
Workshop on Mechanizing Metatheory Portland, 2006-09-21

Arthur Charguéraud

A Comparison Between Concrete
Representation for Bindings

Work completed at the University of Pennsylvania

with Benjamin Pierce and Stephanie Weirich

Our Goal and Our Approach

Coq
Simple

Intuitive

Transparent

Translate

Arrange

Take paper

Formalize

First-Order and Higher-Order

term : Set :=

| Var : name -> term

| App : term -> term -> term

| Abs : name -> term -> term

term : type

app : term -> term -> term

abs : (term -> term) -> term

First-Order Abstract Syntax

e.g. representation with names:

Higher-Order Abstract Syntax

e.g. as done in Twelf:

App (Abs x t) u [x->u]t app (abs t) u t uββββ ββββ

We focus on first-order representations.

The POPLMark Challenge

Properties of subtyping

POPLMark Part 1:

Rest of the formalization

POPLMark Part 2:

Properties of subtyping,
including preservation
by type substitution

Our Challenge B

Preservation and
progress for simply
typed λλλλ-calculus

Our Challenge A

Preservation and Progress for System-F<:

[simplified][extended]

Contribution

We answer the following questions:

– What are the big design issues?

– What are the possible solutions?

– What is the best solution in each case?

Selecting a set of good design choices, we
formalized in Coq the two subchallenges.

The result is short, simple and intuitive.

Plan

1) Represention of Bindings

2) Bindings in Environments

3) Formalization in Coq

1) Represention of Bindings

λ-term with names

λλλλa. λλλλb.

[(λλλλc. c c) (a (λλλλd. d a))]

Each abstraction
introduces a name:

@

@

λλλλ c

c c

a

@

λλλλ b

λλλλ a

@

λλλλ d

d a

Pros:

– as on paper

Cons:

– αααα-conversion

– quotient by αααα

λ-term with de-Bruijn indices

λλλλ. λλλλ.[(λλλλ.0 0) (1 (λλλλ.0 2))]

A variable bearing
an index k points
towards the kith

abstraction above
that variable:

@

@

λλλλ

0 0

1

@

λλλλ

λλλλ

@

λλλλ

0 2

Pros:

– α-equivalence
is identity

Cons:

– shifting free
variables in the
argument

– unshifting
free variables in
the body

λ-term with de-Bruijn levels

λλλλ. λλλλ.[(λλλλ.2 2) (0 (λλλλ.2 0))]

A variable bearing
an index k points
towards the kith

abstraction on the
path from the root
to that variable:

@

@

λλλλ

2 2

0

@

λλλλ

λλλλ

@

λλλλ

2 0

Pros:

– α-equivalence
is identity

Cons:

– shifting bound
variables in the
argument

– unshifting
bound variables
in the body

shift and subst

Weakening in System-F<:

Statements are polluted by shifting.

Properties of shifting and substitution.
Not very difficult, but fiddly.

source: Berghofer 2005

Bound and Free Variables

@

@

X

@

X

λλλλ : T1

λ

X@

λλλλ : T3

X X

λλλλ : T4

λλλλ : T2

environment E

term t

E |- t : T

typing judgment

Distinguishing Bound and Free

For example the locally nameless representation, where

– bound variables represented as de-Bruijn indices,

– free variables represented using names.

Substitution a term u for a bound variable k in a term t:

{k –> u}t

Substitution a term u for a free variable z in a term t:

[k –> u]t

Full β-reduction in Locally Nameless

Summary of Representations

ok
requires reasoning
on αααα-equivalencenames

shifting
is necessary

shifting
is necessary

de Bruijn
levels

shifting
is necessary

ok
de Bruijn
indices

free variablesbound variables

Winner is: Locally Nameless

2) Bindings in Environments

Environments as Lists or Sets?

Weakening Preserves Typing

Substitution Preserves Typing

Paper:

Formal:

where:

Paper:

Formal:

where:

Sets are Better than Lists

Motivation for representing environment as lists:

bindings enter the environment one by one.

But environments only require a set interface.

So lists are just overspecifying our needs.

Reasonning about the high-level interface is nicer

than dealing with the low-level implementation.

Names pushed in the Environment

∀∀∀∀ x # E ∀∀∀∀ x ∉∉∉∉ L∃∃∃∃ x # EQuantify(x) =

Weakening

Substitution

Transitivity

ok

swapping
required

ok ok
swapping
requiredWeakening

ok

ok

swapping
required

ok Substitution

Transitivity

3) Formalization in Coq

Informal:

Example: Weakening on Subtyping

Lemma sub_extension : forall E S T, E |- S <: T

-> forall F, E inc F -> ok F -> F |- S <: T.

intros E S T H. induction H; intros; auto**.

apply_SA_all X (L ++ dom F). use extends_push.

Proof by induction on the subtyping derivation,

using the reordering lemma for case SA-all.

Formalizable:

Proof by induction on the subtyping derivation, easy

but in case SA-all: pick a variable X outside of dom(F)

and then use lemma "extends_push".

Formal:

αααα-equivalence, Barendregt's convention, well-formedness.

Lemma sub_transitivity :

forall E Q (WQ : E wf Q), sub_trans_prop WQ.

intros. unfold sub_trans_prop. generalize_equality Q Q'.

induction WQ; intros Q' EQ F S T EincF SsubQ QsubT;

induction SsubQ; try discriminate; try injection EQ ; intros;

inversion QsubT; subst; intuition eauto.

(* Case SA-arrow *)

apply SA_arrow. auto. apply* IHWQ1. apply* IHWQ2.

(* Case SA-all *)

apply_SA_all X ((dom E0) ++ L ++ L0 ++ L1). apply* H0.

asserts* WQ1 (E0 wf T1). apply* (sub_narrowing (WQ := WQ1)).

Qed.

Example: Transitivity of Subtyping

Theorem subtyping_transitivity : forall E S Q T,
E |- S <: Q -> E |- Q <: T -> E |- S <: T.

intros. apply* (@sub_transitivity E Q). Qed.

Simply typed Properties
λ-calculus of subtyping

Definitions 8 9

Axioms 0 0

Lemmas 26 34

Theorems 2 5

Lines of proofs 63 104

Number of tactics 202 279

Non-dummy tactics
in the main proofs: 36 67

Statistics on our Coq Scripts

Complexity of Solutions in Coq

Number of tactics invoked, not counting calls to proof-search, on
part 1A of the POPLMark Challenge (properties of subtyping).

Author Tactics Representation

Jérome Vouillon 431 de-Bruijn indices

Aaron Stump 1147 names / levels

Xavier Leroy 630 locally nameless

Hirschowitz, Maggesi 1615 de-Bruijn (nested)

Adam Chlipala 342 locally nameless

Arthur Charguéraud 233 locally nameless

Conclusions

Related Work

Annotated Bibliography

30+ references available on the POPLMark website.

Closely Related Work

– Gordon (1993): locally nameless for formal proofs.

– McKinna and Pollak (1993 to 1997): distinguishing
bound and free variables, but with names for both.

– Nominal (Pitts, Gabbay, Urban... 2000 to 2006):
different approach with similar interface in the end.

– POPLMark locally nameless (Leroy, Chlipala, 2006).

Locally Nameless is Good!

– All the work from McKinna and Pollack could be
rewritten and simplified using locally nameless.

– Locally nameless has been used to implement
type checkers (Huet 89) (McKinna, McBride 04).

– Locally nameless enables us to make short and
simple proofs, faithful to informal practice.

Future Work

– Complete the solution to POPLMark Challenge.

– Formalize some λ-calculus (e.g. confluence).

– Address more complex type systems (CoC).

– Support more advanced language constructions.

Thanks !

