
RepLib: A library for derivable
type classes

Stephanie Weirich
University of Pennsylvania

Generic Programming

 Aka Type-Directed Programming
 Behavior of generic functions determined by

type information
 Polymorphic equality, Read, Show
 Reductions
 Mapping

 Behavior determined by type structure and type
name
 Default case determined by structure
 May be overridden by special case

Approaches to Generic Programming

 Domain-Specific Language
Generic operation specified in external language,

compiled to Haskell
PolyP, Generic Haskell, Derivable type classes

 Generic functions
Define generic fold/map for each datatype
Define generic operation in terms of fold
Bimap, Scrap Your Boilerplate, Spines

 Type Reflection
Represent type structure with a datatype/GADT
Define operation with pattern matching & recursion
Typeable, First-class phantom types, RepLib

Representation types

Singleton types that reflect type
information in the term language

 Implemented in GHC with a GADT

data R a where
Int :: R Int
Unit :: R ()
Pair :: R a -> R b -> R (a,b)
Arrow :: R a -> R b -> R (a -> b)

Pair Int Unit :: R (Int, ())

Using Rep types

Data constructor determines the type
parameter

gsumR :: R a -> a -> Int
gsumR Int x = x
gsumR Unit x = 0
gsumR (Pair t1 t2) (x1,x2) =
 gsumR t1 x1 + gsumR t2 x2
gsumR (Arrow t1 t2) f = 0

Advantages of Rep types

Definition by pattern matching/recursion
Not limited to simple folds
SYB-style combinators still available
Arrow types

Dynamic types
Type-directed ops work even if type isn’t

known statically

data Dynamic = forall a. Dyn (a, R a)

Problems with Rep Types

Using Rep types safely
Using Rep types conveniently
Representing datatypes generically
Specializing generic operations

Using Rep types safely

Not all operations are defined for all types

Other operations make even less sense for
functions

How to statically prevent showR from
being called on Arrow type reps?

showR :: R a -> a -> String
showR (Arrow t1 t2) f = “<closure>”

Using Rep types conveniently

O'en rep type argument is known
statically

Constructing these reps by hand is tedious

gsumR ((Char `Pair` Char) `Pair` Bool)
 ((‘a’,’b’), True)

Solution: type classes

 Use type class to provide representation

 Instances declare what types are safe for each
operation

class Rep a where rep :: R a
instance Rep Int where rep = Int
instance (Rep a, Rep b) => Rep (a,b) where
 rep = Pair rep rep
class Rep a => GSum a where
 gsum :: a -> Int
 gsum = gsumR rep

instance GSum Int
instance (GSum a, GSum b) => GSum (a,b)

Generic datatype Reps

 All datatypes are different in Haskell

 Don’t want new data constructor for each new datatype

 Want datatype-generic programming

data Phone = Phone Int
data Age = Age Int
f :: Age -> Age
f (Phone 1234567)

data R a where
 Int :: R Int
 Phone :: R Phone
 Age :: R Age
 …

Datatype-Generic Representation types

 Representation of a datatype constructor

 Heterogeneous list

 Embedding/Projection pair

 Rep of heterogeneous list

data Emb l a = Emb { to :: l -> a,
 from :: a -> Maybe l }

data Nil = Nil
data a :*: l = a :*: l

data RTup l where
 RNil :: RTup Nil
 (:+:) :: Rep a => R a -> RTup l -> RTup (a :*: l)

data Con a = ∀ l. Con (Emb l a) (RTup l)

Generic view of datatypes

Rep of data constructor

Example
data Tree a = Leaf a | Node (Tree a) (Tree a)

leafEmb :: Emb (a :*: Nil) (Leaf a)
leafEmb = {
 to = \(a :*: Nil) -> Leaf a,
 from = \x -> case x of Leaf a -> Just (a :*: Nil)
 _ -> Nothing
}
rLeaf :: forall a. Rep a => Con (Leaf a)
rLeaf = Con leafEmb ((rep::R a) :+: RNil)

data Con a = ∀ l. Con (Emb l a) (RTup l)

Generic view of datatype

 List of data constructor reps

 Plus name and reps of type args

 Example

data R a where
 …
 Data :: DT -> [Con a] -> R a

data DT = ∀l.DT String (RTup l)

rTree :: forall a. Rep a => R (Tree a)
rTree = Data (DT “Tree” ((rep :: R a) :+: RNil))
 [rLeaf,rNode]

Using generic rep

gsumR :: R a -> a -> Int
gsumR Int x = x
gsumR (Pair t1 t2) (x1,x2) = gsum t1 x1 + gsum t2 x2
gsumR (Data dt cons) x = findCon cons
 where
 findCon :: [Con a] -> Int
 findCon (Con emb reps : rest) =
 case (from emb x) of
 Just kids -> foldl_l (\r a b -> gsumR r a + b) 0 reps kids

 Nothing -> findCon rest
 findCon [] = error “Impossible”
gsumR _ x = 0

•Provide instance of Rep class

•Derive instance of GSum class

•Call generic function

Derivable type classes

instance Rep a => Rep (Tree a) where
 rep = rTree

instance GSum a => GSum (Tree a)

gsum (Node (Leaf 4) (Leaf 5)) = 9

Specializing Generic Functions

newtype M = M Int
(derive [``M])

instance GSum M where
 gsum (M x) = 0

gsum (M 3) = 0
gsum (M 4, M 3) = 7

Solution

 Problem is in definition of gsumR for Pairs (and Data)
 If we could abstract over type classes…

data R c a where
 Int :: R Int
 Pair :: (c a, c b) => R c (a,b)
 …

gsumR :: R GSum a -> a -> String
gsumR Int x = x
gsumR Pair (x1,x2) = gsum x1 + gsum x2
…

instance (c a, c b) => Rep c (a, b) where
 rep = Pair
instance Rep GSum a => GSum a where
 gsum = gsumR rep

What is RepLib?

Definitions of Representation types
Both vanilla and parameterized reps

Template Haskell automatically creates
reps

Generic functions (e.g. gsum)
SYB-like combinators to define new ones
(e.g. foldl_l, gmapT, gmapQ)

Some support for type-constructor
indexed functions (see paper)

Limitations

 Two different representation types
Parameterized representations not dynamic
Still other reps necessary for arity-2 and arity-3 generic

functions (map and zip)
 No type-indexed types

Limited interaction between GADTs and MPTC
 No kind polymorphism/kind-indexed types

Args to type constructors must all be kind type
 Requires GHC extensions
 Can’t represent all GHC types
 Dynamic type analysis

Conclusion

RepLib balances expressiveness and
simplicity

RepLib can define
many common generic functions that
analyze many common types in the most
popular Haskell implementation.

Download now

Help add to the library!
New generic functions
New combinators

Available at:
http://www.cis.upenn.edu/~sweirich/RepLib

Required GHC extensions

Lexically-scoped type variables
Higher-rank polymorphism
Existential components
GADTs
Undecidable instances
Template Haskell (for rep generation)

