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What are dependent types? 

Types that depend on elements of other types.  
  Examples: 

  vec n – type of lists of length in 
  Generalized tries 
  PADS 
  Type of ASTs that represent well-typed code 

  Statically enforce expressive program properties 
  BST ops preserve BST invariants 
  CompCert compiler 



Two sorts in practice today 

Pure everywhere Pure types only 

Types indexed by actual computations, 
everything is pure (terminating) 

Types indexed by a pure language, 
separate from impure computations 

•  Decidable type checking   
•  Easy to connect type system to actual 
computation 
•  Uniform reasoning independent of phase 
•  Total correctness 

•  Decidable type checking  
•  Expressive computation language, 
including nontermination, state & control 
effects, etc 

•  Not really a programming language •  Index language may have minimal 
similarity to computation language, both in 
syntax and semantics  
•  "Partial" Correctness 

Examples: Coq, Epigram, Agda2 Examples: DML,  ATS, Ωmega, Haskell 



Let’s do it wrong… 

  What about languages that are impure everywhere?  
  Deliberately allow nonterminating terms in types 
  Type:Type [Cardelli 86], Cayenne [Augustsson 98] 

  What does a type soundness proof for such a language look 
like? 
  Note:  type checking undecidable 

  Advantages 
  Linguistic uniformity, reasoning does not depend on phase 
  Programming language, not a logic 

  Disadvantages 
  How to type check? 
  Partial correctness 



What else do we want? 

  Syntactic type soundness proof 
  Easily extensible 

  Strong eliminators 
  "If x = true then int else bool" 
  Important for expressivity, refinements, etc. 

  Call-by-value language 
  If we have an impure language, we must fix the evaluation order 
  CBV has better treatment of control effects 

  "Modular" metatheory 
  Program equivalence is hard. Let's not commit to a particular 

definition. 



"Pure everywhere" type system - PTS 

  No distinction between types, terms, kinds 
         e, τ, k  ::=  x | λx.e | e e' | (x:τ1) ➝ τ2 | ∗ | ◻ 
                      |   T |  C  | case e { Ci xi ⇒ ei } 
  One set of formation rules 
                                            Γ ⊢ e : τ 

  Conversion rule uses beta-equivalence 
Γ ⊢ e : τ1       Γ ⊢  τ2 : s        τ1 ~ τ2 

Γ ⊢ e : τ2 

  Term equivalence is fixed by type system (and defined to 
be the same as type equivalence). 

τ1 and τ2 are 
beta-

convertible 



New vision 

  Syntactic distinction between terms, types, and kinds 
k  ::=   ∗ | (x:τ) ➝  ∗ 
τ  ::=  (x:τ1) ➝ τ2 | T  | τ e  | case e ⟨T e' ⟩ { Ci xi ⇒ τ i }  
e  ::=  x | fun f (x) = e | e e' | C e | case e { Ci xi ⇒ ei }  

  Key syntactic changes  
  Term language includes non-termination  
  Curry-style, no types in expressions 

  Convenient simplifications 
  Datatypes have one index, data constructors have one 

argument (unit/products in paper) 
  No polymorphism, no higher-kinded types (future work) 



Parameterized term equivalence 

  Given an "equivalence context" 
  Δ ::= . | Δ , e1 = e2 

  Assume the existence of program equivalence predicate 
  isEq (Δ, e1, e2) 

   Equality is untyped  
  No guarantee that e1 and e2 have the same type 
  No assumptions about the types of the free variables 

  Rules do not use substitution, add to equivalence context 
instead 



Type system 

  Two sorts of judgments 
  Equality for type, contexts, and kinds 

  Formation for contexts, kinds, types and terms 

  All judgments derivable from an inconsistent context 
  incon (Δ) if there exist pure terms Ci wi and Cj wj such that  

isEq (Δ , Ci wi,  Cj wj ) and Ci ≠ Cj 

  Pure terms 
  w ::= x | fun f (x) = e | C w  



Typing rules (excerpt) Extract equivalence 
context  



Typing rules for case 



Type equivalence (excerpt) 



Questions to answer 

  What properties of isEq must hold to show 
preservation & progress? 

  What instantiations of isEq satisfy these properties? 



Necessary assumptions about isEq 

  Is an equivalence class 
  Contains evaluation:  e ↦ e'  implies isEq (Δ, e, e') 

  Constructors are injective for pure arguments 
  isEq (Δ, C w, C w') implies isEq (Δ, w, w') 

  Empty context is consistent 
  C ≠ C' implies isEq(., C w, C' w') does not hold 

  Closed under pure substitution 
  isEq (Δ, e, e') implies isEq (Δ{w/x}, e{w/x}, e'{w/x}) 

  Preserved under contextual operations 
  isEq ((Δ, e = e', Δ'), e1, e2) and isEq(Δ, e, e') implies 

isEq (Δ Δ',  e1, e2) 
  isEq (Δ Δ'',e1, e2) implies isEq (Δ Δ' Δ'', e1, e2)  
  isEq (Δ, e1, e2) and Δ = Δ' implies isEq (Δ', e1, e2)   



What satisfies these properties? 

  Compare normal forms (ignoring Δ) 
  Only types STLC terms  

  Contextual equivalence (ignoring Δ) 
  Only types STLC terms 

  RST-closure of evaluation, constructor injectivity, and 
equivalence assumptions 

  CBV Contextual equivalence modulo Δ  
  Some strange equalities that identify nonterminating 

terms with terminating terms 
  Safe to conclude isEq(let x = loop in 3, 3) as long as we  

don’t conclude isEq(let x = loop in 3, loop) 
  Safe to say isEq(loop,3) as long as we don’t say isEq(loop, 4) 



What about decidable type checking? 

  All instantiations of isEq are undecidable 
  Must contain evaluation relation 

  Decidable approximations are type safe, but don’t satisfy 
preservation 
  Any types system that checks strictly fewer terms than a safe 

type system is safe 

  Preservation important for compiler transformations  
  Want to know that inlining always produces safe code 
  Not really an issue: Decidable doesn't mean tractable 



What about termination analysis? 

  Like most type systems, only get "partial correctness" 
results: 
  Σx:t. P(x) means “If this expression terminates, then it 

produces a value of type t such that P holds” 
  Implications (P1 ➝ P2) may be bogus 

  Termination analysis produces total correctness 
  Termination/stage analysis is an optimization 

  permits proof erasure in CBV language 



Future work 

  Add polymorphism, higher-order types 
  Keep curry-style system for simple specification of isEq 

  Annotated external language to aid type checking 
  Similar to ICC* [Barras and Bernardo] 
  Terms contain type annotations, but equality defined for erased 

terms 
  Type checking still undecidable but closer to an algorithm 

  Add control/state effects to computations 
  Should we limit domain of isEq?  
  Non-termination ok in types, but exceptions are not? 

  Can we provide type/termination information to 
strengthen equivalence? 



Conclusions – What have we achieved? 

  Uniform design 
  Same reasoning for compile time as run time 
  Not easy for CBV! 

  Simple design 
  Program equivalence isolated from type system 
  Proved all metatheory in Coq in ~2 weeks (OTT + LNgen) 

  General design 
  Program equivalence not nailed down 
  Lots of examples that satisfy preservation, not just type 

soundness 


