
Verification: Local Resource Reasoning, Philippa Gardner 1

Verification: Local Resource Reasoning

Philippa Gardner

Imperial College London

Verification: Local Resource Reasoning, Philippa Gardner 2

Separation Logic

Hoare logic: cannot do modular reasoning about C-programs: e.g.

list(x) ∧ list(y)

Separation logic: provides local reasoning about C-programs by

viewing partial heaps as resource : e.g. x 6= y

list(x) ∗ list(y)

O’Hearn, Reynolds, Yang: CSL 2001; POPL tutorial, O’Hearn

Origins: The assertion language came directly from category theory.

Applications: Used to verify e.g. device drivers and Linux code.

Verification: Local Resource Reasoning, Philippa Gardner 3

Local Reasoning about Heaps

Heap model: h : Loc ⇀fin Val, with Loc ⊆ Val

Cell assertions:

x 7→ y, the cell at location x has value y, and the thread has the right

to modify it.

Other assertions:

emp, empty heap

P ∗Q, separating conjunction

Verification: Local Resource Reasoning, Philippa Gardner 4

Local Reasoning about Heaps

Small Hoare axiom:
{

x 7→ y

}

dispose(x)
{

emp
}

Frame rule:
{

x 7→ y

}

dispose(x)
{

emp
}

{

P ∗ x 7→ y

}

dispose(x)
{

P ∗ emp
} x 6∈ P

Verification: Local Resource Reasoning, Philippa Gardner 5

Local Reasoning about Sets

Set model: s : Values →fin {0, 1}
Value assertions:

in(v), value v is in the set and the thread has the right to modify it.

out(v), value v is not in the set and the thread has the right to

modify it.

Assertion axiom: e.g.

in(v) ∗ in(v) ⇒ false

Verification: Local Resource Reasoning, Philippa Gardner 6

Local Reasoning about Sets

Small Hoare axiom:
{

in(v)
}

remove(v)
{

out(v)
}

Frame rule:
{

in(v)
}

remove(v)
{

out(v)
}

{

P ∗ in(v)
}

remove(v)
{

P ∗ out(v)
} v 6∈ P

Verification: Local Resource Reasoning, Philippa Gardner 7

Fiction of Separation

Abstract set specification:
{

in(v)
}

remove(v)
{

out(v)
}

Concrete linked-list implementation:
{

v ∈ list(h)
}

code for remove(v)
{

v 6∈ list(h)
}

Fiction of separation: elements not separated in list implementation

Verification: Local Resource Reasoning, Philippa Gardner 8

Disjoint Concurrency

Value assertions enough for disjoint concurrency: e.g., v1 6= v2

{

in(v1) ∗ in(v2)
}

{

in(v1)
}

remove(v1)
{

out(v1)
}

{

in(v2)
}

remove(v2)
{

out(v2)
}

{

out(v1) ∗ out(v2)
}

Verification: Local Resource Reasoning, Philippa Gardner 9

Shared Concurrency

Value assertions need adapting for shared concurrency:

Value assertion:

indef(v)i, permission i ∈ (0, 1]

• def: the value v is definitely in the set

• 0 < i ≤ 1: no other thread has the right to modify v

• i = 1: this thread has the right to modify v

outdef(v)i is analogous.

Verification: Local Resource Reasoning, Philippa Gardner 10

Shared Concurrency

Value assertions need adapting for shared concurrency:

Value assertion:

inrem(v)i, for i ∈ (0, 1]

• rem: the value v is in the set, but might be removed

• 0 < i ≤ 1: all threads have the right to modify v

outrem(v)i is analogous.

Verification: Local Resource Reasoning, Philippa Gardner 11

Shared Concurrency

Assertion Axioms

indef(v)1 ⇔ inrem(v)1

inrem(v)i ∗ inrem(v)j ⇔ inrem(v)i+j , if i+ j ≤ 1

inrem(v)i ∗ inrem(v)j ⇒ false, if i+ j > 1

...

Verification: Local Resource Reasoning, Philippa Gardner 12

Shared Concurrency

Small Hoare axioms:
{

indef(v)1

}

remove(v)
{

outdef(v)1

}

{

inrem(v)i

}

remove(v)
{

outrem(v)i

}

...

Verification: Local Resource Reasoning, Philippa Gardner 13

Shared Concurrency

{

indef(v)1

}

{

inrem(v)1

}

{

inrem(v) 1

2

∗ inrem(v) 1

2

}

{

inrem(v) 1

2

}

remove(v)
{

outrem(v) 1

2

}

{

inrem(v) 1

2

}

remove(v)
{

outrem(v) 1

2

}

{

outrem(v) 1

2

∗ outrem(v) 1

2

}

{

outdef(v)1

}

Verification: Local Resource Reasoning, Philippa Gardner 14

Parallel Sieve of Eratosthenes

worker

(2)
2

worker

(2)
3

worker

(2)
4

worker

(2)
5

2 3 4 5 6 7 8 9 10 11

Verification: Local Resource Reasoning, Philippa Gardner 15

Parallel Sieve of Eratosthenes

Sieve Specification
{

�2≤n≤max indef(n)1 ∧ max > 1
}

{

�2≤n≤max inrem(n)1 ∧ max > 1
}

worker(2, max) ||worker(3, max)|| . . . || worker(m, max)

where m = ⌊√max⌋

Verification: Local Resource Reasoning, Philippa Gardner 16

Parallel Sieve of Eratosthenes

Worker thread � is iterated separating conjunction.
{

2 ≤ v ∧�2≤n≤max inrem(n)i

}

worker(v,max) {

c := v+ v;

while(c ≤ max) {

remove(c);

c := c+ v;

}}






�2≤n≤max

fac(n, v) =⇒ outrem(n)i ∧

¬fac(n, v) =⇒ inrem(n)i







Verification: Local Resource Reasoning, Philippa Gardner 17

Another assertion axiom:

inrem(v)i ∗ outrem(v)j ⇒ outrem(v)i+j , if i+ j ≤ 1

Verification: Local Resource Reasoning, Philippa Gardner 18

Parallel Sieve of Eratosthenes

Sieve Specification
{

�2≤n≤max indef(n)1 ∧ max > 1
}

worker(2, max) ||worker(3, max)|| . . . || worker(m, max)






�2≤n≤max

isPrime(n) =⇒ indef(n)1 ∧

¬isPrime(n) =⇒ outdef(n)1







where m = ⌊√max⌋
Application: concurrent indexes, verified concurrent B-tree

implementation

Verification: Local Resource Reasoning, Philippa Gardner 19

Local Resource Reasoning at POPL

Life-time achievement award, Hoare

Parallization of sequential programs, Dodds

Syntactic control of interference for separation logic, Reddy

Towards a program logic for JavaScript Smith

Separation logic: O’Hearn, POPL tutorial

Termination: Cook, POPL mentoring tutorial and POPL tutorial

Verification: Local Resource Reasoning, Philippa Gardner 20

Long-term Questions

What do you know?

How much are you learning?

What is your research voice?

Who is your intended audience?

