

Eta-equivalence in Core Dependent Haskell

You should machine-check your proofs

Stephanie Weirich University of Pennsylvania

Core Dependent Haskell

A Specification for Dependent Types in Haskell <u>Stephanie Weirich, Antoine</u> <u>Voizard, Pedro Henrique Avezedo de</u> <u>Amorim, Richard A. Eisenberg</u>

To appear in ICFP 2017

All Coq proofs available online <u>http://github.com/sweirich/corespec.git</u> and will be uploaded to ACM DL

Fort me on CitHub

Dependent types in core

 Idea: base Haskell Core language (FC) on a dependently-typed language with * : *

 $\begin{array}{rrrr} terms, \ types & a,b,A,B & ::= & \star \mid x \mid \lambda x : A.b \mid a \ b \\ & \mid & \Pi x : A.B \end{array}$

- Full-spectrum dependently typed language with a single sort (Martin Löf, 1971 draft paper)
- "Radical impredicativity"
- Not good for proof checking ... but neither is Haskell
- Type checking is undecidable
- Type sound (Cardelli 1985)

Why Coq formalization?

- Part of DeepSpec project
- Be convincing about system soundness in presence of nontermination

- Errors in prior versions of the system pointed out in Eisenberg's dissertation
 - Missed a case in [Weirich et al. ICFP14], see Eisenberg 16 for fix.
 - Others have made mistakes too
- Fun!

Dependent types + FC

- Dependent types for functions
 - f :: $\Pi n: Nat$. Vec Int $n \rightarrow Int$
- Irrelevant dependent functions
 f :: Π⁻a:Type. Π⁺n:Nat. a → Vec a n
- Coercion abstraction
 f :: Π⁻a:Type. ∀c:(a ~ Int). Π⁺x:a. Int
 f = λ⁻a:Type. Λc:(a ~ Int). λ⁺x:a. x ▷ c
- Recursive definitions (toplevel only) Fix :: Π^-a :Type. $(a \rightarrow a) \rightarrow a$ Fix ~ λ^-a :Type. λ^+f : $a \rightarrow a$. f (Fix $a^- f$)

- Curry style vs. Church style type systems (36/35 rules)
- Definitional equality in D is coercion checking in DC
- DC has decidable type checking, D does not
- Both languages have preservation/progress
- Language are equivalent via erasure/annotation

- Implicit type conversion because the types are defined to be equal
- Operational semantics: 6 rules
- Explicit type coercion because the types are not defined to be equal
- Operational semantics: 10 rules

Irrelevant arguments in D

- Implicit language contains only relevant subterms
- Use fv check for irrelevant abstractions [Miquel, ICC]

terms, types
$$a, b, A, B ::= \star |x| F |\lambda^{\rho} x.a | a b^{\rho} | \square$$

 $| \Pi^{\rho} x: A \rightarrow B | \Lambda c.a | a[\bullet] | \forall c: \phi. A$

	E-Abs
E-PI	$\Gamma, x:A \vDash a:B$
$\Gamma, x : A \vDash B : \star$	$(\rho = +) \lor (x \notin fv a)$
$\overline{\Gamma \vDash \Pi^{\rho} x : A \to B : \star}$	$\overline{\Gamma \vDash \lambda^{\rho} x.a: \Pi^{\rho} x: A \to B}$
Е-Арр	E-IApp
$\Gamma \vDash b : \Pi^+ x : A \to B$	$\Gamma \vDash b : \Pi^{-}x : A \rightarrow B$
$\Gamma \vDash a : A$	$\Gamma \vDash a : A$
$\Gamma \vDash b \ a^+ : B\{a/x\}$	$\Gamma \vDash b \square^- : B\{a/x\}$

Formalization in Coq

	LOC
Ott spec	1423
LaTeX macros	1851
Paper sources	2317
Coq	32828
Language def	1432
Syntactic lemmas	11730
System D	5399
Consistency	2417
System DC	8142
Decidability	3529
Connection	2215
Utils	629
Other	2732

ott: Sewell, Zappa Nardelli, et al Ingen: Aydemir

Locally Nameless Representation

G, x:A |= B : TYPE G |= A : TYPE ----- :: Pi G |= all rho x:A -> B : TYPE

$$\begin{array}{ll} \Gamma, x: A \vDash B: \star \\ \Gamma \vDash A: \star \\ \overline{\Gamma \vDash \Pi^{\rho} x: A \rightarrow B: \star} \end{array} \quad \mathrm{E}_{-}\mathrm{Pi} \end{array}$$

```
E_Pi :
forall (L:vars) (G:context) (rho:relflag)(A B:tm),
  (forall x , x \notin L ->
     Typing ((x ~ Tm A) ++ G)
               (open_tm_wrt_tm B (a_Var_f x)) a_Star)
-> (Typing G A a_Star)
-> Typing G (a_Pi rho A B) a_Star
```

Proof Timeline

Contributions: Commits -

Jan 10, 2016 – Jun 8, 2017

Contributions to namespace, excluding merge commits

Eta-equivalence

• Two new rules (definitional equality & coercion)

$$\begin{split} & \Gamma \vDash b: \Pi^+ x : A \to B \\ & a = b \ x^+ \\ \hline & \Gamma; \Delta \vDash \lambda^+ x . a \equiv b: \Pi^+ x : A \to B \end{split} \quad \text{E-ETA} \end{split}$$

$$\begin{split} & \Gamma \vdash b : \Pi^+ x : A \to B \\ & a = b \ x^+ \\ \hline & \Gamma; \Delta \vdash \mathbf{eta} \ b : (\lambda^+ x : A.a) \sim b \end{split} \quad \mathbf{AN}_{\mathbf{ETA}} \end{split}$$

Consistency

- Progress lemma requires consistency of definitional equality $(\Gamma; \Delta \vDash a \equiv b : A)$
 - *Definition*: a and b are **consistent** when if they both have head forms then they have the same head forms.
 - *Theorem*: If a and b are definitionally equal then they are consistent.
- Consistency proof based on confluence of parallel reduction ($\models a \Rightarrow b$)
 - *Definition*: a and b are **joinable** when there is some common term that they both parallel reduce to (in any number of steps).
 - *Lemma*: If a and b are definitionally equal, then they are joinable.
 - *Lemma*: If a and b are joinable, then they are consistent.

Eta-equivalence

• *New parallel reduction rule*

$$\begin{split} & \Gamma \vDash b : \Pi^+ x : A \to B \\ & a = b \ x^+ \\ \hline & \Gamma; \Delta \vDash \lambda^+ x \cdot a \equiv b : \Pi^+ x : A \to B \end{split} \quad \mathbf{E}_- \mathbf{E} \mathbf{T} \mathbf{A} \end{split}$$

$$\begin{split} & \Gamma \vdash b : \Pi^+ x : A \to B \\ & a = b \ x^+ \\ \hline & \Gamma; \Delta \vdash \mathbf{eta} \ b : (\lambda^+ x : A.a) \sim b \end{split} \quad \mathbf{An}_- \mathbf{ETA} \end{split}$$

Untyped reduction relation

$$\begin{array}{l} \vDash b \Rightarrow b' \\ a = b \ x^+ \\ \hline \vDash \lambda^+ x. a \Rightarrow b' \end{array} \quad \text{PAR_ETA} \end{array}$$

Wait, what about x not in fv b?

Can x appear in b?

$$\begin{array}{l} \vDash b \Rightarrow b' \\ a = b \ x^+ \\ \hline \vDash \lambda^+ x. a \Rightarrow b' \end{array} \quad \text{PAR_ETA} \end{array}$$

```
Par_Eta : forall (L:vars) (a b' b:tm),
Par b b'
-> (forall x, x \notin L
        -> open_tm_wrt_tm a (a_Var_f x) =
            a_App b Rel (a_Var_f x))
-> Par (a_UAbs Rel a) b'
```

Update confluence proofs

- Confluence for βη-reduction proved by Tait-Martin Löf (for untyped lambda calculus, see Barendregt 1984)
- Good news: Coq points out three new required cases
- Not so good news: Need induction on height of term, not structure

$$\begin{array}{l} \vDash b \Rightarrow b' \\ a = b \ x^+ \\ \hline \vDash \lambda^+ x. a \Rightarrow b' \end{array} \quad \text{PAR_ETA}$$

- Not so bad news:
 - Height function automatically defined by lngen
 - Existing tactics in proof for applying IH
 - Omega tactic easily handles all arithmetic

What could have gone wrong?

- Parallel reduction relation ignores types, reduces all terms
- But, a Church-style language lacks confluence for ill-typed terms!

 λx : A. (λy : B. a y) x y appears free in a, but not x

 $\Rightarrow \lambda x: A. a \{ y \coloneqq x \}$ (via beta-reduction) $\Rightarrow \lambda y: B. a$ (via eta-reduction)

If $A \neq B$ then these terms are not equal

Par doesn't preserve types

- Have $\Gamma \vDash \lambda^+ x. b x^+ : \Pi^+ x: A. B$ and $(\lambda^+ x. b x^+) \Rightarrow b$ but not always $\Gamma \vDash b : \Pi^+ x: A. B$
- Counterexample: Say $y : \Pi^{-}b : \star . \Pi^{+}a : \star . T \ a \ b$ have $\models \lambda^{+}a : \star . (y \square^{-})a : \Pi^{+}a : \star . T \ a \ a$ and $\lambda^{+}a : \star . (y \square^{-})a \Rightarrow \eta (y \square^{-})$ but

$$\nvDash (y \square^{-}) : \Pi^{+}a : \star T a a$$

Preservation not required

- Parallel reduction is a proof technique only, not part of the language definition
- Equals => joinable => consistent
 - More terms can be joinable than the language defines equal
 - Can join terms via ill-typed reductions, as long as the result is consistent
- Still somewhat worrisome, I'm glad I have a machine-checked proof

No more paper proofs!

- Good for typesetting
- Good for extension
 - eta / roles / levity polymorphism / higher-inductive types
- Good for refactoring
 - Removed unnecessary hypotheses from rules
 - Adopted alternative push rules in DC operational semantics
- Good for details
 - Decidability of type checking
 - Erasure / annotation lemma
 - Regularity lemmas
 - Low-level syntactic properties
 - Weakening, substitution
 - If $\Gamma \vdash a : A$ then fv $a \in \operatorname{dom} \Gamma$