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Dependent types in core
• Idea: base Haskell Core language (FC) on a 

dependently-typed language with ⋆ : ⋆ 

• Full-spectrum dependently typed language with a 
single sort (Martin Löf, 1971 draft paper) 

• "Radical impredicativity"
• Not good for proof checking
• Type checking is undecidable
• Type sound (Cardelli 1985)

…but neither is Haskell



Why Coq formalization?
• Part of DeepSpec project

• Be convincing about system soundness
in presence of nontermination

• Errors in prior versions of the system
pointed out in Eisenberg's dissertation
– Missed a case in [Weirich et al. ICFP14], see Eisenberg 16 for fix.
– Others have made mistakes too

• Fun!



Dependent types + FC
• Dependent types for functions 
f :: Πn:Nat. Vec Int n → Int

• Irrelevant dependent functions
f :: Π-a:Type. Π+n:Nat. a → Vec a n

• Coercion abstraction
f :: Π-a:Type. ∀c:(a ~ Int). Π+x:a. Int
f = λ-a:Type. Λc:(a ~ Int).  λ+x:a. x ⊳ c 

• Recursive definitions (toplevel only)
Fix :: Π-a:Type. (a→a) → a 
Fix ~ λ-a:Type. λ+f:a→a. f (Fix a- f)



Two related languages

• Curry style vs. Church style type systems (36/35 rules)
• Definitional equality in D is coercion checking in DC
• DC has decidable type checking, D does not
• Both languages have preservation/progress
• Language are equivalent via erasure/annotation

For	
simplicity For	
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Comparison

• Implicit type conversion 
because the types are 
defined to be equal

• Operational semantics: 6 
rules

• Explicit type coercion 
because the types are not 
defined to be equal

• Operational semantics: 10 
rules 

D DC



• Implicit language contains only relevant subterms
• Use fv check for irrelevant abstractions [Miquel, ICC]

Irrelevant arguments in D
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Locally Nameless Representation

E_Pi : 
forall (L:vars) (G:context) (rho:relflag)(A B:tm),     
(forall x , x \notin L -> 

Typing ((x ~ Tm A) ++ G)
(open_tm_wrt_tm B (a_Var_f x)) a_Star)  

-> (Typing G A a_Star)  
-> Typing G (a_Pi rho A B) a_Star

G, x:A |= B : TYPE
G |= A : TYPE 

------------------------------- :: Pi
G |= all rho x:A -> B : TYPE
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Eta-equivalence
• Two new rules (definitional equality & coercion)



Consistency
• Progress lemma requires consistency of definitional 

equality  (Γ; ∆	⊨ 𝑎 ≡ 𝑏 ∶ 𝐴)
– Definition: a and b are consistent when if they both have head 

forms then they have the same head forms.
– Theorem:   If a and b are definitionally equal then they are 

consistent.

• Consistency proof  based on confluence of parallel 
reduction (⊨ 𝑎 ⇒ 𝑏)
– Definition: a and b are joinable when there is some common 

term that they both parallel reduce to (in any number of steps).
– Lemma: If a and b are definitionally equal, then they are joinable. 
– Lemma: If a and b are joinable, then they are consistent.



Eta-equivalence
• New parallel reduction rule

Untyped
reduction	
relation

Wait, what about 
x not in fv b?



Can x appear in b?

Par_Eta : forall (L:vars) (a b' b:tm),     

Par b b'     

-> (forall x, x \notin L

-> open_tm_wrt_tm a (a_Var_f x) =

a_App b Rel (a_Var_f x))

-> Par (a_UAbs Rel a) b'



• Confluence for 𝛽𝜂-reduction proved by Tait-Martin Löf
(for untyped lambda calculus, see Barendregt 1984)

• Good news: Coq points out three new required cases
• Not so good news: Need induction on height of term, 

not structure

• Not so bad news:
– Height function automatically defined by lngen
– Existing tactics in proof for applying IH 
– Omega tactic easily handles all arithmetic

Update confluence proofs



What could have gone wrong?
• Parallel reduction relation ignores types, reduces 

all terms
• But, a Church-style language lacks confluence 

for ill-typed terms!

𝜆𝑥: 𝐴. 𝜆𝑦: 𝐵. 𝑎	𝑦 	𝑥 y appears free in a,
but not x

⇒ 𝜆𝑥: 𝐴. 𝑎	 	𝑦 ≔ 𝑥	 (via beta-reduction)
⇒ 𝜆𝑦: 𝐵. 𝑎	 (via eta-reduction)

If 𝐴 ≠ 𝐵 then these terms are not equal



Par doesn't preserve types
• Have  Γ	⊨	𝜆7𝑥. 𝑏	𝑥7 ∶ Π7𝑥: 𝐴. 𝐵 and   

𝜆7𝑥. 𝑏	𝑥7 ⇒ 𝑏
but not always

Γ	⊨	𝑏 ∶ Π7𝑥: 𝐴. 𝐵
• Counterexample:

Say     𝑦 ∶ 	Π9𝑏:⋆. Π7𝑎:	⋆. 𝑇	𝑎	𝑏
have				⊨ 𝜆7𝑎:	⋆. 𝑦	□9 𝑎 ∶ Π7𝑎 ∶	⋆. 𝑇	𝑎	𝑎	
and     𝜆7𝑎:	⋆. 𝑦	□9 𝑎 ⇒𝜂 𝑦	□9
but 

⊭ 𝑦	□9 : Π7𝑎 ∶	⋆. 𝑇	𝑎	𝑎



Preservation not required
• Parallel reduction is a proof technique only, not 

part of the language definition

• Equals => joinable => consistent
– More terms can be joinable than the language defines 

equal
– Can join terms via ill-typed reductions, as long as the 

result is consistent

• Still somewhat worrisome, I'm glad I have a 
machine-checked proof



No more paper proofs!
• Good for typesetting
• Good for extension

– eta / roles / levity polymorphism / higher-inductive types 

• Good for refactoring 
– Removed unnecessary hypotheses from rules
– Adopted alternative push rules in DC operational semantics

• Good for details
– Decidability of type checking
– Erasure / annotation lemma
– Regularity lemmas
– Low-level syntactic properties

• Weakening, substitution
• If 𝛤 ⊢ a : A  then   fv a ∈ dom 𝛤


