Verification: Local Resource Reasoning, Philippa Gardner

Verification: Local Resource Reasoning

Philippa Gardner

Imperial College London

Verification: Local Resource Reasoning, Philippa Gardner

Separation Logic

Hoare logic: cannot do modular reasoning about C-programs: e.g.

list(x)Alist(y)

Separation logic: provides local reasoning about C-programs by

viewing partial heaps as resource : e.g. * # Y

list(x)«Ilist(y)

O’Hearn, Reynolds, Yang: CSL 2001; POPL tutorial, O’'Hearn
Origins: The assertion language came directly from category theory.

Applications: Used to verify e.g. device drivers and Linux code.

Verification: Local Resource Reasoning, Philippa Gardner

Local Reasoning about Heaps

Heap model: h : Loc —¢i, Val , with Loc C Val
Cell assertions:

x — 1, the cell at location o has value v, and the thread has the right
to modify it.

Other assertions:

enp, empty heap

P x (), separating conjunction

Verification: Local Resource Reasoning, Philippa Gardner

Local Reasoning about Heaps

Small Hoare axiom:
{g; —> y} di spose(x) {en‘p}

Frame rule:

{x — y} di spose(x) {errp}
{P * T > y} di spose(x) {P * errp}

x & P

Verification: Local Resource Reasoning, Philippa Gardner

Local Reasoning about Sets

Set model: s : Val ues —¢in {0,1}
Value assertions:
I N(v), value v is in the set and the thread has the right to modify it.

out (v), value v is not in the set and the thread has the right to
modify it.

Assertion axiom: e.g.

I n(v) «in(v) = false

Verification: Local Resource Reasoning, Philippa Gardner

Local Reasoning about Sets

Small Hoare axiom:
{i n(v)} renove(v) {out (v)}

Frame rule:

{i n(v)} renove(v) {out (v)}
{P * | n(v)} remove(v) {P * Out (v)}

vée& P

Verification: Local Resource Reasoning, Philippa Gardner

Fiction of Separation

Abstract set specification:

{i n(v)} renove(v) {out (v)}

Concrete linked-list implementation:
{v clist (h)} code f or .remove(v) {v Z1i st (h)}

Fiction of separation: elements not separated in list implementation

Verification: Local Resource Reasoning, Philippa Gardner

Disjoint Concurrency

Value assertions enough for disjoint concurrency: e.g., v1 # s

ﬁ n(vy) *i n(Ugi}
i n(vp) {i n(vz)

remove (v remove(Vvs)

{out (v1) {out (vz)}

{out (v1) * out (’UQ)}

Verification: Local Resource Reasoning, Philippa Gardner

Shared Concurrency

Value assertions need adapting for shared concurrency:

Value assertion:

| Nget (v);, permission ¢ € (0, 1]

e def : the value v is definitely in the set
e) < 7 < 1: no other thread has the right to modify v

e 1 — |: this thread has the right to modify v

out gef (v); is analogous.

Verification: Local Resource Reasoning, Philippa Gardner

Shared Concurrency

Value assertions need adapting for shared concurrency:

Value assertion:
| Nrem(v);, fori € (0,1]

e | €M the value v is in the set, but might be removed

e) <1 < 1: all threads have the right to modify v

out ;em(v); is analogous.

10

Verification: Local Resource Reasoning, Philippa Gardner

Shared Concurrency

Assertion Axioms
indef(/U)l = inrem(/U)l
inrem(v)i * inrem(v)j <~ inrem(v)iﬂ, if 2 —|—] <1

iNrem (V)i * iNpem (v); = false, ifi+ 75 > 1

11

Verification: Local Resource Reasoning,

Philippa Gardner

Shared Concurrency

Small Hoare axioms:

{indef<v>1} remove(v) {°“t‘*ef(”>1}

{mrem

(v)z} remove(V) {Outrem(v)

y

12

Verification: Local Resource Reasoning, Philippa Gardner

Shared Concurrency

{indef(v)l}
{inrem (v)l}

{inIrem (v)% * INrem (V) %}

finen(@)yf || {inen ()3}

remove (V) remove(Vv)

foutem(v)1} || foutrem(v)}

{outrem(v)% % OUtrem ()%}
foutaer(v):

Verification: Local Resource Reasoning, Philippa Gardner

worker2
W01rker3

worker A

Worker5

Parallel Sieve of Eratosthenes

14

Verification: Local Resource Reasoning, Philippa Gardner

Parallel Sieve of Eratosthenes

Sieve Specification

{®2§n§max indef(n)l /\ max > 1}

{®2§n§rmx inrem(n>1 A\ max > 1}
wor ker (2, max) ||worker (3, max)||...||worker(m max)

where m = | y/max |

15

Verification: Local Resource Reasoning, Philippa Gardner

Parallel Sieve of Eratosthenes

Worker thread &) is iterated separating conjunction.

y

\

{2 <vA ®2§n§max iNrem (72) }
worker(v,max) {
C:=V+ V;
while(c < max) {
remove(c);
C:=C + V;

13

fac
®2§n§max]
—fac(n,v) = iNrem(n);

\

/

16

Verification: Local Resource Reasoning, Philippa Gardner

Another assertion axiom:

iNrem (V); * OUtrem (V) = OUtyem (V)itj, if2+ 7 <1

17

Verification: Local Resource Reasoning, Philippa Gardner

Parallel Sieve of Eratosthenes

Sieve Specification

{®2§n§max indef(n)l /A max > 1}

wor ker (2, max) |[[worker (3, max)]||...|/[worker(m max)
()

isPrime(n) = ingef(n)1 A
®2<n<max

—isPrime(n) == outdef(n) 1

\

where m = | /max |

Application: concurrent indexes, verified concurrent B-tree

Implementation

Verification: Local Resource Reasoning, Philippa Gardner

Local Resource Reasoning at POPL

Life-time achievement award, Hoare

Parallization of sequential programs, Dodds

Syntactic control of interference for separation logic, Reddy
Towards a program logic for JavaScript Smith

Separation logic: O’'Hearn, POPL tutorial

Termination: Cook, POPL mentoring tutorial and POPL tutorial

19

Verification: Local Resource Reasoning, Philippa Gardner

Long-term Questions

What do you know?
How much are you learning?
What is your research voice?

Who is your intended audience?

20

