
Eta-equivalence in
Core Dependent Haskell

You should machine-check
your proofs

Stephanie Weirich
University of Pennsylvania

Core Dependent Haskell

A	Specification	for	Dependent	Types	in	
Haskell
Stephanie	Weirich, Antoine	
Voizard, Pedro	Henrique	Avezedo	de	
Amorim, Richard	A.	Eisenberg

To	appear in	ICFP	2017

All	Coq	proofs	available	online
http://github.com/sweirich/corespec.git
and	will	be	uploaded	to	ACM	DL

Dependent types in core
• Idea: base Haskell Core language (FC) on a

dependently-typed language with ⋆ : ⋆

• Full-spectrum dependently typed language with a
single sort (Martin Löf, 1971 draft paper)

• "Radical impredicativity"
• Not good for proof checking
• Type checking is undecidable
• Type sound (Cardelli 1985)

…but neither is Haskell

Why Coq formalization?
• Part of DeepSpec project

• Be convincing about system soundness
in presence of nontermination

• Errors in prior versions of the system
pointed out in Eisenberg's dissertation
– Missed a case in [Weirich et al. ICFP14], see Eisenberg 16 for fix.
– Others have made mistakes too

• Fun!

Dependent types + FC
• Dependent types for functions
f :: Πn:Nat. Vec Int n → Int

• Irrelevant dependent functions
f :: Π-a:Type. Π+n:Nat. a → Vec a n

• Coercion abstraction
f :: Π-a:Type. ∀c:(a ~ Int). Π+x:a. Int
f = λ-a:Type. Λc:(a ~ Int). λ+x:a. x ⊳ c

• Recursive definitions (toplevel only)
Fix :: Π-a:Type. (a→a) → a
Fix ~ λ-a:Type. λ+f:a→a. f (Fix a- f)

Two related languages

• Curry style vs. Church style type systems (36/35 rules)
• Definitional equality in D is coercion checking in DC
• DC has decidable type checking, D does not
• Both languages have preservation/progress
• Language are equivalent via erasure/annotation

For	
simplicity For	

GHC

Comparison

• Implicit type conversion
because the types are
defined to be equal

• Operational semantics: 6
rules

• Explicit type coercion
because the types are not
defined to be equal

• Operational semantics: 10
rules

D DC

• Implicit language contains only relevant subterms
• Use fv check for irrelevant abstractions [Miquel, ICC]

Irrelevant arguments in D

Formalization in Coq
Ott

source
file

Language
Defs

syntactic
lemmas

latex
macros

Coq
proofs

paper
sources

LOC

Ott spec 1423

LaTeX macros 1851

Paper	sources 2317

Coq 32828

Language	def 1432

Syntactic	lemmas 11730

System	D 5399

Consistency 2417

System	DC 8142

Decidability 3529

Connection 2215

Utils 629

Other 2732

lngen

ott
ott

ott:	Sewell,	Zappa	Nardelli,	et	al
lngen:		Aydemir

Locally Nameless Representation

E_Pi :
forall (L:vars) (G:context) (rho:relflag)(A B:tm),
(forall x , x \notin L ->

Typing ((x ~ Tm A) ++ G)
(open_tm_wrt_tm B (a_Var_f x)) a_Star)

-> (Typing G A a_Star)
-> Typing G (a_Pi rho A B) a_Star

G, x:A |= B : TYPE
G |= A : TYPE

------------------------------- :: Pi
G |= all rho x:A -> B : TYPE

Proof Timeline

• Early	July	2016,	POPL	deadline
• Mid	July	2016,	last	2.8	meeting
• October	2016,	ESOP	deadline
• February	2017,	ICFP	deadline
• April	2017,	ICFP	notification	
• May	2017,	public	release

Decidability
proof		/	paper	

writing

Paper	writing	/	
proofs

Clean-up	&	
refactoring

eta-equivalence
finished	Mar	25

Eta-equivalence
• Two new rules (definitional equality & coercion)

Consistency
• Progress lemma requires consistency of definitional

equality (Γ; ∆	⊨ 𝑎 ≡ 𝑏 ∶ 𝐴)
– Definition: a and b are consistent when if they both have head

forms then they have the same head forms.
– Theorem: If a and b are definitionally equal then they are

consistent.

• Consistency proof based on confluence of parallel
reduction (⊨ 𝑎 ⇒ 𝑏)
– Definition: a and b are joinable when there is some common

term that they both parallel reduce to (in any number of steps).
– Lemma: If a and b are definitionally equal, then they are joinable.
– Lemma: If a and b are joinable, then they are consistent.

Eta-equivalence
• New parallel reduction rule

Untyped
reduction	
relation

Wait, what about
x not in fv b?

Can x appear in b?

Par_Eta : forall (L:vars) (a b' b:tm),

Par b b'

-> (forall x, x \notin L

-> open_tm_wrt_tm a (a_Var_f x) =

a_App b Rel (a_Var_f x))

-> Par (a_UAbs Rel a) b'

• Confluence for 𝛽𝜂-reduction proved by Tait-Martin Löf
(for untyped lambda calculus, see Barendregt 1984)

• Good news: Coq points out three new required cases
• Not so good news: Need induction on height of term,

not structure

• Not so bad news:
– Height function automatically defined by lngen
– Existing tactics in proof for applying IH
– Omega tactic easily handles all arithmetic

Update confluence proofs

What could have gone wrong?
• Parallel reduction relation ignores types, reduces

all terms
• But, a Church-style language lacks confluence

for ill-typed terms!

𝜆𝑥: 𝐴. 𝜆𝑦: 𝐵. 𝑎	𝑦 	𝑥 y appears free in a,
but not x

⇒ 𝜆𝑥: 𝐴. 𝑎	 	𝑦 ≔ 𝑥	 (via beta-reduction)
⇒ 𝜆𝑦: 𝐵. 𝑎	 (via eta-reduction)

If 𝐴 ≠ 𝐵 then these terms are not equal

Par doesn't preserve types
• Have Γ	⊨	𝜆7𝑥. 𝑏	𝑥7 ∶ Π7𝑥: 𝐴. 𝐵 and

𝜆7𝑥. 𝑏	𝑥7 ⇒ 𝑏
but not always

Γ	⊨	𝑏 ∶ Π7𝑥: 𝐴. 𝐵
• Counterexample:

Say 𝑦 ∶ 	Π9𝑏:⋆. Π7𝑎:	⋆. 𝑇	𝑎	𝑏
have				⊨ 𝜆7𝑎:	⋆. 𝑦	□9 𝑎 ∶ Π7𝑎 ∶	⋆. 𝑇	𝑎	𝑎	
and 𝜆7𝑎:	⋆. 𝑦	□9 𝑎 ⇒𝜂 𝑦	□9
but

⊭ 𝑦	□9 : Π7𝑎 ∶	⋆. 𝑇	𝑎	𝑎

Preservation not required
• Parallel reduction is a proof technique only, not

part of the language definition

• Equals => joinable => consistent
– More terms can be joinable than the language defines

equal
– Can join terms via ill-typed reductions, as long as the

result is consistent

• Still somewhat worrisome, I'm glad I have a
machine-checked proof

No more paper proofs!
• Good for typesetting
• Good for extension

– eta / roles / levity polymorphism / higher-inductive types

• Good for refactoring
– Removed unnecessary hypotheses from rules
– Adopted alternative push rules in DC operational semantics

• Good for details
– Decidability of type checking
– Erasure / annotation lemma
– Regularity lemmas
– Low-level syntactic properties

• Weakening, substitution
• If 𝛤 ⊢ a : A then fv a ∈ dom 𝛤

