
Dependent types and program
equivalence

Stephanie Weirich, University of Pennsylvania
with Limin Jia, Jianzhou Zhao, and Vilhelm Sjöberg

Doing dependent types wrong
without going wrong

Stephanie Weirich, University of Pennsylvania
with Limin Jia, Jianzhou Zhao, and Vilhelm Sjöberg

What are dependent types?

Types that depend on elements of other types.
  Examples:

  vec n – type of lists of length in
  Generalized tries
  PADS
  Type of ASTs that represent well-typed code

  Statically enforce expressive program properties
  BST ops preserve BST invariants
  CompCert compiler

Two sorts in practice today

Pure everywhere Pure types only

Types indexed by actual computations,
everything is pure (terminating)

Types indexed by a pure language,
separate from impure computations

•  Decidable type checking
•  Easy to connect type system to actual
computation
•  Uniform reasoning independent of phase
•  Total correctness

•  Decidable type checking
•  Expressive computation language,
including nontermination, state & control
effects, etc

•  Not really a programming language •  Index language may have minimal
similarity to computation language, both in
syntax and semantics
•  "Partial" Correctness

Examples: Coq, Epigram, Agda2 Examples: DML, ATS, Ωmega, Haskell

Let’s do it wrong…

  What about languages that are impure everywhere?
  Deliberately allow nonterminating terms in types
  Type:Type [Cardelli 86], Cayenne [Augustsson 98]

  What does a type soundness proof for such a language look
like?
  Note: type checking undecidable

  Advantages
  Linguistic uniformity, reasoning does not depend on phase
  Programming language, not a logic

  Disadvantages
  How to type check?
  Partial correctness

What else do we want?

  Syntactic type soundness proof
  Easily extensible

  Strong eliminators
  "If x = true then int else bool"
  Important for expressivity, refinements, etc.

  Call-by-value language
  If we have an impure language, we must fix the evaluation order
  CBV has better treatment of control effects

  "Modular" metatheory
  Program equivalence is hard. Let's not commit to a particular

definition.

"Pure everywhere" type system - PTS

  No distinction between types, terms, kinds
 e, τ, k ::= x | λx.e | e e' | (x:τ1) ➝ τ2 | ∗ | ◻
 | T | C | case e { Ci xi ⇒ ei }
  One set of formation rules
 Γ ⊢ e : τ

  Conversion rule uses beta-equivalence
Γ ⊢ e : τ1 Γ ⊢ τ2 : s τ1 ~ τ2

Γ ⊢ e : τ2

  Term equivalence is fixed by type system (and defined to
be the same as type equivalence).

τ1 and τ2 are
beta-

convertible

New vision

  Syntactic distinction between terms, types, and kinds
k ::= ∗ | (x:τ) ➝ ∗
τ ::= (x:τ1) ➝ τ2 | T | τ e | case e ⟨T e' ⟩ { Ci xi ⇒ τ i }
e ::= x | fun f (x) = e | e e' | C e | case e { Ci xi ⇒ ei }

  Key syntactic changes
  Term language includes non-termination
  Curry-style, no types in expressions

  Convenient simplifications
  Datatypes have one index, data constructors have one

argument (unit/products in paper)
  No polymorphism, no higher-kinded types (future work)

Parameterized term equivalence

  Given an "equivalence context"
  Δ ::= . | Δ , e1 = e2

  Assume the existence of program equivalence predicate
  isEq (Δ, e1, e2)

  Equality is untyped
  No guarantee that e1 and e2 have the same type
  No assumptions about the types of the free variables

  Rules do not use substitution, add to equivalence context
instead

Type system

  Two sorts of judgments
  Equality for type, contexts, and kinds

  Formation for contexts, kinds, types and terms

  All judgments derivable from an inconsistent context
  incon (Δ) if there exist pure terms Ci wi and Cj wj such that

isEq (Δ , Ci wi, Cj wj) and Ci ≠ Cj

  Pure terms
  w ::= x | fun f (x) = e | C w

Typing rules (excerpt) Extract equivalence
context

Typing rules for case

Type equivalence (excerpt)

Questions to answer

  What properties of isEq must hold to show
preservation & progress?

  What instantiations of isEq satisfy these properties?

Necessary assumptions about isEq

  Is an equivalence class
  Contains evaluation: e ↦ e' implies isEq (Δ, e, e')

  Constructors are injective for pure arguments
  isEq (Δ, C w, C w') implies isEq (Δ, w, w')

  Empty context is consistent
  C ≠ C' implies isEq(., C w, C' w') does not hold

  Closed under pure substitution
  isEq (Δ, e, e') implies isEq (Δ{w/x}, e{w/x}, e'{w/x})

  Preserved under contextual operations
  isEq ((Δ, e = e', Δ'), e1, e2) and isEq(Δ, e, e') implies

isEq (Δ Δ', e1, e2)
  isEq (Δ Δ'',e1, e2) implies isEq (Δ Δ' Δ'', e1, e2)
  isEq (Δ, e1, e2) and Δ = Δ' implies isEq (Δ', e1, e2)

What satisfies these properties?

  Compare normal forms (ignoring Δ)
  Only types STLC terms

  Contextual equivalence (ignoring Δ)
  Only types STLC terms

  RST-closure of evaluation, constructor injectivity, and
equivalence assumptions

  CBV Contextual equivalence modulo Δ
  Some strange equalities that identify nonterminating

terms with terminating terms
  Safe to conclude isEq(let x = loop in 3, 3) as long as we

don’t conclude isEq(let x = loop in 3, loop)
  Safe to say isEq(loop,3) as long as we don’t say isEq(loop, 4)

What about decidable type checking?

  All instantiations of isEq are undecidable
  Must contain evaluation relation

  Decidable approximations are type safe, but don’t satisfy
preservation
  Any types system that checks strictly fewer terms than a safe

type system is safe

  Preservation important for compiler transformations
  Want to know that inlining always produces safe code
  Not really an issue: Decidable doesn't mean tractable

What about termination analysis?

  Like most type systems, only get "partial correctness"
results:
  Σx:t. P(x) means “If this expression terminates, then it

produces a value of type t such that P holds”
  Implications (P1 ➝ P2) may be bogus

  Termination analysis produces total correctness
  Termination/stage analysis is an optimization

  permits proof erasure in CBV language

Future work

  Add polymorphism, higher-order types
  Keep curry-style system for simple specification of isEq

  Annotated external language to aid type checking
  Similar to ICC* [Barras and Bernardo]
  Terms contain type annotations, but equality defined for erased

terms
  Type checking still undecidable but closer to an algorithm

  Add control/state effects to computations
  Should we limit domain of isEq?
  Non-termination ok in types, but exceptions are not?

  Can we provide type/termination information to
strengthen equivalence?

Conclusions – What have we achieved?

  Uniform design
  Same reasoning for compile time as run time
  Not easy for CBV!

  Simple design
  Program equivalence isolated from type system
  Proved all metatheory in Coq in ~2 weeks (OTT + LNgen)

  General design
  Program equivalence not nailed down
  Lots of examples that satisfy preservation, not just type

soundness

