
Machine Obstructed Proof
How many months can it take to verify 30 assembly instructions?

Nick Benton
Microsoft Research
nick@microsoft.com

After years doing programming language theory without going
near a proof assistant, I was finally convinced by the POPLmark
‘buzz’ and conversations at ICFP’05 that it was time to try one.
I was working on relational reasoning for low-level programs, for
which mechanization seemed useful and feasible. The metatheory
was tricky, proofs about particular programs were so tedious that
I made mistakes doing them by hand and, unusually, there wasn’t
any α-conversion involved, so maybe I could get something done
before getting involved in long disputes about substitution.

A scary feature of automated theorem proving is that it con-
stantly forces one to deal with abstruse foundational matters, start-
ing when one decides which prover to use. ‘Mathematics floats’
won’t cut it: you have to choose a party or religion to belong to.
It’d be nice if it didn’t matter, but extant systems do (seem to) have
foundational limitations that could trip one up months later. Won-
dering about the metatheoretic strength of results proved within
some internalised version of category theory seems unlikely to help
get your work done. I picked Coq: it ‘felt’ right, it seemed unlikely
to leave me painted into a foundational corner, and there was an
expert two doors from me.

The workshop description says “the available tools are [...]
difficult to learn, inadequately documented, and lacking in specific
library facilities required for work in programming languages”. I
can confirm that I have rarely felt as stupid and frustrated as I did
during my first few weeks using Coq.

Tactical theorem proving is like an extreme form of aspect-
oriented programming. This is not A Good Thing, particularly for
beginners. Scripts are unreadable by themselves, as one has no
idea what the tactics are doing to the proof state, and the docu-
mentation for them is incomprehensible to the novice. The only
thing that works is lots and lots of trial and error in an inter-
active environment, and I still couldn’t give a coherent general
description of what some of the tactics I’ve used many times ac-
tually do, or how they differ from half a dozen apparently similar
ones. And basic ones are still missing; I spent days fighting with
elim, case, destruct and variations on induction and still kept
finding myself having done case splits without the information
about which branch I was in. This was so frustrating I gave up
on Coq (and spent a week playing with HOL Light) until Georges
Gonthier showed me the magic, and frankly bizarre, incantation
generalize (refl_equal x); pattern x at -1; case x.

[copyright notice will appear here]

Metalogical vertigo lasts a long time. Set or Type? Bool or
Prop? It was cool to define record types combining sets with propo-
sitions, e.g. a relation on states plus a function from states to sets
of locations and a proof that the relation is invariant under changes
to the state outside the range of the function. Less cool to have to
then make my own copy of the standard list library because that’s
only parameterized over Set, whilst records including Props live
in Type. Any new user will surely ask about extensional equal-
ity immediately: “why isn’t it there?” and “can I just assume it?”.
It’s hard to get a straight answer to either of these questions. The
book doesn’t mention extensionality in its 450-odd pages! The FAQ
makes mysterious remarks about extraction. Experts on the mailing
list have sophisticated disagreements. But the poor user is none the
wiser about whether asserting forall f g, (forall a, f a =
g a) -> f=g. will make the sky fall down.

There are bugs. On Windows, CoqIDE falls over, whilst Proof
General only works with the original 2004 version of Coq 8. I spent
ages defining Setoid structures on everything, only to find Setoid
rewriting throws an ‘anomaly’ exception in interesting contexts.

I had many similar difficulties, but then started to make progress.
Just having intermediate stages of the work in a computerized form
rather than on many pages of paper proved a major benefit. Far
more often than I’d expected, one can alter definitions and then
mildly tweak the previous version of a proof to keep it up to date.
On paper, I tend to keep going back to the top and doing everything
from scratch to be sure everything is still consistent.

Constantly permuting large separated conjunctions of assertions
to bring the active one to the head was painful. I first attacked this
by defining some tactics, but then discovered the joy of computa-
tional reflection: replacing a shallow embedding of assertions with
a more intensional representation using lists allowed me to permute
goals and hypotheses by reducing recursive functions that were
proved to preserve the semantics. A similar change in representa-
tion of machine code fragments allowed me to replace custom tac-
tics with computation and rewriting when extracting instructions.

Automated proving is not just a slightly more fussy version of
paper proving and neither (Curry-Howard notwithstanding) is it
really like programming. It’s a strange new skill, much harder to
learn than a new programming language or application, or even
many bits of mathematics. I’m resistant to investing significant
effort in tools (I don’t write clever TeX or Emacs macros), but the
payoff really came the second time I used Coq: I was able to prove
some elementary but delicate results for a different paper in just a
day or so. Coq is worth the bother and it, or something like it, is the
future, if only we could make the initial learning experience a few
thousand times less painful.

The answer is about four [1].

References
[1] N. Benton. Abstracting Allocation: The New new Thing. 2006.

1 2006/6/2


