
To arrive where we started:
experience of mechanizing binding

Tom Ridge, University of Cambridge

To arrive where we started: experience of mechanizing binding – p.1/26

Experience of mechanizing binding

type soundness for MiniML;

type soundness for TAPL fragments;

a verified theorem prover for first-order logic;

an investigation into transferring results between
binding representations using isomorphisms;

Craig’s interpolation theorem;

various POPLmark solutions;

generalised term models;

operational reasoning for Caml programs.

POPLmark solutions include versions using De Bruijn, a ver-

sion of Nominal/locally nameless, and raw terms
To arrive where we started: experience of mechanizing binding – p.2/26

What is this talk about?

To arrive where we started . . .

About “raw terms” i.e. Lam ”x” (Var ”x”)

Γ, x′ : T1 ⊢ [x′/x]t : T2

Γ ⊢ λx t : T1 → T2

(side-conditions x′ 6∈ fv λx t and x′ 6∈ dom Γ)

I believe they can be competitive with the best of the
other approaches.

I’ll try to explain why I think this.

This talk is not supposed to convince you to use raw
terms: raw terms are not currently competitive.

Orthogonal issues: whether to develop a package or a
library; strengthened induction schemes; altering formal
systems to suit mechanization To arrive where we started: experience of mechanizing binding – p.3/26

Outline of the talk

Part I. Raw terms are not so bad

Part II. POPLmark with raw terms, based on . . .

Part III. . . . a general library
a foundation of raw terms, as a universal datatype
theory expressed as a library of lemmas about raw
terms, including alpha, substitution etc.

Some of this is technically interesting, regardless of what

you think about raw terms

To arrive where we started: experience of mechanizing binding – p.4/26

Part I. Raw terms are good

To arrive where we started: experience of mechanizing binding – p.5/26

Raw terms . . .

“this approach has not proved convenient
for formal development”

. . . too raw to digest?

To arrive where we started: experience of mechanizing binding – p.6/26

Possible reasons for this view

Raw terms have significant startup costs (e.g.
compared to De Bruijn)

These costs are incurred for every new mechanization,
unless steps are taken to make the lemmas reusable.
Typically this was several steps further than people
were prepared to go.

The tools were not as good as they are now

The subject was not as well understood as it is now

To arrive where we started: experience of mechanizing binding – p.7/26

Raw terms are good

Raw terms are an elementary approach

Good fit with existing technology and automation

e.g. simple case analysis principles

Function definition over terms is straightforward

Program language implementations and theorem
provers often use raw terms; if you want to reason about
their implementations, you have to tackle raw terms

To arrive where we started: experience of mechanizing binding – p.8/26

Alpha is not so important anyway

e.g. POPLmark proofs are mostly structural

e.g. Strong normalization for STLC only needs alpha in
one place (see Girard “Logic, Proofs and Types”)

e.g. Craig’s interpolation theorem does not need any
alpha at all (see my Isabelle/HOL formalization)

e.g. Owen’s formalization of Caml needs no alpha at the
term level (although De Bruijn appears at the type level)

N.B. a structural proof is one that doesn’t use alpha-

reasoning

To arrive where we started: experience of mechanizing binding – p.9/26

Fine control

Working upto alpha means e.g. λx s = λy t should not
imply x = y and s = t.

But if λx s = λy t occurs in an informal proof, you might
implicitly rename one bound variable to the other, so
that x = y and s = t .

Induction principles do not yet support this, so you have
to do it manually, which can be a lot of work

Working “not upto alpha” has the same effect

e.g. λx s = λy t implies x = y and s = t

For structural proofs, I want to work “not upto alpha”

This is supported by raw terms, which in general allow
very fine control over all aspects of binding

To arrive where we started: experience of mechanizing binding – p.10/26

POPLmark rules, informal
Γ ⊢ S <: T

Γ ⊢ S <: Top ok

Γ ⊢ S <: Top
SA_TOP

Γ ⊢ X <: X ok

Γ ⊢ X <: X
SA_REFL_TVAR

X <: U ∈ Γ

Γ ⊢ U <: T

Γ ⊢ X <: T
SA_TRANS_TVAR

Γ ⊢ T1 <: S1

Γ ⊢ S2 <: T2

Γ ⊢ S1 → S2 <: T1 → T2

SA_ARROW

Γ ⊢ T1 <: S1

Γ , X <: T1 ⊢ S2 <: T2

Γ ⊢ ∀X<:S1.S2 <: ∀X<:T1.T2

SA_ALL

To arrive where we started: experience of mechanizing binding – p.11/26

POPLmark rules, raw terms
Γ ⊢ S <: T

Γ ⊢ S <: Top ok

Γ ⊢ S <: Top
SA_TOP

Γ ⊢ X <: X ok

Γ ⊢ X <: X
SA_REFL_TVAR

X <: U ∈ Γ

Γ ⊢ U <: T

Γ ⊢ X <: T
SA_TRANS_TVAR

Γ ⊢ T1 <: S1

Γ ⊢ S2 <: T2

Γ ⊢ S1 → S2 <: T1 → T2

SA_ARROW

Γ ⊢ T1 <: S1

¬(Z in fv S2 − {X})

¬(Z in fv T2 − {Y })

Γ , Z <: T1 ⊢ [Z /X]S2 <: [Z /Y]T2

Γ ⊢ ∀X<:S1.S2 <: ∀Y <:T1.T2

SA_ALL

To arrive where we started: experience of mechanizing binding – p.12/26

Fine control over alpha

Γ ⊢ T1 <: S1

¬(Z in fv S2 − {X })

¬(Z in fv T2 − {Y })

Γ , Z <: T1 ⊢ [Z /X] S2 <: [Z /Y]T2

Γ ⊢ ∀X<:S1. S2 <: ∀Y <:T1.T2

SA_ALL

One of several alternatives

But with this choice, alpha reasoning is restricted to a
single proof that the rules are closed under alpha (and
subsequent uses of this fact)

To arrive where we started: experience of mechanizing binding – p.13/26

Representatives

Consider a POPLmark sequent Γ ⊢ S <: T .

The context Γ binds variables in S and T .

I prefer to treat context binding the same as term
binding

so it is natural to consider sequents “upto alpha”.

Here is a POPLmark rule:

X <: U ∈ Γ

Γ ⊢ U <: T

Γ ⊢ X <: T
SA_TRANS_TVAR

To avoid unwanted variable capture for U the variables
bound by Γ should be distinct.

“Γ-bound variables are distinct” is natural with raw
terms.

To arrive where we started: experience of mechanizing binding – p.14/26

Flexibility

We know what alpha is.

We don’t know what systems people will formalize.

Some approaches bake in alpha;

some bake in alpha, substitution, and context.

I want to give people flexibility,

so if people want to talk about representatives, and
bound variables being distinct, I want to support that.

If people want to work upto alpha in some parts of the
proof, and not in others, I want to support that.

Raw terms seem the best way to support this flexibility.

To arrive where we started: experience of mechanizing binding – p.15/26

Part II. POPLmark with raw terms

To arrive where we started: experience of mechanizing binding – p.16/26

POPLmark types (in HOL)

val _ = Hol_datatype ‘
Type = T_Top
| T_Var of typevar
| T_Fun of Type Type
| T_Forall of typevar Type Type

‘;

Lightly hand edited, due to confusing HOL syntax

To arrive where we started: experience of mechanizing binding – p.17/26

POPLmark 1a proofs

(* The interesting case is SA-Trans-TVar with M = X and we have

G, X<:Q, D |- Q <: N as a subderivation. *)

have ‘SA (G ++ [(INL X, Q)] ++ D) Q N‘; e(tac[]);

(* Applying the inner induction hypothesis to this subderivat ion

yields G, X<:P, D |- Q <: N. *)

have ‘SA (G ++ [(INL X,P)] ++ D) Q N‘; e(tac[]);

(* Also, applying weakening (Lemma A.2, part 2) to G |- P <: Q

yields G, X<:P, D |- P <: Q. *)

have ‘G_ok (G ++ [(INL X,P)] ++ D)‘; e(tac[SA_SA_ok,SA_ok_d ef]);

have ‘SA_ok (G ++ [(INL X,P)] ++ D) P Q‘; e(MATCH_MP_TAC’ SA_o k_weak); e(ssimp[SA_SA_ok]);

have ‘SA (G ++ [(INL X,P)] ++ D) P Q‘; e(MATCH_MP_TAC’ SA_weak); e(ssimp[]);

(* Now, by part (1) of the outer induction hypothesis (with the s ame Q),

we have G, X<:P, D |- P <: N. *)

have ‘SA (G ++ [(INL X,P)] ++ D) P N‘; e(simp [ttrans_def]);

(* Rule SA-Trans-TVar yields G, X<:P, D |- X <: N ... *)

have ‘SA (G ++ [(INL X,P)] ++ D) (T_Var X) N‘; e(tac[SA_Trans_ TVar,MEM,MEM_APPEND]);

(* ... as required. *)

e(tac[]);

Proofs can mirror informal proofs extremely closely.
To arrive where we started: experience of mechanizing binding – p.18/26

Part III. A general library

To arrive where we started: experience of mechanizing binding – p.19/26

Why a library of lemmas?

We develop a library of lemmas, rather than a package
which automatically produces lemmas on demand.

Largely an orthogonal issue to representation

A library means you can understand things, and change
things, easily

A package means you have to know about theorem
prover internals

A library means people can pick and choose which bits
they want to use

A library is felt to be more flexible than a package

To arrive where we started: experience of mechanizing binding – p.20/26

Universal type of terms

tm = Var of ’var
| Node of ’val (tm list)
| BIND of ’var tm

N.B. ’val,’var are free type variables e.g. for lambda-

calculus ’var might be string

To arrive where we started: experience of mechanizing binding – p.21/26

POPLmark instantiation

val =
NT_Var

| NT_Top
| NT_Fun
| NT_Forall

| Nt_Var
| Nt_Lam
| Nt_App
| Nt_TLam
| Nt_TApp

| N_vdash
| N_G_cons

To arrive where we started: experience of mechanizing binding – p.22/26

POPLmark instantiation
(T_tm (T_Top) = Node NT_Top [])

/\(T_tm (T_Var X) = Var (INL X))

/\(T_tm (T_Fun U V) = Node NT_Fun [T_tm U; T_tm V])

/\(T_tm (T_Forall X U V) = Node NT_Forall [T_tm U; BIND (INL X) (T_tm V)])

/\(Vdash_tm U V = Node N_vdash [U;V])

/\(G_tm ([]) U = U)

/\(G_tm ((xX,V)::xs) U = Node N_G_cons [V; BIND xX (G_tm xs U)])

/\(SA_tm G U V = G_tm G (Vdash_tm U V))

/\(SA_ALPHA G S T G’ S’ T’ =

DISTINCT (DOM G) /\ DISTINCT (DOM G’) /\

let (G,S,T) = (MAP (\(xX,U).(xX,T_tm U)) G,T_tm S,T_tm T) in

let (G’,S’,T’) = (MAP (\(xX,U).(xX,T_tm U)) G’,T_tm S’,T_t m T’) in

let (GST,GST’) = (SA_tm G S T,SA_tm G’ S’ T’) in

closed GST /\ closed GST’ /\

alpha GST GST’)

N.B. T_tm etc. should be defined automatically
To arrive where we started: experience of mechanizing binding – p.23/26

Subtyping closed under SA_ALPHA

SA G S T
==> SA_ALPHA G S T G’ S’ T’
==> SA G’ S’ T’

See bindingTalk20070810.{pdf,ps} on my webpage for proof.

To arrive where we started: experience of mechanizing binding – p.24/26

Using the theory
Using the theory means using lemmas.

have ‘G, Z<:T1 |- [Z/X]S2 <: [Z/Y]Q2‘; ...

have ‘SA_ALPHA

(G, Z<:T1 |- [Z/X]S2 <: [Z/Y]Q2)

(G, Z’<:T1 |- [Z’/X]S2 <: [Z’/Y]Q2)

‘; e(tac[SA_ALPHA_lemmas);

have ‘G, Z’<:T1 |- [Z’/X]S2 <: [Z’/Y]Q2‘;

e(tac[SA_ALPHA]);

Relation SA_ALPHA: two sequents are alpha equivalent
(and context bound vars are distinct)!

Lemma SA_ALPHA: SA is closed under SA_ALPHA

Very small interface between general theory and
particular mechanization To arrive where we started: experience of mechanizing binding – p.25/26

Conclusion

Some proofs work best with particular systems.

I’ve given some advantages of raw terms, but they are
not conclusive, and they may not apply to your proof.

But POPLmark proofs with raw terms look very nice.

Library, with universal datatype of terms, and supporting
lemmas, is flexible and allows users to pick and choose.

Treating sequent binding the same as term binding
allows theory to be used more widely.

This is also technically quite difficult (I haven’t seen
other concrete approaches do this)

so perhaps raw terms are digestible after all!

To arrive where we started: experience of mechanizing binding – p.26/26

	Experience of mechanizing binding
	What is this talk about?
	Outline of the talk
	Part I. Raw terms are good
	Raw terms ldots
	Possible reasons for this view
	Raw terms are good
	Alpha is not so important anyway
	Fine control
	POPLmark rules, informal
	POPLmark rules, raw terms
	Fine control over alpha
	Representatives
	Flexibility
	Part II. POPLmark with raw terms
	POPLmark types (in HOL)
	POPLmark 1a proofs
	Part III. A general library
	Why a library of lemmas?
	Universal type of terms
	POPLmark instantiation
	POPLmark instantiation
	Subtyping closed under SA_ALPHA
	Using the theory
	Conclusion

