
 1

Mechanizing the Metatheory
of Standard ML

Daniel K. Lee
Carnegie Mellon University

Joint work with Karl Crary and Robert Harper

Workshop on Mechanizing Metatheory, 9/21/06

 2

Language definitions

• Toy languages enjoy:
– Fully rigorous definitions
– Extensive metatheoretic analysis
– Type safety proofs

• We settle for much less in the languages
we actually use.
– Definitions are informal, semi-formal, or non-

existent
– No type safety proofs

 3

This project

• Goal: A fully rigorous definition and type
safety proof for Standard ML.

• Employ elaborative semantics.
– Define SML by translation into a type theory.

• Mechanize all definitions and proofs in
Twelf.

 4

Elaborative semantics
• Specify syntax for external language (EL).
• Define an internal language (IL).

– Including static and operational semantics.
– Type-theoretically well-behaved.
– Provide the same expressive power as the

language.
– Not necessarily the same convenience.

• Give a formal translation (elaboration) of
EL into IL.

 5

Benefits

• Use standard techniques to prove safety
of the IL.
– Don’t have to wrestle with handy but ill-

behaved constructs (e.g., open).
• Result applies to the full language.

 6

This work

• Defined an IL for Standard ML.
– Static semantics
– Structured operational semantics

• Proved type safety.
• Everything formalized in Twelf.

• Elaboration is future work.

 7

Why mechanize?

• Want to be confident in results.
• Elaboration is no silver bullet.

– IL is well-behaved, not small.
• Mechanization exposed numerous errors

in an earlier elaborative definition of SML.
[Ashley-Rollman 2004]
– Most minor, but a few were serious.

 8

IL

• Module-oriented language
– Modules, signatures
– Translucent sums (singleton kinds)

• Polymorphism, recursive types
• Exceptions
• Dynamic tagging (exn type)
• References
• Products, sums, etc.

 9

Issues

• Mathematical challenges to proving safety.
• Formalization of IL in LF.
• Mechanizing the safety proof in Twelf.

 10

Formalization in LF

• Mostly straightforward.
• Why?

– LF is great.
– We allow formalization process to advise the

design.
– Don’t try to formalize off-the-shelf.

• Some interesting issues arose.
– Ended up improving the IL’s design.

 11

Phase distinction

• Need to maintain phase distinction
between static and dynamic components.

• Types ought not depend on dynamic
computations.
– Don’t want:

(if phase_of_moon () then int else int -> int)

 12

Achieving the phase distinction

Two approaches:
• Allow apparent dependencies of types on

terms (e.g., M.t), and prove that terms do
not affect types.
– Can be complicated.
– Has not been done with singleton kinds.

• Make phase separation manifest in syntax.

 13

Manifest phase separation

• Types cannot refer to module expressions.
• A meta-operation Fst associates modules

with their type components.
• When introducing a module variable

introduce a type variable also.

• Issue: how to maintain the association
between module and type variables?

 14

Association via spelling

• Employ a spelling convention to associate
module variables and type variables.
[Harper et al. 1990, Dreyer 2005]
– Module variable s provides type variable sc.

• Breaks alpha conversion.
– Thus, does not formalize well in LF.

 15

Association via judgement

• Introduce two distinct variables.
• Associate them using a hypothetical

judgement:

• Propagate this back into the IL design.

m : mod, t : tp, d : Fst(m) = t, . . . ├ J

 16

Mechanized type safety

• Proved progress and type preservation in
Twelf.
– 62k lines of code

(including comments and whitespace)

• Quite a lot of it was straightforward.
• Some interesting issues arose.

 17

Pair inversion
• For preservation, we need an inversion

lemma for pairs of modules.
– If <M, N> : S x T, then M : S and N : T.

• Non-trivial because “selfification” rules type
modules in terms of larger modules.

• Induction hypothesis must be strengthened
to accommodate these larger modules.

 18

Proving pair inversion
• Larger modules in premises captured with

evaluation contexts in the form

• Pair inversion proved alongside beta-
reduction properties.
– If E[fst <M, N>] : S, then E[M] : S.
– If E[snd <M, N>] : S, then E[N] : S.
– If <M, N> : S x T, then M : S and N : T.

E ::= [] | fst E | snd E

 19

Evaluation Contexts in LF
• Contexts in LF encoded using functions of
(module -> module).

• Use a judgement to isolate the evaluation
contexts.

• Instantiation of contexts is just application
in LF.

ec : (module -> module) -> type.
ec/empty : ec ([m] m).ec/fst : ec E -> ec ([m] fst(E m)).ec/snd : ec E -> ec ([m] snd(E m)).

 20

Type inversion

• For canonical forms, we need inequality
lemmas.
– Such as int ≠ bool

• Also need inversion lemmas.
– Such as, if t1 × t2 = t3 × t4 then t1 = t3

and t3 = t4

 21

Proving type inversion

• Need to impose structure on type equality
derivations.

• Typically done using reduction-based
strategies.
– Don’t work here, singleton kinds make

equality context sensitive.
• Also done using logical relations.

[Stone & Harper 2000]
– Can’t (in general) do logical relations in Twelf.

 22

Proving type inversion

• New proof based on interpretation of IL’s
types and kinds in a canonical formulation.
– Equal types must be written the same way.

• Maintain canonicity using hereditary
substitution.
[Watkins 2003]

• Uses explicit context technique to
establish substitution.
[Crary 9:30am]

 23

Related work

• VanInwegen [1996] attempted to prove
type safety for SML using The Definition
with HOL

• Did not fully succeed:
– Wasn’t type safe.
– Awkwardness of the Definition.
– Treatment of alpha conversion problematic.
– Immaturity of available tools.

 24

Related work

• Ashley-Rollman [2004] attempted to prove
type safety for SML using Harper-Stone
with Twelf.

• Did not fully succeed:
– Technical problems involving “selfification”

and module call stacks.
– Soundness of Harper-Stone is still open.

• Lesson: allow formalization process to
advise language design.

 25

Future work

• Formalize elaboration of SML to IL in LF.
– Prove static correctness in Twelf.

• Use this as a framework to explore
language extensions.

• Exploit this work in a validated compiler.
– An elaborator is a formal front-end.

