Depending on Types

Stephanie Weirich
University of Pennsylvania
TDD

Type-Driven Development

with Dependent Types
The Agda Experience

On 2012-01-11 03:36, Jonathan Leivent wrote on the Agda mailing list:

> Attached is an Agda implementation of Red Black trees [..]
> The dependent types show that the trees have the usual
> red-black level and color invariants, are sorted, and
> contain the right multiset of elements following each function. [..]

> However, one interesting thing is that I didn't previously know or
> refer to any existing red black tree implementation of delete - I
> just allowed the combination of the Agda type checker and
> the exacting dependent type signatures to do their thing [..]
> making me feel more like a facilitator than a programmer.
Is Haskell a dependently-typed language?

YES*
Dependently-typed Haskell

• Show how type system extensions work together to make GHC a dependently-typed language*

• *The Past*: Put those extensions in context, and talk about how they compare to dependent type theory

• *The Future*: Give my vision of where GHC should go and how we should get there

*we cannot port every Agda/Coq/Idris program to GHC, but what we can do is impressive
Example: Red-black Trees

Running example of a data structure with application-specific invariants

- Root is black
- Leaves are black
- Red nodes have black children
- From each node, every path to a leaf has the same number of black nodes

All code available at
http://www.github.com/sweirich/dth
Insertion [Okasaki, 1993]

data Color = R | B

data Tree = E | T Color Tree A Tree

define insert :: Tree -> A -> Tree
insert s x = ins s
 where ins E = T R E x E
 ins s@(T color a y b)
 | x < y = T color (ins a) y b
 | x > y = T color a y (ins b)
 | otherwise = s

Fix the element type to be A for this talk

Temporarily suspend invariant: Result of ins may create a red node with a red child or red root.
data Color = R | B
data Tree = E | T Color Tree A Tree

insert :: Tree -> A -> Tree
insert s x = blacken (ins s)
 where ins E = T R E x E
 ins (T color a y b) =
 | x < y = balance (T color (ins a) y b)
 | x > y = balance (T color a y (ins b))
 | otherwise = s
 blacken (T _ a x b) = T B a x b

Fix the element type to be A for this talk

Temporarily suspend invariant: Result of ins may create a red node with a red child or red root.

Two fixes:
- blacken if root is red at the end
- rebalance two internal reds
balance
How do we know insert preserves Red-black tree invariants?

Do it with types

\[
\text{insert} :: \text{RBT} \rightarrow A \rightarrow \text{RBT}
\]
Red-black Trees in Agda [Licata]

```
data ℕ : Set where
  Zero : ℕ
  Suc : ℕ → ℕ

data Color : Set where
  R : Color
  B : Color

data Tree : Color → ℕ → Set where
  E : Tree B Zero
  TR : {n : ℕ} → Tree B n → A → Tree B n → Tree R n
  TB : {n : ℕ} {c₁ c₂ : Color} →
    Tree c₁ n → A → Tree c₂ n → Tree B (Suc n)
```

Arguments of indexed datatypes vary by data constructor.

Data constructors have dependent types. The types of later arguments depend on the values of earlier arguments.

Agda doesn’t distinguish between types and terms. Curly braces indicate inferred arguments.

Standard datatypes, like in Haskell. Indexed datatype. Data constructors have dependent types. The types of later arguments depend on the values of earlier arguments.
Red-black Trees in GHC

```agda
data Tree : Color → ℕ → Set where
  E : Tree B Zero
  TR : {n : ℕ} → Tree B n → A → Tree B n → Tree R n
  TB : {n : ℕ} {c₁ c₂ : Color} →
      Tree c₁ n → A → Tree c₂ n → Tree B (Suc n)
```

```haskell
data Tree :: Color -> Nat -> * where
  E :: Tree B Zero
  TR :: Tree B n -> A -> Tree B n -> Tree R n
  TB :: Tree c1 n -> A -> Tree c2 n -> Tree B (Suc n)
```

GADTs - datatype arguments may vary by constructor
Datatype promotion – data constructors may be used in types (which are naturally dependent)
ghci> let t1 = TR E a1 E
ghci> :type t1
t1 :: Tree 'R 'Zero
ghci> let t2 = TB t1 a2 E
ghci> :type t2
t2 :: Tree 'B ('Suc 'Zero)
ghci> let t3 = TR t1 a2 E
<interactive>:38:13:
 Couldn't match type 'R' with 'B'
 Expected type: Tree 'B 'Zero
 Actual type: Tree 'R 'Zero
 In the first argument of 'TR', namely 't1'
 In the expression: TR t1 A2 E
Static enforcement

RBT: Top-level type for red-black trees

Hides the black height and forces the root to be black

data RBT : Set where
 Root : {n : ℕ} → Tree B n → RBT

insert : RBT → A → RBT
insert (Root t) x = ...

Agda

data RBT :: * where
 Root :: Tree B n -> RBT

insert :: RBT -> A -> RBT
insert (Root t) x = ...

Haskell
How are Agda and Haskell different?

Haskell distinguishes types from terms
Agda does not

Types are special in Haskell:

1. Type arguments are always inferred (HM type inference)
2. Only types can be used as indices to GADTs
3. Types are always erased before run-time
GADTs: Type indices only

- Both Agda and GHC support indexed datatypes, but GHC syntactically requires indices to be types
- Datatype promotion automatically creates new datakind from datatypes

```haskell
data Color :: * where -- Color is both a type and a kind
  R :: Color -- R and B can appear in both
  B :: Color -- expressions and types

data Tree :: Color -> Nat -> * where
  E :: Tree B Zero
  TR :: Tree B n -> A -> Tree B n -> Tree R n
  TB :: Tree c1 n -> A -> Tree c2 n -> Tree B (Suc n)
```
Types are erased

RBT: Top-level type for red-black trees

Hides the black height and forces the root to be black

```
data RBT : Set where
  Root : {n : ℕ} → Tree B n → RBT

bh : RBT → ℕ
bh (Root {n} t) = n
```

Agda

```
data RBT :: * where
  Root :: Tree B n → RBT

bh :: RBT → Nat
bh (Root t) = ???
```

Haskell

--- No runtime access to black height
How do we temporarily suspend the invariants during insertion?

What is the type of this tree?

balance () =
Split balance into two cases

balanceL

balanceR
Decompose argument

\[\text{balanceL} () = \]

\[\text{balanceL}() = \]
Specialize Color

\[\text{balanceL}() = \]

\[\text{balanceLB}() = \]
balanceLB : ??? → A → Tree c n → ???

A non-empty tree that may break the color invariant at the root “AlmostTree”

balanceLB() =

A non-empty valid tree, of unknown color “HiddenTree”

balanceLB() =

balanceLB() =
Programming with types (Agda)

- A non-empty valid tree, of unknown color

```
data HiddenTree : ℕ → Set where
  HR : {m : ℕ} → Tree R m → HiddenTree m
  HB : {m : ℕ} → Tree B (Suc m) → HiddenTree (Suc m)
```

- A non-empty tree that may break the invariant at the root

```
incr : Color → ℕ → ℕ
incr B = Suc
incr R = id
```

```
data AlmostTree : ℕ → Set where
  AT : {n : ℕ}{c₁ c₂ : Color} → (c : Color) →
    Tree c₁ n → A → Tree c₂ n → AlmostTree (incr c n)
```

Use a function to calculate the black height from the color
balanceLB : \{n : \mathbb{N}\}\{c : \text{Color}\} \to \text{AlmostTree } n \to A \to \text{Tree } c \ n \to \text{HiddenTree } (\text{Suc } n)

balanceLB (AT R (TR a \ x \ b) y c) z d =
 \text{HR } (TR (TB a \ x \ b) y (TB c \ z \ d))

balanceLB (AT R a x (TR b y c)) z d =
 \text{HR } (TR (TB a \ x \ b) y (TB c \ z \ d))

balanceLB (AT B a x b) y r = \text{HB } (TB (TB a \ x \ b) y r)

balanceLB (AT R E x E) y r = \text{HB } (TB (TR E x E) y r)

balanceLB (AT R (TB a w b) x (TB c y d)) z e =
 \text{HB } (TB (TR (TB a w b) x (TB c y d)) z e)

balanceLB(\quad) =
GHC version of AlmostTree

type family Incr (c :: Color) (n :: Nat) :: Nat where
 Incr R n = n
 Incr B n = Suc n

data Sing :: Color -> * where
 SR :: Sing R
 SB :: Sing B

data AlmostTree :: Nat -> * where
 AT :: Sing c -> Tree c1 n -> A -> Tree c2 n ->
 AlmostTree (Incr c n)

* Type family
 Singleton type

Type-term separation:
Singleton types provides runtime access to the color of the node in GHC.
balanceLB : {n : ℕ}{c : Color} →
 AlmostTree n → A → Tree c n → HiddenTree (Suc n)
balanceLB (AT R (TR a x b) y c) z d =
 HR (TR (TB a x b) y (TB c z d))
balanceLB (AT R a x (TR b y c)) z d =
 HR (TR (TB a x b) y (TB c z d))
balanceLB (AT B a x b) y r = HB (TB (TB a x b) y r)
balanceLB (AT R E x E) y r = HB (TB (TR E x E) y r)
balanceLB (AT R (TB a w b) x (TB c y d)) z e =
 HB (TB (TR (TB a w b) x (TB c y d)) z e)
balanceLB ::
 AlmostTree n -> A -> Tree c n -> HiddenTree (Suc n)
balanceLB (AT SR (TR a x b) y c) z d =
 HR (TR (TB a x b) y (TB c z d))
balanceLB (AT SR a x (TR b y c)) z d =
 HR (TR (TB a x b) y (TB c z d))
balanceLB (AT SB a x b) y r = HB (TB (TB a x b) y r)
balanceLB (AT SR E x E) y r = HB (TB (TR E x E) y r)
balanceLB (AT SR (TB a w b) x (TB c y d)) z e =
 HB (TB (TR (TB a w b) x (TB c y d)) z e)
Implementation of insert

- The Haskell version of insert is in lock-step with Agda version!
- But, are they the same? Not quite...

Agda:

```
insert : RBT → A → RBT
```

given a (valid) red-black tree and an element, *insert will produce a valid red-black tree*

Haskell:

```
insert :: RBT -> A -> RBT
```

given a (valid) red-black tree and an element, *if insert produces a red-black tree, then it will be valid*
• On one hand, Agda provide stronger guarantees about execution.
• On the other hand, totality checking is inescapable. Sometimes not reasoning about totality simplifies dependently-typed programming.
Not proving things is simpler

- Okasaki’s version of insert (simply typed): 12 lines of code
- Haskell version translated from Agda
 - 49 loc (including type defs & signatures)
 - precise return types for balance functions

```haskell
balanceLB :: AlmostTree n -> A -> Tree c n -> HiddenTree (Suc n)
balanceLR :: HiddenTree n -> A -> Tree c n -> AlmostTree n
```

- Haskell version from scratch (see git repo)
 - 32 loc (including type defs & signatures)
 - more similar to Okasaki’s code
 - less precise return type for balance functions

```haskell
balanceL :: Sing c ->
         AlmostTree n -> A -> Tree c n -> AlmostTree (Incr c n)
```
What is Dependently-Typed Haskell, really?
Dependently-Typed Haskell

- Flow sensitive type checking (e.g. GADTs)
 - Types influenced by pattern matching
 - "Singleton types" encode "dependent types"
 - Improvements to coverage checker improve TDD

- Rich type-level language enabling application specific invariants
 - Promoted datatypes
 - Type families (i.e. functions)
 - Type-level symbols & numbers
 - Pluggable constraint solvers
 - ...
-- | Convert an array of four 8-bit integers into a 32-bit integer.

test2 :: Def ('[Ref s (Array 4 (Stored Uint8))] -> Uint32)
test2 = proc "test2" \arr -> body $ do
 a <- deref (arr ! 0)
 b <- deref (arr ! 1)
 c <- deref (arr ! 2)
 d <- deref (arr ! 3)
 ret $ ((safeCast a) `iShiftL` 24) .|
 ((safeCast b) `iShiftL` 16) .|
 ((safeCast c) `iShiftL` 8) .|
 ((safeCast d) `iShiftL` 0)

https://github.com/GaloisInc/ivory
Length-preserving Convolution

\[
\text{convolve} :: \forall \ a \ b \ n. \ \text{Vec} \ n \ a \rightarrow \text{Vec} \ n \ b \rightarrow \text{Vec} \ n \ (a, b)
\]

\[
\text{convolve} \ xs \ ys =
\]
\[
\begin{cases}
\text{case walk xs of} \\
\quad (r, \ \text{Nil}) \rightarrow r
\end{cases}
\]

-- precondition [1]: \(\forall \ n \in \mathbb{N}, \ m = n \text{ implies } n - m = 0 \)

-- therefore this is an exhaustive match

\[
\text{where}
\]

\[
\text{walk} :: \forall \ m \ a. \ (m \leq n) \Rightarrow \text{Vec} \ m \ a \rightarrow
\quad (\text{Vec} \ m \ (a, b), \ \text{Vec} \ (n - m) \ b)
\]

\[
\text{walk} \ \text{Nil} = (\text{Nil}, \ ys)
\]

\[
\text{walk} \ (a :: as) =
\]
\[
\begin{cases}
\text{case walk as of} \\
\quad (r, b :: bs) \rightarrow ((a,b) :: r, bs)
\end{cases}
\]

-- precondition [2]: \(\forall \ n, m \in \mathbb{N}, n - m + 1 > 0 \)

-- therefore the list is non-empty

[Kenny Foner, Compose 2016]
Safe Database Access

type NameSchema = [Col "first" String, Col "last" String]

printName :: Row NameSchema -> IO ()
printName (first ::> last ::> _) = putStrLn (first ++ " " ++ last)

readDB classes_sch students_sch = do
 classes_tab <- loadTable "classes.table" classes_sch
 students_tab <- loadTable "students.table" students_sch

 putStrLn "Whose students do you want to see? "
 prof <- getLine

 let joined =
 Project
 (Select (field "id" @Int `ElementOf` field "students")
 (Product
 (Select (field "prof" ::= Literal prof) (Read classes_tab))
 (Read students_tab)))
 rows <- query joined
 mapM_ printName rows

[Haskell infers what rows need to be in the two different schemas. If these rows are not present, then the program will fail (at either compiletime or runtime).]
What’s coming in GHC
Extensions in Progress (Eisenberg)

• Datatype promotion only works once
 – Cannot use dependently-typed programming at the type level
 – Some Agda structures have no GHC equivalent
 – Solution: Combine type and kind language together (-XTypeInType)
 – Current status: Merged into GHC HEAD, release coming soon!

• Type inference doesn't work well for type-level programming
 – Solution: Explicit type application
 – Nice interaction with HM, see ESOP 2016 paper
 – Current status: Merged into GHC HEAD, release coming soon!

• Singletons required
 – Solution: Add a PI type
 – Current status: planning stage, see Richard's dissertation draft
Conclusion

Haskell programmers can use dependent types*
... and we’re actively working on the *
... but it is exciting to think about how dependent-type structure can help design programs

*Thanks to: Simon Peyton Jones, Dimitrios Vytiniotis, Richard Eisenberg, Brent Yorgey, Geoffrey Washburn, Conor McBride, Adam Gundry, Iavor Diatchki, Julien Cretin, José Pedro Magalhães, David Darais, Dan Licata, Chris Okasaki, Matt Might, NSF

http://www.github.com/sweirich/dth