Programming with Types

Run-time type analysis and the foundations of program reflection

Stephanie Weirich
Cornell University
Reflection

- A style of programming that supports the *run-time discovery* of program information.
 - “What does this code do?”
 - “How is this data structured?”

- Running program provides information about itself.
 - self-descriptive computation.
 - self-descriptive data.
Applications of reflection

- **Runtime systems**: garbage collection, serialization, structural equality, cloning, hashing, checkpointing, dynamic loading
- **Code monitoring tools**: debuggers, profilers
- **Component frameworks**: software composition tools, code browsers
- **Adaptation**: stub generators, proxies
- **Algorithms**: iterators, visitor patterns, pattern matching, unification
Primitive notions of reflection

- What is the fundamental enabling mechanism to support reflection?
 - **Run-time examination of type or class.**

- **Not** dynamic dispatch in OO languages.
 - Have to declare an instance for every new class declared. Easy but tedious.
 - Simple apps hard-wired in Java.

- **Not** instanceof operator in OO languages.
 - It requires a closed world.
 - Need to know the name of the class a priori.
 - Need to know what that name means.
Structural Reflection

- Need to know about the *structure* of the data to implement these operations once and for all.

- Java Reflection API
 - Classes to describe the type structure of Java Class, Field, Method, Array,…
 - Methods to provide access to these classes at run time: Object.getClass, Class.getFields, Field.getType …
String serialize(Object o) {
 String result = "[";
 Fields[] f = o.getClass().getFields();
 for (int i=0; i<f.length; i++) {
 Class fc = f[i].getType();
 if (fc.isPrimitive()) {
 if (fc == Integer.TYPE) {
 result += serializeInt((Integer) f[i].get(o));
 } else if (fc == Boolean.TYPE) {
 result += serializeBoolean((Boolean) f[i].get(o));
 } else if ...
 } else { result += serialize(f[i].get(o)); }
 }
 return result + "]" ;
}
Not integrated with type system

- Can’t catch bugs statically.

  ```java
  if ( fc == Integer.TYPE )
      result += serializeBoolean( (Boolean) f[i].get( o ) );
  ```

- Need redundant tests of type information.

  ```java
  if ( fc == Integer.TYPE )
      result += serializeInt( (Integer) f[i].get( o ) );
  ```

- All objects must have attached type information.

  ```java
  o.getClass( );
  (Integer)o;
  ```
Separating types from data

- Implementation must store type information with each data value.
 - Necessary for `getClass` and `runtime casts`.

- Can’t express the run-time behavior of type information.
 - Hinders optimization in typed low-level languages.

- Prevents type abstraction in high-level languages.
 - Impossible to hide the implementation of an abstract data-type.
 - Necessary for modularity and representation independence.
Foundational study of reflection

- It is not clear how to smoothly integrate these dynamic mechanisms into a statically typed language.

- An ideal framework…
 - Must be connected with the type system.
 - Must be able to express optimizations.
 - Must allow type abstraction.
 - Must extend to advanced type systems.
My Work

- Examination of the foundational mechanisms for reflection.
 - Done in the context of typed lambda calculi

- Contributions in this area:
 - An accurate connection between run-time type information and types [Crary, Weirich, Morrisett 98].
 - A core reflection language with the flexibility to describe a variety of type systems [Crary & Weirich 99].
 - An encoding of these languages into a language without specialized reflection mechanisms [Weirich 01].
 - An extension of reflection that encompasses type constructors and quantified types [Weirich 02].
A standard typed lambda calculus plus an abstract datatype (ADT) to represent type information.

\[\tau ::= \text{int} | \text{string} | \tau_1 \rightarrow \tau_2 | \tau_1 \cdot \tau_2 \]

\[e ::= 0 | 1 | "\text{foo}" | \ldots | x | \lambda x:\tau. e | e_1 (e_2) | <e_1, e_2> | e_1 \cdot e_2 \]

Formalizing reflection:

- Terms that describe the type structure
- The type of these terms
- A way to branch on the terms
- A checked cast to recover it
- Some way to hide the run-time type
- A convenient way to get the type of a value

\[(e) e \text{, typeof(e)} \]

\[\text{Rint } | \text{Rstring } | \text{Rarrow(e1,e2) } | \text{Rpair(e1,e2) } | \text{tcase e of }\]

\[\text{Rint } | \text{... } | \text{Rstring } | \text{... } | \text{Rarrow(x,y) } | \text{... } | \text{Ppair(x,y) } | \text{... } \]
Comparison with Java Reflection

Idealized Language
- any
- rep
- Rint
- Rstring
- typeof(e)
- (τ)e

Java Reflection API
- Object
- Class/Field/Method
- Integer.TYPE
- String.getClass();
- e.getClass();
- (classname)e
Serialization

serialize has type: \textit{any} \rightarrow \textit{string}

\texttt{serialize (x) =
\quad \text{tcase (typeof(x)) of}
\quad \quad \text{Rint} \quad \implies \text{int2string((int) x)}
\quad \text{Rstring} \quad \implies "" + (\text{string}) x + ""\"
\quad \text{Rpair(w,z)} \quad \implies "" + \text{serialize((any'any) x.1)} + ","
\quad \quad + \text{serialize((any'any) x.2)} + ")"
\quad \text{Rarrow(w,z)} \quad \implies "<function>"
Serialize without typeof

New type of serialize: rep'any → string

serialize (xrep, x) =
 tcase (xrep) of
 Rint) int2string ((int) x)
 Rstring) “\“” + (string) x + “\””
 Rpair(w,z))
 “\“ + serialize (w, (any’any) x.1) + \ “,”
 + serialize (z, (any’any) x.2) + “\””
 Rarrow(w,z)) “<function>”
Accurate reflection

- Connect types and their representations.
- A term has the type \(\text{rep}(\tau) \) if it represents \(\tau \).

 \[
 \begin{align*}
 \text{Rint} & : \text{rep}(\text{int}) \\
 \text{Rstring} & : \text{rep}(\text{string}) \\
 \text{Rpair}(e_1,e_2) & : \text{rep}(\tau_1 \times \tau_2) \quad (\text{if } e_1:\text{rep}(\tau_1) \text{ and } e_2:\text{rep}(\tau_2)) \\
 \text{Rarrow}(e_1,e_2) & : \text{rep}(\tau_1 \rightarrow \tau_2) \quad (\text{if } e_1:\text{rep}(\tau_1) \text{ and } e_2:\text{rep}(\tau_2))
 \end{align*}
 \]

- Type variables express the connection.

 - \(x : \alpha, \ y : \text{rep}(\alpha) \)

[Crary, Weirich, Morrisett 98]
The analysis term *refines* the type information.

\[\text{tcase } (x : \text{rep}(\alpha)) \text{ of } \]

- \(\text{Rint} \) \(\Rightarrow \) ... \(\alpha \) is int
- \(\text{Rstring} \) \(\Rightarrow \) ... \(\alpha \) is string
- \(\text{Rpair}(e1, e2) \) \(\Rightarrow \) ... \(\alpha \) is a pair type
- \(\text{Rarrow}(e1,e2) \) \(\Rightarrow \) ... \(\alpha \) is a function type
Serialize without casts

- serialize has type: \(8\alpha. \text{rep}(\alpha) \to \alpha \to \text{string} \)

```
serialize (x:rep(\alpha), y:\alpha) =
  tcase x of
    Rint ) int2string(y)
    Rstring ) """ + y + ""
    Rpair(w,z) ) "(" + serialize(w,y.1) + ","
                  + serialize(z, y.2) + ")"
    Rarrow(w,z) ) "<function>"
```
Benefits of this approach

- Can express low-level operation.
 - Rep types used to add dynamic loading to Typed Assembly Language (TAL).
 [Hicks, Weirich, Crary 2000]

- Can optimize use of analysis.
 - foo (x:array α, y:rep(α)) = tcase y of ...

- Preserves type abstraction.
 - can’t determine α without rep(α)
Scaling to more expressivity

- Current type systems are *much* more sophisticated.
 - Objects/Classes [Java, C++, C#, OCaml, ...]
 - First-class polymorphic/abstract types [Haskell, Cyclone, Vault, CLU, ...]
 - Higher-order type constructors [ML, Haskell, ...]
 - Region types [Cyclone, Vault, Tofte&Talpin, Gay&Aiken, ...]
 - Security types [JIF, MLIF, PCC, CCured, Cqual, Walker, ...]
 - Bounding time/space usage [Crary&Weirich]
 - Using resources correctly [Igarashi & Kobayashi, ...]
 - Dependent types [Cayenne, Xi, Shao et al., ...]

- Scaling structural type analysis to these systems in this framework is a challenge.
But we want to...

- These type systems are getting very good at describing the behavior of programs.
 - The goal of advanced type systems is to verify expressive program properties.

- Analyzing these types at run-time provides a foundation for Behavioral Reflection.
 - Example: if the type system tracks the running time of each method, a real-time scheduler may use this information.
Rest of Talk

- I will talk about how to extend type analysis to advanced type systems.

- Two crucial issues:
 - Type constructors
 - Types with binding structure

- These constructs are *foundational* to many current type systems.
A simplification

For ease of exposition, use types as their run-time representations.

- Wherever \texttt{Rint} appears use \texttt{int}.
- Polymorphic functions have explicit run-time type arguments.

 \texttt{serialize(x : rep(\alpha), y:\alpha)} vs. \texttt{serialize[\alpha](y:\alpha)}

- Argument to \texttt{tcase} is a type instead of a term.

 \texttt{tcase x of } \texttt{vs. } \texttt{tcase \alpha of}

 \texttt{Rint) ... } \texttt{vs. } \texttt{tcase \alpha of}

 \texttt{int)}

[Harper & Morrisett 95]
Serialization

\[
\text{serialize}[\alpha] (x:\alpha) = \\
\text{tcase } \alpha \text{ of } \\
\quad \text{int} \quad \) \text{int2string}(x) \\
\quad \text{string} \) \text{“}" + x + ""\"
\quad \beta \ ' \gamma \) \text{“)”} + \text{serialize}[\beta](x.1) + “,” \\
\quad \quad + \text{serialize}[\gamma](x.2) + “)”
\quad \beta \rightarrow \gamma \) \text{“<function>”}
\]

Type constructors

- Types indexed by other types.
- Useful to describe parameterized data structures.
 - head : $\forall\alpha. \text{list}\alpha \rightarrow \alpha$
 - tail : $\forall\alpha. \text{list}\alpha \rightarrow \text{list}\alpha$
 - add : $\forall\alpha. (\alpha' \text{list}\alpha) \rightarrow \text{list}\alpha$
- Don’t have to cast the type of elements removed from data structures.
Type functions

- Type constructors are functions from types to types.
- Expressed in the type syntax like lambda-calculus functions.

\[\tau ::= \ldots | \lambda \alpha. \tau | \tau_1 \tau_2 | \alpha \]

- Example:
 \[\text{Quad} = \lambda \alpha. (\alpha' \alpha)' (\alpha' \alpha) \]

- Static language for reasoning about the relationship between types.
Types with binding structure

- Parametric polymorphism hides the types of inputs to functions.
 \[\forall \alpha. \text{rep}(\alpha) \to \alpha \to \text{string} \]

- Other examples:
 - Existential types (\(\exists \alpha. \tau \)) hide the actual type of stored data.
 - Recursive types (\(\mu \alpha. \tau \)) describe data structures that may refer to themselves (such as lists).
 - Self quantifiers (\(\text{self} \alpha. \tau \)) encode objects.
Problems with these types

- tcase is based on the fact that the closed, simple types are inductive.
 \[\tau ::= \text{int} \mid \text{string} \mid \tau_1 \to \tau_2 \mid \tau_1 \,'
 \tau_2 \]

- Analysis is an iteration over the type structure.

- With quantified types, the structure is not so simple.
 \[\tau ::= \ldots \mid \exists \alpha. \tau \mid \alpha \]
Example

tcase α of
 int) ...
 string) ...
 β → γ) ...
 β' γ) ...
 8α.??) ...

Here β and γ are bound to the subcomponents of the type, so they may be analyzed.

Can’t abstract the body of the type here, because of free occurrences of α.
Higher-order abstract syntax

- Use type constructors to represent polymorphic types.

\[8 \alpha . \alpha \rightarrow \alpha \text{ vs. } 8(\lambda \alpha . \alpha \rightarrow \alpha) \]

- In branch for 8, we can abstract that constructor.

\[\text{tcase } 8(\lambda \alpha . \alpha \rightarrow \alpha) \text{ of } \]
\[\begin{align*}
\text{int} & \quad \cdots \\
\beta \rightarrow \gamma & \quad \cdots \\
8\delta & \quad \cdots \text{// } \delta \text{ is bound to } (\lambda \alpha . \alpha \rightarrow \alpha)
\end{align*} \]

- Have to apply 8 to some type in order to analyze it. This works well for some examples.

[Pfenning&Elliot][Trifonov et al.]
But not for all

\[
\text{serializeType}[\alpha] =
\begin{array}{l}
\text{tcase } \alpha \text{ of } \\
\text{int } \rightarrow \text{ "int" } \\
\beta \ ' \ \gamma \rightarrow \text{ "(" + serializeType[\beta] + " * " + serializeType[\gamma] + ")" } \\
\beta \rightarrow \gamma \rightarrow \text{ "(" + serializeType[\beta] + " -\rightarrow " + serializeType[\gamma] + ")" } \\
8\beta \rightarrow ???
\end{array}
\]
Two solutions with one stone

If we can analyze type constructors in a principled way, then we can analyze quantified types in a principled way.
Type equivalence

- For type checking, we must be able to determine when two types are semantically equal.
 - to call a function we must make sure that its argument has the right type.

- Reference algorithm: fully apply all type functions inside the two types and compare the results.

\[
(\lambda \alpha. \alpha \ ' \alpha) (\text{int}) =? (\lambda \beta. \beta \ '\text{int}) (\text{int})
\]
\[
\text{int' int} =? \text{int' int}
\]
Constraint on type analysis

- When we analyze this type language we must respect type equivalence.

\[\text{tcase } [(\lambda \alpha. \alpha \ ' \ \text{int}) \ \text{int}]... \]
\[\text{must produce the same result as} \]
\[\text{tcase } [\ \text{int} \ ' \ \text{int}]... \]

- Type functions, applications, and variables must be “transparant” to analysis.
- Otherwise, execution of program depends on implementation of type checker.
Generic/Polytypic programming

- Provides a general way to generate operations over parameterized data-structures.
 - [Moggi & Jay][Jannson & Juering][Hinze]
 - Example: \texttt{gmap<list>} applies a function f to all of the α’s in \texttt{list α}.
 - This is a \textit{compile-time} specialization. No type information is analyzed at run-time.
- A polytypic definition must also respect type equality.
 - $\texttt{foo < (\lambda \alpha. \alpha \; \texttt{int}) \texttt{int} >} = \texttt{foo < int \; \texttt{int} >}$
Basic idea

- Create an interpretation of the type language with the term language.
 - Map type functions to term functions.
 - Map type variables to term variables.
 - Map type applications to term applications.
 - Map type constants to (almost) anything.

- We can use this idea at run-time to analyze type constructors and quantified types.
Type Language

t ::= α
 | λα. τ
 | τ₁ τ₂
 | int | string
 | → | ’ | 8

- The type int ’ int is the constant ’ applied to int twice.
- The type 8α . α →α is the constant 8 applied to the type constructor (λα . α →α).
Instead of tcase, define analysis term:
\[\text{tinterp}[\eta] \tau \]

- To interpret this language we need an environment to keep track of the variables.
- This environment will also have mappings for all of the constants.
Operational semantics of \textit{tinterp}

- Type constants are retrieved from the environment
 \[
 \begin{align*}
 \text{tinterp}[\eta] \text{ int} & \Rightarrow \eta(\text{int}) \\
 \text{tinterp}[\eta] \text{ string} & \Rightarrow \eta(\text{string}) \\
 \text{tinterp}[\eta] \rightarrow & \Rightarrow \eta(\rightarrow) \\
 \text{tinterp}[\eta] ' & \Rightarrow \eta(') \\
 \text{tinterp}[\eta] 8 & \Rightarrow \eta(8)
 \end{align*}
 \]

- Type variables are retrieved from the environment
 \[
 \begin{align*}
 \text{tinterp}[\eta] \alpha & \Rightarrow \eta(\alpha)
 \end{align*}
 \]
Type functions

- Type functions are mapped to term functions.
- When we reach a type function, we add a new mapping to the environment.

\[
t\text{interp}[\eta] (\lambda \alpha. \tau) \rightarrow \\
\lambda x. \ t\text{interp}[\eta+\{\alpha\}x] (\tau)
\]

Execution extends environment, mapping \(\alpha \) to \(x \).
Application

- Type application is interpreted as term application

\[\text{tinterp}[^\eta] (\tau_1 \tau_2) \rightarrow (\text{tinterp}[^\eta] \tau_1) (\text{tinterp}[^\eta] \tau_2) \]

The interpretation of \(\tau_1 \) is a function
Example

serializeType[τ] = tinterp [η] τ
where η = {
 int) “int”
 string) “string”
 ’) λ x:string. λ y:string.
 “(” + x + “*” + y + “)”
 →) λ x:string. λ y:string.
 “(” + x + “->” + y + “)”
 8) λ x:string→string.
 let v = gensym () in
 “(all ” + v + “.” + (x v) + “)”
}

Example execution

\[\text{serializeType}[\text{int}'\text{int}] \]

\[\rightarrow (\text{tinterp}[\eta] ') (\text{tinterp}[\eta] \ \text{int}) (\text{tinterp}[\eta] \ \text{int}) \]

\[\rightarrow (\lambda \ x: \text{string}. \ \lambda \ y: \text{string}. \ "("+ x +"*"+ y +")") \]

\[(\text{tinterp}[\eta] \ \text{int}) (\text{tinterp}[\eta] \ \text{int}) \]

\[\rightarrow (\lambda \ x: \text{string}. \ \lambda \ y: \text{string}. \ "("+ x +"*"+ y +")") \]

\["\text{int}" \ "\text{int}" \]

\[\rightarrow "(" + "\text{int}" + "*" + "\text{int}" + ")" \]

\[\rightarrow "(\text{int}*\text{int})" \]
Example

serializeType[τ] = tinterp [η] τ

where η = {
 int) “int”
 string) “string”
 ’) λ x:string. λ y:string.
 “(” + x + “*” + y + “)”

 →) λ x:string. λ y:string.
 “(” + x + “->” + y + “)”

 8) λ x:string→string.
 let v = gensym () in
 “(all ” + v + “.” + (x v) + “)”
}

Not the whole story

- More complicated examples require a generalization of this framework.
 - Must allow the type of each mapping in the environment to depend on the analyzed type.
 - Requires maintenance of additional type substitutions to do so in a type-safe way.
 - This language is type sound.

- Details appear in:
 Stephanie Weirich. Higher-Order Intensional Type Analysis. In European Symposium on Programming (ESOP ‘02).
Conclusion

- Reflection is analyzing the structure of abstract types.
- Branching on type structure doesn’t scale well to sophisticated and expressive type systems.
- A better solution is to interpret the compile-time language at run-time.
Future work

- **Type-based reflection**
 - Reconciliation of structural and name-based analysis.

- **Multi-level programming**
 - Extensible programming languages.
 - Domain-specific languages.

- **Program verification**
 - Sophisticated type systems allow the representation and verification of many program properties.