled by fix, at the the constructor level there is no such
mechanism. For this reason, Typerec is essentially a “fold” operation (or catamorphism) over inductively
defined types. It provides primitive recursion by calling itself recursively on all of the components of the
argument type. Also unlike typecase, where the branches explicitly bind arguments for the components of
the type, the c→ and c× branches of Typerec are constructor functions. For example, if the argument of a
Typerec operation is c1 × c2, then that operation reduces to its c× branch (a constructor function of four
arguments) applied to the components c1 and c2, and to the result of recursively computing the Typerec
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operation on those components.
Typerec (c1 × c2) (cint , c→, c×) =

c× c1 c2

(Typerecc1 (cint , c→, c×))
(Typerecc2 (cint , c→, c×))

The kinding rule for Typerec is again the natural one. To compute a constructor of kind κ, present a type
argument and three branches returning κ constructors:

Γ � c : Type Γ � cint : κ
Γ � c→ : Type → Type → κ → κ → κ
Γ � c× : Type → Type → κ → κ → κ

Γ � Typerec c (cint , c→, c×) : κ

3 The λR calculus

Figure 3 presents the syntax of λR, which we describe in detail in the following section.

(kinds) κ ::= Type | κ1 → κ2

(con′s) c ::= α | λα:κ.c | c1c2 | int | c1 → c2 | c1 × c2 |
R(c) | Typerec c (cint , c→, c×, cR)

(types) σ ::= c | σ1 → σ2 | σ1 × σ2 |
∀α:κ.σ | ∃α:κ.σ

(terms) e ::= i | x | λx:σ.e | fix f :σ.v | e1e2 | 〈e1, e2〉 | π1e | π2e |
Λα:κ.v | e[c] | pack e as ∃α.σ1 hiding σ2 | unpack 〈α, x〉 = e1 in e2 |
Rint | R→(e1, e2) | R×(e1, e2) | RR(e) |
typecase[δ.c] e of
Rint ⇒ eint

R→(x, y) as (β → γ) ⇒ e→
R×(x, y) as (β × γ) ⇒ e×
RR(x) asR(β) ⇒ eR

(values) v ::= i | λx:σ.e | fix f :σ.v | 〈v1, v2〉 |
Λα:κ.v | v[c] | pack v as∃α.σ1 hiding σ2 |
Rint | R→(v1, v2) | R×(v1, v2) | RR(v)

Figure 3: Syntax of λR

3.1 Term Representations of Types

The key feature we add to the term language of λR is the representations of types as terms, which remain
when the types themselves are ultimately erased. The base type, int , has a corresponding representation
constant Rint . Likewise, inductive types have inductively defined representations; the type int → int is
represented by the term R→(Rint , Rint).
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Accordingly, the argument to the term level typecase is the representation of a type, instead of a type. For
example, if the argument e is of the form R→(e1, e2), the arrow branch (e→) is taken. The type variables β
and γ are still bound to the types that e1 and e2 represent, but, because we need not only the component
types but also their representations, x and y are bound to e1 and e2. This notion is reflected in the following
rule of the operational semantics:

typecase[δ.c] (R→(e1 , e2)) (eint , βγxy.e→ , βγxy.e×, βx.eR)
�→ e→[D(e1),D(e2), e1, e2/β, γ, x, y]

The operation D(·) in this rule converts a representation to the type that it denotes (Figure 4). The rest of
our dynamic semantics is formalized in Appendix B. It is presented as a call-by-value, small step operational
semantics.

D(Rint) = int
D(R→(e1, e2)) = D(e1) → D(e2)
D(R×(e1, e2)) = D(e1) × D(e2)

D(RR(e)) = R(D(e))

Figure 4: Translating Representations to Types

In order to assign a type to these representations of types, we have extended the type constructor level of
λR with the R construct, where the representation of a type τ is given the type R(τ ), and have extended
the static semantics accordingly. For example, the formation rule for the representation of function types is

Γ � e1 : R(τ1) Γ � e2 : R(τ2)
Γ � R→(e1, e2) : R(τ1 → τ2)

(rep→)

which says that if the two subterms, e1 and e2, are type representations of τ1 and τ2, then R→(e1, e2) will
be a representation of τ1 → τ2.

As an example of the use of λR, the tostring function from the previous section can be transliterated into
λR by requiring it to take an additional term argument, xα for the representation of the argument type:

fix tostring : (∀α:Type. R(α) → α → string).
Λα:Type. λxα:R(α).
typecase[δ.α → string] xα of
Rint ⇒ int2string
Rstring ⇒ λobj :string.obj
R→(x, y) as β → γ ⇒

λobj :β → γ."function"
R×(x, y) as β × γ ⇒

λobj :β × γ.
"<"^(tostring [β] x (π1 obj ))^
","^(tostring [γ] y (π2 obj ))^">"

The static semantics we have defined ensures that these R-types are singleton types; for each one there
is exactly one value which inhabits it. This fact allows us to express constraints between types and their
representations at a very fine level. For instance, in the tostring example, the representation argument must
be the representation of the type of the object.

Furthermore, as we have added a new way to form types to the constructor language, we must add another
term construct, RR(·), to form the representation of representation types. We also extend typecase with an
extra branch to handle these terms and Typerec to handle R-types.
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3.2 In-place Refinement of Types

The typing rules of λML
i often force an inefficient use of typecase. In the tostring example in Section 2, we

were required to create closures in each of the branches of the typecase. It would be more efficient if we
could lift the lambdas outside of the typecase and have each branch of the typecase return a string . We
could then write this function as:

fix tostring : (∀α:Type. R(α) → α → string).
Λα:Type. λxα:R(α). λ obj :α.
typecase[δ.string] xα of
Rint ⇒ int2string obj
Rstring ⇒ obj
R→(x, y) as β → γ ⇒
"function"

R×(x, y) as β × γ ⇒
"<"^(tostring [β] x (π1 obj ))^
","^(tostring [γ] y (π2 obj ))^">"

The reason we could not write this function in λML

i is that it requires the type of obj to change based upon
which branch of the typecase is selected. In λML

i , all that is known in the product branch is that obj is of
type α, not a tuple. In order to project from it in the recursive calls, the typing rules must update the type
of obj to reflect the fact that we know that α is β × γ in the product branch.

With the right enhancement to the static semantics this optimization is possible. We have held off discussion
of the λR’s typecase formation rule in order to emphasize this point. The basic idea is that in some cases
typecase increases our knowledge of the argument type, and we can propagate this knowledge back to the
type system. In the inference rule for type checking a typecase term, when the argument is of type R(α),
we refine types containing α to reflect the gain in information, as shown below. For simplicity, only some of
the rule is given here (the complete rule appears in Appendix C.5):

Γ, α:Type, Γ′ � e : R(α)
Γ, Γ′[int/α] � eint [int/α] : c[int, int/α, δ]
Γ, β:Type, γ:Type, Γ′[β → γ/α], x:R(β), y:R(γ) � e→[β → γ/α] : c[β → γ, β → γ/α, δ]

...

Γ, α:Type, Γ′ � typecase[δ.c] e (eint , βγxy.e→, . . .) : c[α/δ]

Figure 5: The Variable Refining typecase Rule (abridged)

For example, to typecheck the e→ branch, we substitute β → γ for α everywhere, including the surrounding
context.3 Consequently, the types of the variables bound in the context will be refined by that substitution.
Because λML

i only makes this substitution in the return type of the branch, and not in the context, in order
to propagate this information one must abstract over all variables of interest.

When refinement is not possible we must use a non-refining typecase rule reminiscent of λML

i , presented in
Figure 6.
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Γ � e : R(c) Γ � eint : σ[int/δ]
Γ, β:Type, γ:Type, x:R(β), y:R(γ) � e→ : σ[β → γ/δ]
Γ, β:Type, γ:Type, x:R(β), y:R(γ) � e× : σ[β × γ/δ]

Γ, β:Type, x:R(β) � eR : σ[R(β)/δ]

Γ � typecase[δ.σ] e (eint , βγxy.e→, βγxy.e× , βx.eR) : σ[c/δ]
(β, γ 	∈ Dom(Γ, Γ′))

Figure 6: Non-refining typecase rule

Judgment Meaning

Γ � c : κ c is a valid constructor of kind κ
Γ � σ σ is a valid type
Γ � c1 = c2 : κ c1 and c2 are equal constructors
Γ � σ1 = σ2 σ1 and σ2 are equal types
Γ � e : σ e is a term of type σ

Figure 7: Judgments of λR

3.3 Properties of the Formal Semantics

Formally, the static semantics of λR consists of a collection of rules for deriving judgments of the forms
shown in Figure 7. In these judgments, Γ is a unified type and kind context, mapping constructor variables
(α, β, ...) to kinds and term variables (x, y, ...) to types. The formal operational and static semantics of λR

appear in Appendices B and C, and from them we can prove several useful properties about λR.

First, we would like to prove the decidability of λR typechecking. The only mildly difficult part is equivalence
checking for constructors. Based upon the equivalence rules in Appendix C.4 we can define a notion of
constructor reduction to a normal form in an obvious manner. This reduction relation can be proved strongly
normalizing and confluent (in a manner similar to Morrisett [18]) from which it follows that constructor
equivalence is decidable. Therefore we can state the following theorem:

Theorem 3.1 (Decidability) It is decidable whether or not Γ � e : τ is derivable in λR.

Next, we would like to show that the static semantics guarantees safety; that is, if a term typechecks, then
the operational semantics will not get stuck (where a term that is not a value, and for which no rule of our
operational semantics applies, is stuck):

Theorem 3.2 (Type Safety) If ∅ � e : σ and e �→∗ e′ then e′ is not stuck.

The proof of the Type Safety Theorem is standard, relying on the usual progress, subject reduction and
substitution lemmas, listed below.

Lemma 3.3 (Progress) If ∅ � e : τ and e is not a value then there exists an e′ such that e �→ e′.

Proof of the Progress Lemma is by induction on the derivation of ∅ � e : τ .
3The substitution for α is applied within the branches themselves in order to avoid creating a hole in the scope of α. In

practice, a typechecker would implement this operation by a local type definition, rather than by substitution.
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Lemma 3.4 (Subject Reduction) If ∅ � e : τ and e �→ e′ then ∅ � e′ : τ .

The proof of the Subject Reduction Lemma is by induction on the derivation of ∅ � e : τ . As usual, the proof
depends on several substitution lemmas; these are shown below. The first five say that constructors may be
substituted for type variables in any of our typing judgments. The last says that terms may be substituted
for term variables in the term formation judgment.

Lemma 3.5 (Substitution) 1. If Γ, α:κ′ � c : κ and Γ � c′ : κ′ then Γ[c′/α] � c[c′/α] : κ.

2. If Γ, α:κ � σ and Γ � c : κ then Γ[c/α] � σ[c/α].

3. If Γ, α:κ′ � c1 = c2 : κ and Γ � c′ : κ′ then Γ[c′/α] � c1[c′/α] = c2[c′/α] : κ.

4. If Γ, α:κ � σ = σ′ and Γ � c : κ then Γ[c/α] � σ[c/α] = σ′[c/α].

5. If Γ, α:κ � e : τ and ∅ � c : κ then Γ[c/α] � e[c/α] : τ [c/α].

6. If Γ, x:τ ′ � e : τ and ∅ � e′ : τ ′ then Γ � e[e′/x] : τ .

The proofs of each of these are fairly straightforward, again by induction on the derivations of the judgments.
However, the proof of constructor substitution in terms (Part 5), requires the addition of several trivialization
rules to the static semantics of the flavor:

Γ � e : R(int) Γ � eint : σ[int/δ]
Γ � typecase[δ.σ] e (eint , βγxy.e→ , βγxy.e×, βx.eR) : σ[int/δ]

Γ � e : R(c1 → c2) Γ, x:R(c1), y:R(c2) � e→[c1, c2/β, γ] : σ[c1 → c2/δ]
Γ � typecase[δ.σ] e (eint , βγxy.e→ , βγxy.e×, βx.eR) : σ[c1 → c2/δ]

In each of these rules, the head normal form of the constructor for which the argument to the typecase
represents is known, so the branch which the typecase will step to can be predicted. Therefore only that
branch needs to be checked as the others can be considered “dead code”.

These rules are needed in the substitution proof in the case where the last rule applied in the derivation
was the variable refinement rule (presented in Figure 5), which applies when the argument to a typecase
term is of type R(α) for some constructor variable α. If we substitute another closed constructor, c of kind
Type, for α, we can no longer use the variable refinement rule to type check the term, and, as we have done
refinement, the non-refining rule (Figure 6) will not apply either. However, as c is closed and of kind Type,
it must be one of int , β → γ, β × γ, or R(β) for some β, γ also of kind Type. In each of these cases, we can
apply the induction hypothesis to the appropriate branch, and then can apply the appropriate trivialization
rule to conclude the desired result.

4 Embedding of λML
i

We next present an embedding (written |·|) of λML

i expressions into λR. We do this for two reasons: first,
to show that λR is as expressive as λML

i , and second, to demonstrate a simple use of λR as an intermediate
language. The main difference between λML

i and λR is the typecase term; in λML

i it takes a type constructor
as its argument, in λR it takes a term representing a type. Therefore, to simulate a λML

i typecase term with
an λR typecase term, we need to be able to form the term representation of the type constructor argument.
We do this in two stages, as shown below. First we translate the type constructor from an λML

i constructor to
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an λR constructor, then we translate the λR type constructor into its term representation, using an operation
written �(·). ∣∣∣∣∣∣

typecase[δ.σ] c of
int ⇒ eint

...

∣∣∣∣∣∣
=

typecase[δ.σ]�(|c|) of
Rint ⇒ |eint |
...

The first part, the translation between λML

i constructors and λR constructors is fairly simple, as shown in
Figure D.1. The only change it makes is to insert a junk result into the branch of the R-constructors, since
the source contains no such branch. This junk result is unused, and may therefore be any constructor having
the appropriate kind.4

|Typerec c(cint , c→, c×)| = Typerec |c| (|cint | , |c→| , |c×| , junk)

However, creating the representation of a given λR type is much more complicated, as can be seen in the
definition of �(·), shown in Figure D.2. The difficulty lies in that the argument to Typerec may contain
constructors with free type variables. These type variables are translated to term variables that represent
them, but in order to do this, we need to maintain the invariant that for every accessible type variable,
a corresponding term variable representing it is also accessible. We make this guarantee by a process
reminiscent of “phase splitting” [10] or evidence passing [12]. In the translation of constructor abstractions
(at both the constructor and term level), we split the abstractions to take both a constructor and a term
variable, where the term variable is constrained to be the representation of that constructor. Application is
also changed accordingly:

�(α) = xα

�(λα:κ.c) = Λα:κ. λxα:R(α:κ).�(c)
�(c1c2) = �(c1) [c2]�(c2)

|Λα:κ.e| = Λα: |κ| .λxα:R(α:κ). |e|
|e[c]| = |e| [|c|]�(|c|)

But, given a type variable, α, what is the type of its corresponding term variable, xα? If α is of kind Type,
then certainly xα should be of type R(α). But if α is of a higher kind, say, for example, a function from
types to types, then xα should map type representations to type representations, and its type should reflect
that fact. For this reason, we introduce the notation R(c : κ), the type of the representations of constructor
c with kind κ.

R(τ : Type) def= R(τ )
R(c : κ1 → κ2)

def= ∀α:κ1. R(α : κ1) → R(cα : κ2)

Figure 8: Representations of higher constructors

If the constructor c is of kind κ1 → κ2, its representation is a polymorphic function that takes the represen-
tation of the argument constructor to the representation of the result of applying c to that argument.

The last issue in our translation of type constructors to their representations is the definition of the repre-
sentation of a Typerec constructor. We represent it as a typecase on the representation of the argument
to the Typerec, but because Typerec is recursive, we must wrap the typecase in a recursive polymorphic

4One such constructor is λα:Type. |c→| int α |cint |.
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function:
�(Typerec τ (cint , c→, c×, cR)) = ((fix f : ∀α:Type.R(α) → R(c∗[α]:κ).

Λα:Type. λxα:R(α).
typecase xα

Rint ⇒ �(cint)
...)

[τ ]�(τ ))

where c∗[τ ] = Typerec τ (cint , c→, c×, cR).

Now what remains are the branches of the typecase. In the arrow, product and R branches of the typecase,
this function must be called recursively on the subcomponents of the type, just as in Typerec. For example,
consider the arrow case:

R→(xβ, xγ) as (β → γ) ⇒
�(c→) [β] xβ [γ] xγ [c∗[β]] (f [β] xβ) [c∗[γ]] (f [γ] xγ)

The c→ arm of the Typerec is a function which takes four type variables, the first two being β and γ, the
second two being the results of calling the Typerec recursively on β and γ. However, because of phase
splitting in the translation, each type argument has an associated term argument for its representation,
so the translation of c→, takes four pairs of type and term arguments. For the first two pairs, β and γ,
their representations xβ and xγ are readily available from the typecase. For the recursive arguments, we
use the original Typerec to find the resultant constructors and we call f recursively to find the resultant
representations of those constructors.

The static and dynamic correctness of the embedding is not difficult to show, but it requires a formalization
of the semantics of λML

i , so we omit those theorems here.

5 Polymorphic Typed Closure Conversion

As a final example, we consider typed closure conversion in a λR-like framework. The key idea behind
closure conversion is to shift from a substitution-based model of execution to an environment-based model
via a source-to-source translation. In particular, all functions are replaced with explicit closures which are
represented within the language as pairs consisting of a λ-abstraction (the code of the closure), and a tuple
(the environment of the closure). The environment contains values for the free variables of the function.
The code abstracts the environment as well as the arguments of the function and is thus closed. Hence, the
code may be hoisted to the top-level, allocated at compile time, and shared among all substitution instances.
Application is rewritten so that the code of a closure is first applied to its environment and then to its
arguments.

In the monomorphic case no discrepancy arises between type-passing [15] and type-erasure [21] closure
conversion. An existential type is used to hold the type of the closure’s environment abstract, so a closure
for a τ1 → τ2 function is given the type ∃α.((τ1 × α) → τ2) × α.

However, with the introduction of polymorphism, significant differences arise between type-passing and type-
erasure. The issue stems from the fact that functions may contain free type variables as well as free value
variables, and closed code must abstract both. Closures must then provide someway to apply such code to
the appropriate type variables. In a type-erasure setting, type application has no run-time effect, so the
partial application of code to the appropriate type variables may be performed when closures are created.
Consequently, these type variables do not appear in the type of a closure. In fact, closures have the same
type (∃α.((τ1 × α) → τ2) × α) as before.

However, in a type-passing semantics, the application to type arguments is a run-time operation and so such
applications must be suspended until the closure is called. Thus, it is necessary for the closure to include
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a type environment as well as a value environment. The kind of the type environment must be hidden (as
did the type of the value environment in the monomorphic case), and the closure’s type must enforce the
requirement that the code be applied only to the proper type environment (see Minamide et al. [15] for
detailed explanations of why). The former requires the use of abstract kinds and the latter requires the use
of translucent types [9]. This approach results in a closure having the considerably more complicated type
(again, see Minamide et al. [15] for a formalization of the necessary type theory):

∃ktenv:Kind. ∃αvenv:Type. ∃βtenv:ktenv.
(∀γ:ktenv=βtenv . (τ1 × αvenv) → τ2) × αvenv

In the above type, ktenv abstracts the kind of the type environment, αvenv abstracts the type of the value
of the value environment, and βtenv provides the type environment. The code type then takes a type
environment γ of kind ktenv as an argument, but γ is constrained (using translucent types) to be the
appropriate environment, βtenv .

Since our framework is one of type-erasure, type environments may be resolved by partial application,
resulting in the simpler type for closures. However, it is instructive to examine the details. Suppose the
function to be closure-converted is the function f = λx:τ1.e with type τ1 → τ2 and suppose further that the
function contains free occurrences of the type variable α and its representation xα:R(α).

First the function is rewritten in closed form as:

f ′ : ∀α. (τ1 × R(α)) → τ2

= Λα. λy:(τ1 × R(α)). e[π1y, π2y/x, xα]

Then (at run time) f ′ is instantiated with the type environment (that is, α):

f ′′ : (τ1 × R(α)) → τ2 = f ′[α]

Finally, a closure is created:

f ′′′ = pack 〈f ′′, xα〉 as ∃β. ((τ1 × β) → τ2) × β
hidingR(α)

Consider what has become of the mechanisms for type-passing closure conversion: The type of f ′′ requires
that it be applied (for its second argument) only to the representation of α. So the translucency mechanism
appears again, suggesting that translucency is inherent in type-passing closure conversion. However, this
version of translucency has two advantages; the necessary type theory is simpler, and the translucency is
completely hidden by the existential packaging in the eventual closure. On the other hand, abstract kinds
do not appear in the process, suggesting them to be an artifact of true type-passing.

6 Related Work

Closely related to our work is the work of Minamide on lifting of type parameters for tag-free garbage
collection [14]. Minamide was interested in lifting type parameters out of code so they could be preallocated
at compile time. His lifting procedure required the maintenance of interrelated constraints between type
parameters to retain type soundness, and he used a system similar to ours that makes explicit the passing
of type parameters in order to simplify the expression of such constraints. The principal difference between
Minamide’s system and ours is that Minamide did not consider intensional type analysis. Minamide’s
system also makes a distinction between type representations (which he calls evidence, following Jones [12])
and ordinary terms, while λR type representations are fully first-class.

The issue of type parameter lifting is an important one for compilers based on λR. The construction of
type representations at run time would likely lead to significant cost and, in practice, should be lifted out
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to compile time whenever possible. (Unfortunately, in the presence of polymorphic recursion, which λR

supports, it is not always possible.) Mechanisms for such lifting have been developed by Minamide (in the
work discussed above) and by Saha and Shao [24].

Dubois et al. [5] also pass explicit type representations to polymorphic functions when compiling ad-hoc
polymorphism. However, their system differs from ours and Minamide’s in that no mechanism is provided
for connecting representations to the types they denote, and consequently, information gained by analyzing
type representations does not propagate into the type system.

Duggan [6] proposes another typed framework for intensional type analysis that is similar in some ways to
λML

i . Like λML

i , Duggan’s system passes types implicitly and allows for the intensional analysis of types at
the term level. Duggan’s system does not support intensional type analysis at the constructor level, as λML

i

and λR do, but it adds a facility for defining type classes (using union and recursive kinds) and allows type
analysis to be restricted to members of such classes.

7 Conclusions and Future Directions

We have presented a type-theoretic framework that supports the passing and analysis of type information
at run time, but that avoids the shortcomings associated with previous such frameworks (e.g., duplication
of constructs, lack of abstraction, and complication of closure conversion). This new framework makes it
feasible to use intensional type analysis in settings where the shortcomings previously made it impractical.

For example, Morrisett et al. [21] developed typing mechanisms for low-level intermediate and target lan-
guages that allow type information to be used all the way to the end of compilation. It would be desirable,
in a system based on those mechanisms, to be able to exploit that type information using intensional type
analysis. Unfortunately, the shortcomings of type-passing semantics made it incompatible with some of those
low-level typing mechanisms. This unfortunate incompatibility has made it infeasible to use the mechanisms
of Morrisett et al. in type-analyzing compilers such as TIL/ML [27, 17] and FLINT [26], and has made it
infeasible to use intensional type analysis in the end-to-end typed compiler TALC [21]. The framework in
this paper makes it possible to unify these two lines of work for the first time.

In pursuance of this aim, an important direction for future work is to extend the mechanisms of λR into
lower-level typed intermediate languages such as typed assembly language [21]. Among the issues to be
explored in such research is how to analyze the more complicated types used in typed assembly language,
and how to perform type-directed dispatch without an atomic typecase construct. Another issue to explore
is analysis of quantified types and whether such mechanisms are useful in practice.

Another important question is whether a parametricity theorem like that of Reynolds [22] can be shown for
λR. Polymorphism is clearly non-parametric in λML

i , but the lowering of type analysis to explicit term-level
representatives makes it plausible that some sort of parametricity could be shown for λR. In other words, we
discussed at an intuitive level in Section 1 how the explicit passing of types restores the ability to abstract
types that was discarded by λML

i ; it would be interesting to explore how that intuition may be formalized.
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A Untyped Calculus

Although the formal static and operational semantics for λR are for a typed language, we would like to
emphasize the point that types are unnecessary for computation and can safely be erased. Accordingly,
we exhibit an untyped language, λR

◦, a translation of λR to this language through type erasure, and the
following theorem, which states that execution in the untyped language mirrors execution in the typed
language:

Theorem A.1 1. If e1 �→∗ e2 then e1
◦ �→∗ e2

◦.

2. If ∅ � e1 : τ and e1
◦ �→∗ u then there exists e2 such that e1 �→∗ e2 and e2

◦ = u.

From this theorem and type safety for λR it follows that our untyped semantics is safe.

Corollary A.2 If ∅ � e : τ and e◦ �→∗ u then u is not stuck.
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A.1 Syntax of Untyped Calculus

(terms) u :: = i | x | λx.u | fix f.w | u1u2 |
〈u1, u2〉 | π1u | π2u | Rint |
R→(u1, u2) | R×(u1, u2) | RR(u) |
typecase u of
Rint ⇒ uint

R→(x, y) ⇒ u→
R×(x, y) ⇒ u×
RR(x) ⇒ uR

(values) w :: = i | λx.u | fix f.w | 〈w1, w2〉 |
Rint | R×(w1, w2) | R→(w1, w2) |
RR(w)

A.2 Type Erasure

x◦ = x
i◦ = i

〈e1, e2〉◦ = 〈e1
◦, e2

◦〉
(πie)

◦ = πie
◦

(λx:c.e)◦ = λx.e◦

(Λα:κ.v)◦ = v◦

(fix f :c.v)◦ = fix f.v◦

(e1e2)
◦ = e1

◦e2
◦

e[c]◦ = e◦

pack e as c hiding c′◦ = e◦

unpack 〈α, x〉 = e1 in e2
◦ = (λx.e2

◦) e1
◦

Rint
◦ = Rint

R→(e1, e2)
◦ = R→(e1

◦, e2
◦)

R×(e1, e2)
◦ = R×(e1

◦, e2
◦)

RR(e1)
◦ = RR(e1

◦)
(typecase[δ.c] e of
Rint ⇒ eint

R→(x, y) as (β → γ) ⇒ e→
R×(x, y) as (β × γ) ⇒ e×
RR(x) asR(β) ⇒ eR)◦

= typecase e◦of
Rint ⇒ eint

◦

R→(x, y) ⇒ e→◦

R×(x, y) ⇒ e×◦

RR(x) ⇒ eR
◦

A.3 Operational Semantics of λR
◦

(λx.u)w �→ u[w/x]

(fix f.w)w′ �→ (w[fix f.w/f ])w′

π1〈w1, w2〉 �→ w1 π2〈w1, w2〉 �→ w2

typecase Rint (uint , xy.u→, xy.u×, x.uR) �→ uint
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typecase (R×(w1, w2)) (uint , xy.u→, xy.u×, x.uR) �→ u×[w1, w2/x, y]

typecase (R→(w1, w2)) (uint , xy.u→, xy.u×, x.uR) �→ u→[w1, w2/x, y]

typecase (RR(w)) (uint , xy.u→, xy.u×, x.uR) �→ uR[w/x]

u1 �→ u′
1

u1u2 �→ u′
1u2

u �→ u′

wu �→ wu′

u1 �→ u′
1

〈u1, u2〉 �→ 〈u′
1, u2〉

u �→ u′

〈w, u〉 �→ 〈w, u′〉
u �→ u′

π1u �→ π1u
′

u �→ u′

π2u �→ π2u
′

u1 �→ u′
1

R→(u1, u2) �→ R→(u′
1, u2)

u �→ u′

R→(w, u) �→ R→(w, u′)

u1 �→ u′
1

R×(u1, u2) �→ R×(u′
1, u2)

u �→ u
R×(w, u) �→ R×(w, u′)

u �→ u′

RR(u) �→ RR(u′)

u �→ u′

typecase u (uint, xy.u→, xy.u×, x.uR) �→
typecase u′ (uint , xy.u→, xy.u×, x.uR)

B Operational Semantics

(λx:c.e)v �→ e[v/x]

(Λα:κ.v)[c] �→ v[c/α]

π1〈v1, v2〉 �→ v1 π2〈v1, v2〉 �→ v2

(fix f :c.v)v′ �→ (v[fix f :c.v/f ])v′

(fix f :c.v)[c′] �→ (v[fix f :c.v/f ])[c′]

unpack 〈α, x〉 = (pack v as ∃β.c1 hiding c2)
in e2 �→ e2[c2, v/α, x]

typecase[δ.c] Rint (eint , βγxy.e→,
βγxy.e× , βx.eR) �→ eint

typecase[δ.c] (R→(v1, v2)) (eint , βγxy.e→,
βγxy.e× , βx.eR) �→ e→[D(v1),D(v2), v1, v2/β, γ, x, y]

typecase[δ.c] (R×(v1, v2)) (eint , βγxy.e→,
βγxy.e× , βx.eR) �→ e×[D(v2),D(v2), v1, v2/β, γ, x, y]
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typecase[δ.c] (RR(v)) (eint , βγxy.e→,
βγxy.e×, βx.eR) �→ eR[D(v), v/β, x]

e1 �→ e′1
e1e2 �→ e′1e2

e �→ e′

ve �→ ve′
e �→ e′

e[c] �→ e′[c]

e �→ e′

πie �→ πie
′

e1 �→ e′1
〈e1, e2〉 �→ 〈e′1 , e2〉

e �→ e′

〈v, e〉 �→ 〈v, e′〉
e �→ e′

pack e as∃β.c1 hiding c2 �→ pack e′ as ∃β.c1 hiding c2

e �→ e′

unpack 〈α, x〉 = e in e2 �→ unpack 〈α, x〉 = e′ in e2

e �→ e′

typecase[δ.σ] e (eint , βγxy.e→, βγxy.e× , βx.eR) �→
typecase[δ.σ] e′ (eint , βγxy.e→, βγxy.e× , βx.eR)

e1 �→ e′1
R→(e1, e2) �→ R→(e′1, e2)

e �→ e′

R→(v, e) �→ R→(v, e′)
e1 �→ e′1

R×(e1, e2) �→ R×(e′1, e2)

e �→ e′

R×(v, e) �→ R×(v, e′)
e �→ e′

RR(e) �→ RR(e′)

C Static Semantics

C.1 Constructor Formation

Γ � c : κ

Γ � int : Type Γ � α : κ
(Γ(α) = κ)

Γ � c1 : Type Γ � c2 : Type

Γ � c1 → c2 : Type

Γ � c1 : Type Γ � c2 : Type

Γ � c1 × c2 : Type

Γ, α:κ1 � c : κ2

Γ � λα:κ1.c : κ1 → κ2

Γ � c1 : κ1 → κ2 Γ � c2 : κ1

Γ � c1c2 : κ2
(α 	∈ Dom(Γ))

Γ � c : Type

Γ � R(c) : Type

Γ � c : Type Γ � cint : κ
Γ � c→ : Type → Type → κ → κ → κ
Γ � c× : Type → Type → κ → κ → κ

Γ � cR : Type → κ → κ

Γ � Typerec c(cint , c→, c×, cR) : κ
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C.2 Type Formation

Γ � σ
Γ � c : Type

Γ � c

Γ � σ1 Γ � σ2

Γ � σ1 × σ2

Γ � σ1 Γ � σ2

Γ � σ1 → σ2

Γ, α:κ � σ

Γ � ∀α:κ.σ
(α 	∈ Dom(Γ))

Γ, α:κ � σ

Γ � ∃α:κ.σ
(α 	∈ Dom(Γ))

C.3 Constructor Equivalence

Γ � c1 = c2 : κ

Γ, α:κ′ � c1 : κ Γ � c2 : κ′

Γ � (λα:κ′.c1)c2 = c1[c2/α] : κ
(α 	∈ Dom(Γ))

Γ � c : κ1 → κ2

Γ � λα:κ1.c α = c : κ1 → κ2
(α 	∈ Dom(Γ))

Γ � cint : κ
Γ � c→ : Type → Type → κ → κ → κ
Γ � c× : Type → Type → κ → κ → κ

Γ � cR : Type → κ → κ

Γ � Typerec(int) (cint , c→, c×, cR) = cint : κ

Γ � c1 : Type Γ � c2 : Type Γ � cint : κ
Γ � c→ : Type → Type → κ → κ → κ
Γ � c× : Type → Type → κ → κ → κ

Γ � cR : Type → κ → κ


Γ � Typerec(c1 → c2) (cint , c→, c×, cR) =
c→ c1 c2 (Typerec c1 (cint , c→, c×, cR))(Typerec c2 (cint , c→, c×, cR)) : κ

Γ � Typerec(c1 × c2) (cint , c→, c×, cR) =
c× c1 c2 (Typerecc1 (cint , c→, c×, cR))(Typerec c2 (cint , c→, c×, cR)) : κ




Γ � c : Type Γ � cint : κ
Γ � c→ : Type → Type → κ → κ → κ
Γ � c× : Type → Type → κ → κ → κ

Γ � cR : Type → κ → κ

Γ � Typerec (R(c)) (cint , c→, c×, cR) = cR c (Typerec c (cint , c→, c×, cR)) : κ

Γ � c1 = c′1 : κ′ → κ Γ � c2 = c′2 : κ′

Γ � c1c2 = c′1c′2 : κ

Γ � c = c′ : Type
Γ � cint = c′int : κ

Γ � c→ = c′→ : Type → Type → κ → κ → κ
Γ � c× = c′× : Type → Type → κ → κ → κ

Γ � cR = c′R : Type → κ → κ

Γ � Typerec c (cint , c→, c×, cR) = Typerec c′ (c′int , c
′→, c′×, c′R) : κ
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Γ � c = c : κ
Γ � c′ = c : κ
Γ � c = c′ : κ

Γ � c = c′ : κ Γ � c′ = c′′ : κ
Γ � c = c′′ : κ

C.4 Type Equivalence

Γ � σ1 = σ2

Γ � σ1 = σ2 : κ

Γ � σ1 = σ2

Γ � σ1 = σ′
1 Γ � σ2 = σ′

2

Γ � σ1 → σ2 = σ′
1 → σ′

2

Γ � σ1 = σ′
1 Γ � σ2 = σ′

2

Γ � σ1 × σ2 = σ′
1 × σ′

2

Γ, α:κ � σ = σ′

Γ � ∀α:κ.σ = ∀α:κ.σ′
Γ, α:κ � σ = σ′

Γ � ∃α:κ.σ = ∃α:κ.σ′

Γ � σ = σ
Γ � σ′ = σ
Γ � σ = σ′

Γ � σ = σ′ Γ � σ′ = σ′′

Γ � σ = σ′′

C.5 Term Formation

Γ � e : σ

Γ � i : int Γ � x : σ
(Γ(x) = σ)

Γ, x:σ2 � e : σ1 Γ � σ2

Γ � λx:σ2.e : σ2 → σ1
(x 	∈ Dom(Γ))

Γ � e1 : σ2 → σ1 Γ � e2 : σ2

Γ � e1e2 : σ1

Γ, f :σ � e : σ Γ � σ

Γ � fix f :σ. e : σ
(f 	∈ Dom(Γ), σ = ∀α1:κ1 · · ·αn:κn.σ1 → σ2, n ≥ 0)

Γ � e1 : σ1 Γ � e2 : σ2

Γ � 〈e1 , e2〉 : σ1 × σ2

Γ � e : σ1 × σ2

Γ � π1e : σ1

Γ � e : σ1 × σ2

Γ � π2e : σ2

Γ � e : ∀α:κ.σ Γ � c : κ
Γ � e[c] : σ[c/α]

Γ, α:κ � e : σ

Γ � Λα:κ.e : ∀α:κ.σ
(x 	∈ Dom(Γ))

Γ, α:κ � σ1 : Type Γ � σ2 : κ Γ � e : σ1[σ2/α]
Γ � pack e as ∃α:κ.σ1 hiding σ2 : ∃α:κ.σ1

(α 	∈ Dom(Γ))

Γ � e1 : ∃α:κ.σ2 Γ, α:κ, x:σ2 � e2 : σ1

Γ � unpack 〈α, x〉 = e1 in e2 : σ1
(α, x 	∈ Dom(Γ))

Γ � e : σ2 Γ � σ1 = σ2

Γ � e : σ1
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Γ � Rint : R(int)
Γ � e1 : R(c1) Γ � e2 : R(c2)
Γ � R→(e1, e2) : R(c1 → c2)

Γ � e1 : R(c1) Γ � e2 : R(c2)
Γ � R×(e1, e2) : R(c1 × c2)

Γ � e : R(c)
Γ � RR(e) : R(R(c))

Γ, α:Type, Γ′ � e : R(α)
Γ(Γ′[int/α]) � eint [int/α] : σ[int, int/α, δ]

Γ, β:Type, γ:Type, (Γ′[β → γ/α]), x:R(β), y:R(γ)
� e→[β → γ/α] : σ[β → γ, β → γ/α, δ]

Γ, β:Type, γ:Type, (Γ′[β × γ/α]), x:R(β), y:R(γ)
� e×[β × γ/α] : σ[β × γ, β × γ/α, δ]

Γ, β:Type, (Γ′[R(β)/α]), x:R(β) � eR[R(β)/α] : σ[R(β), R(β)/α, δ]
(α, β, γ 	∈ Dom(Γ, Γ′))

Γ, α:Type, Γ′

� typecase[δ.σ] e (eint , βγxy.e→, βγxy.e× , βx.eR) : σ[α/δ]

Γ � e : R(c) Γ � eint : σ[int/δ]
Γ, β:Type, γ:Type, x:R(β), y:R(γ) � e→ : σ[β → γ/δ]
Γ, β:Type, γ:Type, x:R(β), y:R(γ) � e× : σ[β × γ/δ]

Γ, β:Type, x:R(β) � eR : σ[R(β)/δ]

Γ � typecase[δ.σ] e (eint , βγxy.e→, βγxy.e× , βx.eR) : σ[c/δ]
(β, γ 	∈ Dom(Γ, Γ′))

Γ � e : R(int) Γ � eint : σ[int/δ]
Γ � typecase[δ.σ] e (eint , βγxy.e→ , βγxy.e×, βx.eR) : σ[int/δ]

Γ � e : R(c1 → c2) Γ, x:R(c1), y:R(c2) � e→[c1, c2/β, γ] : σ[c1 → c2/δ]
Γ � typecase[δ.σ] e (eint , βγxy.e→ , βγxy.e×, βx.eR) : σ[c1 → c2/δ]

Γ � e : R(c1 × c2) Γ, x:R(c1), y:R(c2) � e×[c1, c2/β, γ] : σ[c1 × c2/δ]
Γ � typecase[δ.σ] e (eint , βγxy.e→ , βγxy.e×, βx.eR) : σ[c1 × c2/δ]

Γ � e : R(R(c)) Γ, x:R(c) � eR[c/β] : σ[R(c)/δ]
Γ � typecase[δ.σ] e (eint , βγxy.e→ , βγxy.e×, βx.eR) : σ[R(c)/δ]
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D Translation of λML
i to λR

D.1 Translation of λML
i expressions to λR

kinds |κ| = κ

constructors |α| = α
|λα:κ.c| = λα:|κ|.|c|

|c1c2| = |c1||c2|
| Typerec c(cint , c→, c×)| = Typerec |c|(|cint|, |c→|, |c×|,

λα:Type. |c→| int α |cint |)
|int| = int

|c1 → c2| = |c1| → |c2|
|c1 × c2| = |c1| × |c2|

types |c| = |c|
|σ1 → σ2| = |σ1| → |σ2|
|σ1 × σ2| = |σ1| × |σ2|
|∀α:κ.σ| = ∀α:|κ|.R(α:κ) → |σ|

expressions |x| = x
|i| = i

|λx:σ.e| = λx: |σ| . |e|
|Λα:κ.e| = Λα: |κ| .λxα:R(α:κ). |e|

|e1e2| = |e1| |e2|
|e[c]| = |e| [|c|]�(|c|)

|fix f :σ.v| = fix f : |σ| . |v|
|〈e1, e2〉| = 〈|e1| , |e2|〉

|π1e| = π1 |e|
|π2e| = π2 |e|∣∣∣∣∣∣∣∣

typecase[δ.σ] c of
int ⇒ eint

β → γ ⇒ e→
β × γ ⇒ e×

∣∣∣∣∣∣∣∣ =

typecase[δ.σ]�(|c|) of
Rint ⇒ |eint |
R→(xβ, xγ) as (β → γ) ⇒ |e→|
R×(xβ , xγ) as (β × γ) ⇒ |e×|
RR(xβ) asR(β) ⇒ |eint |

23



D.2 Translation of λR constructors to their representations.

�(int) = Rint

�(τ1 → τ2) = R→(�(τ1),�(τ2))
�(τ1 × τ2) = R×(�(τ1),�(τ2))
�(R(τ )) = RR(�(τ ))

�(α) = xα

�(λα:κ.c) = Λα:κ.λxα:R(α:κ).�(c)
�(c1c2) = �(c1)[c2]�(c2)

�(Typerec τ (cint , c→, c×, cR)) = ((fix f :∀α:Type.R(α) → R(c∗[α]:κ).
Λα:Type.

λxα:R(α).
typecase[δ.R(c∗[α]:κ)] xα

Rint ⇒ �(cint)
R→(xβ, xγ) as (β → γ) ⇒

�(c→)[β]xβ [γ]xγ

[c∗[β]](f [β]xβ) [c∗[γ]](f [γ]xγ)
R×(xβ, xγ) as (β × γ) ⇒

�(c×)[β]xβ [γ]xγ

[c∗[β]](f [β]xβ) [c∗[γ]](f [γ]xγ)
RR(xβ) asR(β) ⇒

�(cR)[β]xβ[c∗[β]](f [β]xβ)
[τ ]�(τ ))

where c∗[τ ′] = Typerec τ ′(cint , c→, c×, cR)
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