
Generic Programming With Dependent Types: I

Generic Programming in Agda

Stephanie Weirich

University of Pennsylvania

March 24�26, 2010 � SSGIP



Why study generic programming in dependently-typed

languages?

1 Dependently-typed languages are current research topic and
likely component of next-generation languages.

2 Generic programming is a killer-app for dependently-typed
languages. It is a source of programs that are di�cult to type
check in other contexts.

3 TAKEAWAY: Dependent types are not just about program
veri�cation, they really do add to expressiveness.



Why study generic programming in dependently-typed

languages?

1 Dependently-typed languages are current research topic and
likely component of next-generation languages.

2 Generic programming is a killer-app for dependently-typed
languages. It is a source of programs that are di�cult to type
check in other contexts.

3 TAKEAWAY: Dependent types are not just about program
veri�cation, they really do add to expressiveness.



Why study generic programming in dependently-typed

languages?

1 Dependently-typed languages are current research topic and
likely component of next-generation languages.

2 Generic programming is a killer-app for dependently-typed
languages. It is a source of programs that are di�cult to type
check in other contexts.

3 TAKEAWAY: Dependent types are not just about program
veri�cation, they really do add to expressiveness.



Why study generic programming in dependently-typed

languages?

1 Dependently-typed languages are current research topic and
likely component of next-generation languages.

2 Generic programming is a killer-app for dependently-typed
languages. It is a source of programs that are di�cult to type
check in other contexts.

3 TAKEAWAY: Dependent types are not just about program
veri�cation, they really do add to expressiveness.



Spring School Goals and Non-Goals

Goals:

1 Introduction to Agda language and dependently-typed
programming

2 Extended examples of generic programming

Non-goals:

1 I won't argue that Agda is best tool for generic programming
(it's not)

2 You won't be expert Agda programmers (I'm not)

3 I'm ignoring termination (with �ags to Agda)

4 No interactive labs, sorry (try it at home!)



Spring School Goals and Non-Goals

Goals:

1 Introduction to Agda language and dependently-typed
programming

2 Extended examples of generic programming

Non-goals:

1 I won't argue that Agda is best tool for generic programming
(it's not)

2 You won't be expert Agda programmers (I'm not)

3 I'm ignoring termination (with �ags to Agda)

4 No interactive labs, sorry (try it at home!)



Spring School Goals and Non-Goals

Goals:

1 Introduction to Agda language and dependently-typed
programming

2 Extended examples of generic programming

Non-goals:

1 I won't argue that Agda is best tool for generic programming
(it's not)

2 You won't be expert Agda programmers (I'm not)

3 I'm ignoring termination (with �ags to Agda)

4 No interactive labs, sorry (try it at home!)



Spring School Goals and Non-Goals

Goals:

1 Introduction to Agda language and dependently-typed
programming

2 Extended examples of generic programming

Non-goals:

1 I won't argue that Agda is best tool for generic programming
(it's not)

2 You won't be expert Agda programmers (I'm not)

3 I'm ignoring termination (with �ags to Agda)

4 No interactive labs, sorry (try it at home!)



Spring School Goals and Non-Goals

Goals:

1 Introduction to Agda language and dependently-typed
programming

2 Extended examples of generic programming

Non-goals:

1 I won't argue that Agda is best tool for generic programming

(it's not)

2 You won't be expert Agda programmers (I'm not)

3 I'm ignoring termination (with �ags to Agda)

4 No interactive labs, sorry (try it at home!)



Spring School Goals and Non-Goals

Goals:

1 Introduction to Agda language and dependently-typed
programming

2 Extended examples of generic programming

Non-goals:

1 I won't argue that Agda is best tool for generic programming
(it's not)

2 You won't be expert Agda programmers (I'm not)

3 I'm ignoring termination (with �ags to Agda)

4 No interactive labs, sorry (try it at home!)



Spring School Goals and Non-Goals

Goals:

1 Introduction to Agda language and dependently-typed
programming

2 Extended examples of generic programming

Non-goals:

1 I won't argue that Agda is best tool for generic programming
(it's not)

2 You won't be expert Agda programmers

(I'm not)

3 I'm ignoring termination (with �ags to Agda)

4 No interactive labs, sorry (try it at home!)



Spring School Goals and Non-Goals

Goals:

1 Introduction to Agda language and dependently-typed
programming

2 Extended examples of generic programming

Non-goals:

1 I won't argue that Agda is best tool for generic programming
(it's not)

2 You won't be expert Agda programmers (I'm not)

3 I'm ignoring termination (with �ags to Agda)

4 No interactive labs, sorry (try it at home!)



Spring School Goals and Non-Goals

Goals:

1 Introduction to Agda language and dependently-typed
programming

2 Extended examples of generic programming

Non-goals:

1 I won't argue that Agda is best tool for generic programming
(it's not)

2 You won't be expert Agda programmers (I'm not)

3 I'm ignoring termination

(with �ags to Agda)

4 No interactive labs, sorry (try it at home!)



Spring School Goals and Non-Goals

Goals:

1 Introduction to Agda language and dependently-typed
programming

2 Extended examples of generic programming

Non-goals:

1 I won't argue that Agda is best tool for generic programming
(it's not)

2 You won't be expert Agda programmers (I'm not)

3 I'm ignoring termination (with �ags to Agda)

4 No interactive labs, sorry (try it at home!)



Spring School Goals and Non-Goals

Goals:

1 Introduction to Agda language and dependently-typed
programming

2 Extended examples of generic programming

Non-goals:

1 I won't argue that Agda is best tool for generic programming
(it's not)

2 You won't be expert Agda programmers (I'm not)

3 I'm ignoring termination (with �ags to Agda)

4 No interactive labs, sorry

(try it at home!)



Spring School Goals and Non-Goals

Goals:

1 Introduction to Agda language and dependently-typed
programming

2 Extended examples of generic programming

Non-goals:

1 I won't argue that Agda is best tool for generic programming
(it's not)

2 You won't be expert Agda programmers (I'm not)

3 I'm ignoring termination (with �ags to Agda)

4 No interactive labs, sorry (try it at home!)



Where to go for more information

1 Agda Wiki http://wiki.portal.chalmers.se/agda/

2 Stephanie Weirich and Chris Casinghino. Arity-generic
type-generic programming. In ACM SIGPLAN Workshop on

Programming Languages Meets Program Veri�cation (PLPV),
pages 15�26, January 2010

3 References in the slides

4 All of the code from these slides, from my website
http://www.seas.upenn.edu/~sweirich/ssgip/

http://wiki.portal.chalmers.se/agda/
http://www.seas.upenn.edu/~sweirich/ssgip/


What is Agda?

Agda has a dual identity:

1 A functional programming language with dependent types
based on Martin-Löf intuitionistic type theory

2 A proof assistant, based on the Curry-Howard isomorphism

Historically derived from series of proof assistants and languages
implemented at Chalmers. Current version (o�cially named Agda
2) implemented by Ulf Norell.1

We will focus exclusively on the �rst aspect.

1See Ulf Norell. Towards a practical programming language based on

dependent type theory. PhD thesis, Department of Computer Science and

Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden,

September 2007.



What is Agda?

Agda has a dual identity:

1 A functional programming language with dependent types
based on Martin-Löf intuitionistic type theory

2 A proof assistant, based on the Curry-Howard isomorphism

Historically derived from series of proof assistants and languages
implemented at Chalmers. Current version (o�cially named Agda
2) implemented by Ulf Norell.1

We will focus exclusively on the �rst aspect.

1See Ulf Norell. Towards a practical programming language based on

dependent type theory. PhD thesis, Department of Computer Science and

Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden,

September 2007.



Agda looks a bit like Haskell

De�ne datatypes

data Bool : Set where
true : Bool
false : Bool

De�ne (in�x) functions by pattern matching

_∧_ : Bool→ Bool→ Bool
true ∧ true = true

∧ = false

De�ne mix�x/polymorphic functions

if_then_else : ∀ {A} → Bool→ A→ A→ A
if true then e1 else e2 = e1
if false then e1 else e2 = e2



Agda looks a bit like Haskell

De�ne datatypes

data Bool : Set where
true : Bool
false : Bool

De�ne (in�x) functions by pattern matching

_∧_ : Bool→ Bool→ Bool
true ∧ true = true

∧ = false

De�ne mix�x/polymorphic functions

if_then_else : ∀ {A} → Bool→ A→ A→ A
if true then e1 else e2 = e1
if false then e1 else e2 = e2



Agda looks a bit like Haskell

De�ne datatypes

data Bool : Set where
true : Bool
false : Bool

De�ne (in�x) functions by pattern matching

_∧_ : Bool→ Bool→ Bool
true ∧ true = true

∧ = false

De�ne mix�x/polymorphic functions

if_then_else : ∀ {A} → Bool→ A→ A→ A
if true then e1 else e2 = e1
if false then e1 else e2 = e2



Inductive datatypes

Datatypes can be inductive

data N : Set where
zero : N
suc : N → N

... and used to de�ne total recursive functions

replicate : ∀ {A} → N → A→ List A
replicate zero x = []
replicate (suc n) x = (x :: replicate n x)

... and used to state properties about those functions

replicate-spec : ∀ {A} → (x : A) → (n : N)
→ length (replicate n x) ≡ n



Inductive datatypes

Datatypes can be inductive

data N : Set where
zero : N
suc : N → N

... and used to de�ne total recursive functions

replicate : ∀ {A} → N → A→ List A
replicate zero x = []
replicate (suc n) x = (x :: replicate n x)

... and used to state properties about those functions

replicate-spec : ∀ {A} → (x : A) → (n : N)
→ length (replicate n x) ≡ n



Inductive datatypes

Datatypes can be inductive

data N : Set where
zero : N
suc : N → N

... and used to de�ne total recursive functions

replicate : ∀ {A} → N → A→ List A
replicate zero x = []
replicate (suc n) x = (x :: replicate n x)

... and used to state properties about those functions

replicate-spec : ∀ {A} → (x : A) → (n : N)
→ length (replicate n x) ≡ n



Polymorphic Length-indexed Vectors

Lists that know their length

data Vec (A : Set) : N → Set where
[] : Vec A zero
_::_ : ∀ {n} → A→ Vec A n→ Vec A (suc n)

Give informative types to functions

repeat : ∀ {A} → (n : N) → A→ Vec A n
repeat zero x = []
repeat (suc n) x = x :: repeat n x



Polymorphic Length-indexed Vectors

Lists that know their length

data Vec (A : Set) : N → Set where
[] : Vec A zero
_::_ : ∀ {n} → A→ Vec A n→ Vec A (suc n)

Give informative types to functions

repeat : ∀ {A} → (n : N) → A→ Vec A n
repeat zero x = []
repeat (suc n) x = x :: repeat n x



Lengths eliminate bugs

List "zap"

_�_ : ∀ {A B} → List (A→ B) → List A→ List B
[] � [] = []
(a :: As) � (b :: Bs) = (a b :: As � Bs)

� = error

Vec "zap"

_~_ : ∀ {A B n} → Vec (A→ B) n→ Vec A n→ Vec B n
[] ~ [] = []
(a :: As) ~ (b :: Bs) = (a b :: As ~ Bs)



Lengths eliminate bugs

List "zap"

_�_ : ∀ {A B} → List (A→ B) → List A→ List B
[] � [] = []
(a :: As) � (b :: Bs) = (a b :: As � Bs)

� = error

Vec "zap"

_~_ : ∀ {A B n} → Vec (A→ B) n→ Vec A n→ Vec B n
[] ~ [] = []
(a :: As) ~ (b :: Bs) = (a b :: As ~ Bs)



Generic programming in Agda

Main thesis:

Dependently typed languages are not just for eliminating bugs, they
enable Generic Programming

But what is generic programming? Lots of di�erent de�nitions, but
they all boil down to lifting data structures and algorithms from
concrete instances to general forms.



Generic programming in Agda

Main thesis:

Dependently typed languages are not just for eliminating bugs, they
enable Generic Programming

But what is generic programming?

Lots of di�erent de�nitions, but
they all boil down to lifting data structures and algorithms from
concrete instances to general forms.



Generic programming in Agda

Main thesis:

Dependently typed languages are not just for eliminating bugs, they
enable Generic Programming

But what is generic programming? Lots of di�erent de�nitions, but
they all boil down to lifting data structures and algorithms from
concrete instances to general forms.



Generalizing programs

Speci�c cases

zerox : (Bool→ Bool) → Bool→ Bool
zerox f x = x

onex : (Bool→ Bool) → Bool→ Bool
onex f x = f x

twox : (Bool→ Bool) → Bool→ Bool
twox f x = f (f x)

Add extra argument

Generic function
nx : N → (Bool→ Bool) → Bool→ Bool
nx zero f x = x
nx (suc n) f x = nx n f (f x)



Generalizing programs

Speci�c cases

zerox : (Bool→ Bool) → Bool→ Bool
zerox f x = x

onex : (Bool→ Bool) → Bool→ Bool
onex f x = f x

twox : (Bool→ Bool) → Bool→ Bool
twox f x = f (f x)

Add extra argument

Generic function
nx : N → (Bool→ Bool) → Bool→ Bool
nx zero f x = x
nx (suc n) f x = nx n f (f x)



Parametric polymorphism

Speci�c cases

app-nat : (N → N) → N → N
app-nat f x = f x

app-bool : (Bool→ Bool) → Bool→ Bool
app-bool f x = f x

New argument could be an implicit, parametric type

Generic function
app : ∀ {A} → (A→ A) → A→ A
app f x = f x



Parametric polymorphism

Speci�c cases

app-nat : (N → N) → N → N
app-nat f x = f x

app-bool : (Bool→ Bool) → Bool→ Bool
app-bool f x = f x

New argument could be an implicit, parametric type

Generic function
app : ∀ {A} → (A→ A) → A→ A
app f x = f x



Ad hoc polymorphism

eq-nat : N → N → Bool
eq-nat zero zero = true
eq-nat (suc n) (suc m) = eq-nat n m
eq-nat = false

eq-bool : Bool→ Bool→ Bool
eq-bool false false = true
eq-bool true true = true
eq-bool = false

J_K : Bool→ Set
J b K = if b then N else Bool

eq-nat-bool : (b : Bool) → J b K → J b K → Bool
eq-nat-bool true = eq-nat
eq-nat-bool false = eq-bool



Ad hoc polymorphism

eq-nat : N → N → Bool
eq-nat zero zero = true
eq-nat (suc n) (suc m) = eq-nat n m
eq-nat = false

eq-bool : Bool→ Bool→ Bool
eq-bool false false = true
eq-bool true true = true
eq-bool = false

J_K : Bool→ Set
J b K = if b then N else Bool

eq-nat-bool : (b : Bool) → J b K → J b K → Bool
eq-nat-bool true = eq-nat
eq-nat-bool false = eq-bool



General idea: �universes� for generic programming

Start with a �code� for types:

data Type : Set where
nat : Type
bool : Type
pair : Type→ Type→ Type

De�ne an �interpretation� as an Agda type

J_K : Type→ Set
J nat K = N
J bool K = Bool
J pair t1 t2 K = J t1 K × J t2 K

Then de�ne generic function, dispatching on code

eq : (t : Type) → J t K → J t K → Bool
eq nat x y = eq-nat x y
eq bool x y = eq-bool x y
eq (pair t1 t2) (x1,x2) (y1,y2) = eq t1 x1 y1 ∧ eq t2 x2 y2



General idea: �universes� for generic programming

Start with a �code� for types:

data Type : Set where
nat : Type
bool : Type
pair : Type→ Type→ Type

De�ne an �interpretation� as an Agda type

J_K : Type→ Set
J nat K = N
J bool K = Bool
J pair t1 t2 K = J t1 K × J t2 K

Then de�ne generic function, dispatching on code

eq : (t : Type) → J t K → J t K → Bool
eq nat x y = eq-nat x y
eq bool x y = eq-bool x y
eq (pair t1 t2) (x1,x2) (y1,y2) = eq t1 x1 y1 ∧ eq t2 x2 y2



General idea: �universes� for generic programming

Start with a �code� for types:

data Type : Set where
nat : Type
bool : Type
pair : Type→ Type→ Type

De�ne an �interpretation� as an Agda type

J_K : Type→ Set
J nat K = N
J bool K = Bool
J pair t1 t2 K = J t1 K × J t2 K

Then de�ne generic function, dispatching on code

eq : (t : Type) → J t K → J t K → Bool
eq nat x y = eq-nat x y
eq bool x y = eq-bool x y
eq (pair t1 t2) (x1,x2) (y1,y2) = eq t1 x1 y1 ∧ eq t2 x2 y2



Expressiveness

Patterns in both types and de�nitions

zeroApp : ∀ {A B} → B→ A→ B
zeroApp f x = f

oneApp : ∀ {A B} → (A→ B) → A→ B
oneApp f x = f x

twoApp : ∀ {A B} → (A→ A→ B) → A→ B
twoApp f x = f x x

NAPP : N → Set→ Set→ Set
NAPP zero A B = B
NAPP (suc n) A B = A→ NAPP n A B

nApp : ∀ {A B} → (n : N) → NAPP n A B→ A→ B
nApp zero f x = f
nApp (suc n) f x = nApp n (f x) x



Expressiveness

Patterns in both types and de�nitions

zeroApp : ∀ {A B} → B→ A→ B
zeroApp f x = f

oneApp : ∀ {A B} → (A→ B) → A→ B
oneApp f x = f x

twoApp : ∀ {A B} → (A→ A→ B) → A→ B
twoApp f x = f x x

NAPP : N → Set→ Set→ Set
NAPP zero A B = B
NAPP (suc n) A B = A→ NAPP n A B

nApp : ∀ {A B} → (n : N) → NAPP n A B→ A→ B
nApp zero f x = f
nApp (suc n) f x = nApp n (f x) x



Key features of advanced generic programming

Strong elimination

if b then N else Bool

Static case analysis on data to produce a type

Dependent pattern matching

f : (b : Bool) → if b then N else Bool
f true = 0
f false = false

Dynamic case analysis on data re�nes types

Overall

Uniform extension of the notion of programmability from run-time
to compile-time.



Key features of advanced generic programming

Strong elimination

if b then N else Bool

Static case analysis on data to produce a type

Dependent pattern matching

f : (b : Bool) → if b then N else Bool
f true = 0
f false = false

Dynamic case analysis on data re�nes types

Overall

Uniform extension of the notion of programmability from run-time
to compile-time.



Key features of advanced generic programming

Strong elimination

if b then N else Bool

Static case analysis on data to produce a type

Dependent pattern matching

f : (b : Bool) → if b then N else Bool
f true = 0
f false = false

Dynamic case analysis on data re�nes types

Overall

Uniform extension of the notion of programmability from run-time
to compile-time.



Proof checking vs. Programming

Two uses for Agda are in con�ict

Under the Curry-Howard isomorphism, only terminating
programs are proofs. An in�nite loop has any type, so can
prove any property

anything : ∀ {A} → A
anything = anything

By default, Agda only accepts programs that it can show
terminate.



Proof checking vs. Programming

Two uses for Agda are in con�ict

Under the Curry-Howard isomorphism, only terminating
programs are proofs.

An in�nite loop has any type, so can
prove any property

anything : ∀ {A} → A
anything = anything

By default, Agda only accepts programs that it can show
terminate.



Proof checking vs. Programming

Two uses for Agda are in con�ict

Under the Curry-Howard isomorphism, only terminating
programs are proofs. An in�nite loop has any type, so can
prove any property

anything : ∀ {A} → A
anything = anything

By default, Agda only accepts programs that it can show
terminate.



Proof checking vs. Programming

Two uses for Agda are in con�ict

Under the Curry-Howard isomorphism, only terminating
programs are proofs. An in�nite loop has any type, so can
prove any property

anything : ∀ {A} → A
anything = anything

By default, Agda only accepts programs that it can show
terminate.



Proof checking vs. Programming

To prove that all programs terminate, Agda makes strong
restrictions on de�nitions

1 Predicative polymorphism

�-type-in-type

2 Structural recursive functions

�-no-termination-check

3 Strictly-positive datatypes

�-no-positivity-check

Restrictions hinder compile-time programmability.

So, we remove them with �ags



Proof checking vs. Programming

To prove that all programs terminate, Agda makes strong
restrictions on de�nitions

1 Predicative polymorphism

�-type-in-type

2 Structural recursive functions

�-no-termination-check

3 Strictly-positive datatypes

�-no-positivity-check

Restrictions hinder compile-time programmability.
So, we remove them with �ags



Proof checking vs. Programming

To prove that all programs terminate, Agda makes strong
restrictions on de�nitions

1 Predicative polymorphism �-type-in-type

2 Structural recursive functions

�-no-termination-check

3 Strictly-positive datatypes

�-no-positivity-check

Restrictions hinder compile-time programmability.
So, we remove them with �ags



Proof checking vs. Programming

To prove that all programs terminate, Agda makes strong
restrictions on de�nitions

1 Predicative polymorphism �-type-in-type

2 Structural recursive functions �-no-termination-check

3 Strictly-positive datatypes

�-no-positivity-check

Restrictions hinder compile-time programmability.
So, we remove them with �ags



Proof checking vs. Programming

To prove that all programs terminate, Agda makes strong
restrictions on de�nitions

1 Predicative polymorphism �-type-in-type

2 Structural recursive functions �-no-termination-check

3 Strictly-positive datatypes �-no-positivity-check

Restrictions hinder compile-time programmability.
So, we remove them with �ags



Types are �rst-class data

They may be:

Passed to functions, dependently or non-dependently

f : Set→ Set
f x = (x→ x)
g : (A : Set) → A→ A
g A x = x

Returned as results, dependently or non-dependently

h : Bool→ ∃ (λ A→ A)
h x = if x then (N,0) else (Bool,true)

Stored in data structures

(N :: Bool :: Vec N 3 :: []) : List Set



Types are �rst-class data

They may be:

Passed to functions, dependently or non-dependently

f : Set→ Set
f x = (x→ x)
g : (A : Set) → A→ A
g A x = x

Returned as results, dependently or non-dependently

h : Bool→ ∃ (λ A→ A)
h x = if x then (N,0) else (Bool,true)

Stored in data structures

(N :: Bool :: Vec N 3 :: []) : List Set



Types are �rst-class data

They may be:

Passed to functions, dependently or non-dependently

f : Set→ Set
f x = (x→ x)
g : (A : Set) → A→ A
g A x = x

Returned as results, dependently or non-dependently

h : Bool→ ∃ (λ A→ A)
h x = if x then (N,0) else (Bool,true)

Stored in data structures

(N :: Bool :: Vec N 3 :: []) : List Set



Types are �rst-class data

They may be:

Passed to functions, dependently or non-dependently

f : Set→ Set
f x = (x→ x)
g : (A : Set) → A→ A
g A x = x

Returned as results, dependently or non-dependently

h : Bool→ ∃ (λ A→ A)
h x = if x then (N,0) else (Bool,true)

Stored in data structures

(N :: Bool :: Vec N 3 :: []) : List Set



Type in Type

Both types and regular data may be inferred by the type checker
(as implicit arguments) and symbolically evaluated at compile time.

What is the di�erence between types and other sorts of data?

Types can be used to classify data.

Types are classi�ed by Set

i.e. if Γ ` e : t then Γ ` t : Set and t is a type.



Type in Type

Both types and regular data may be inferred by the type checker
(as implicit arguments) and symbolically evaluated at compile time.

What is the di�erence between types and other sorts of data?

Types can be used to classify data.

Types are classi�ed by Set

i.e. if Γ ` e : t then Γ ` t : Set and t is a type.



Type in Type

Both types and regular data may be inferred by the type checker
(as implicit arguments) and symbolically evaluated at compile time.

What is the di�erence between types and other sorts of data?

Types can be used to classify data.

Types are classi�ed by Set

i.e. if Γ ` e : t then Γ ` t : Set and t is a type.



Type in Type

Both types and regular data may be inferred by the type checker
(as implicit arguments) and symbolically evaluated at compile time.

What is the di�erence between types and other sorts of data?

Types can be used to classify data.

Types are classi�ed by Set

i.e. if Γ ` e : t then Γ ` t : Set and t is a type.



Type in Type

Both types and regular data may be inferred by the type checker
(as implicit arguments) and symbolically evaluated at compile time.

What is the di�erence between types and other sorts of data?

Types can be used to classify data.

Types are classi�ed by Set

i.e. if Γ ` e : t then Γ ` t : Set and t is a type.



Type in Type

What about Set? What is its type?

Flag �-type-in-type enables Γ ` Set : Set

Convenient for polymorphic data structures:

head : ∀ {A n} → Vec A (suc n) → A
head (x :: xs) = x

x : Set
x = head (N :: Bool :: [])



Type in Type

What about Set? What is its type?

Flag �-type-in-type enables Γ ` Set : Set

Convenient for polymorphic data structures:

head : ∀ {A n} → Vec A (suc n) → A
head (x :: xs) = x

x : Set
x = head (N :: Bool :: [])



Type in Type

What about Set? What is its type?

Flag �-type-in-type enables Γ ` Set : Set

Convenient for polymorphic data structures:

head : ∀ {A n} → Vec A (suc n) → A
head (x :: xs) = x

x : Set
x = head (N :: Bool :: [])



Type in Type

What about Set? What is its type?

Flag �-type-in-type enables Γ ` Set : Set

Convenient for polymorphic data structures:

head : ∀ {A n} → Vec A (suc n) → A
head (x :: xs) = x

x : Set
x = head (N :: Bool :: [])



What about termination?

Type soundness is independent of termination. So even if we don't
know that programs terminate, we still know that they will not
crash.

Knowing that we don't need an additional case in head is
independent of termination.

head : ∀ {A n} → Vec A (suc n) → A
head (x :: xs) = x

Have partial correctness: the program is correct up to termination.
Caveats:

Invalid proofs can also cause programs to diverge. (And can't
erase them either!)

Implications are not to be trusted.



What about termination?

Type soundness is independent of termination. So even if we don't
know that programs terminate, we still know that they will not
crash.
Knowing that we don't need an additional case in head is
independent of termination.

head : ∀ {A n} → Vec A (suc n) → A
head (x :: xs) = x

Have partial correctness: the program is correct up to termination.
Caveats:

Invalid proofs can also cause programs to diverge. (And can't
erase them either!)

Implications are not to be trusted.



What about termination?

Type soundness is independent of termination. So even if we don't
know that programs terminate, we still know that they will not
crash.
Knowing that we don't need an additional case in head is
independent of termination.

head : ∀ {A n} → Vec A (suc n) → A
head (x :: xs) = x

Have partial correctness: the program is correct up to termination.
Caveats:

Invalid proofs can also cause programs to diverge. (And can't
erase them either!)

Implications are not to be trusted.



Coming next...

Two intensive examples of generic programming in Agda...

1 Kind-indexed type-directed programming

2 Arity-generic programming



Coming next...

Two intensive examples of generic programming in Agda...

1 Kind-indexed type-directed programming

2 Arity-generic programming



Coming next...

Two intensive examples of generic programming in Agda...

1 Kind-indexed type-directed programming

2 Arity-generic programming


	Introduction and Goals
	The Basics in Agda
	Generic programming in Agda
	Programming vs. Proving

