Real World Binding Structures

Susmit Sarkar

with Peter Sewell and Francesco Zappa Nardelli

Paradigm Binding

Single binders
exp = X

| A X . exp bind X in exp

| exp exp’

Paradigm Binding

Single binders
exp = X
| A X . exp bind X in exp
| exp exp’

Lots of work on representations
deBruijn
HOAS
Locally nameless

Nominal

Real World Binding Structures — p.2/22

How about: Patterns?

Many binders

let (z,y) = zinxy

How about: Patterns?

Many binders

let (z,y) = zinxy

exrp = X

| (eap, exp’)

| let pat = exp in exp’
pat = X

bind b(pat) in exp’

Real World Binding Structures — p.3/22

How about: Patterns?

Many binders

let (z,y) = zinxy

exrp = X

| (eap, exp’)

| let pat = exp in exp’ bind b(pat) in exp’
pat = X b=X

- b=}

| (pat, pat’) b = b(pat) U b(pat’)

Real World Binding Struct

ures — p.3/22

How about: Let rec?

Binding one variable in multiple scopes

letrecr = (z, y)in(z, y)

How about: Let rec?

Binding one variable in multiple scopes

letrecr = (z, y)in(z, y)

exp = X
()
(‘exp, exp”)
let rec x = exp in exp’ bind z in exp

bind z in exp’

Real World Binding Structures — p.4/22

How about: Or-patterns?

A variable does not have a binding
occurrence

let
((None , Some z)
| (Some z, None)) = w
in

(7, x)

How about: Dependent Patterns?
Binding within binders

let
val [X <: top,z : X]| = w
in

X, (2, y)]

This work

A language for binding structures
What does it mean, mathematically?

What does it really mean, mechanically?

Bindspec language annotations

element, e ::=
terminal

metavar

nonterm

prod, p =

| | element, .. element,,: : . : prodname (+ bs; .. bs,, +)

bindspec, bs ::=

| bi nd msei nnonterm

Real World Binding Structures — p.8/22

Metavariable set expressions

Bind arbitrary sets of metavariables in

declared nonterminals

metavar_set_erpression, mse ::=

1}

metavar

mse uni on mse’

auzfn(nonterm)

Empty
Singleton
Union

Auxiliary function

Real World Binding Struct

ures — p.9/22

Auxiliary Functions

Collect some particular set of metavariables
User-detined, primitive recursive functions

Annotation of bindspec language

bindspec, bs ::=

| auzfn = mse

Real World Binding Structures — p.10/22

Example: Multiple Letrec

exp

Irb

Irbs

pat

X

let rec Irbs in exp (+ bind b(Irbs) in lrbs +)

X pat = exp

[rb
Irb and Irbs
X

(pat , pat’)

(+ bind b(lrbs) in exp +)
(+b=X+)

(+ bind bpat(pat) in exp +)
(+b=>b(lrb) +)

(+0=>5(lrb) Ub(lrbs) +)

(+ bpat = X +)

(+ bpat = bpat(pat) U bpat(pat’) +)

Real World Binding Structures — p.11/22

What does it mean?

There is no notion of binding occurrence

Recall: binders collected by user-defined
auxins

Real World Binding Structures —

What does it mean?

There is no notion of binding occurrence

Recall: binders collected by user-defined
auxins

Let us think about alpha-equivalence classes

Real World Binding Structures —

Alpha-equivalence classes

Concrete variables that must all vary together

Relate by partial equivalence relations of
occurrence of variables

Real World Binding Structures —

Alpha-equivalence classes

Concrete variables that must all vary together

Relate by partial equivalence relations of
occurrence of variables

letrecfz = g(x—1)
and gr = fox+huo
and z = 0

in(¢g5)

Real World Binding Structures —

Alpha-equivalence classes

Concrete variables that must all vary together

Relate by partial equivalence relations of
occurrence of variables

letrecfz = g(x—1)
and gr = fox+huo
and z = 0

in(¢g5)

Alpha-equivalence is equivalence upto
identity of these concrete variables

Real World Binding Structures — p.

Calculating closed PER

Calculated by induction on term structure

Real World Binding Structures —

Calculating closed PER

Calculated by induction on term structure

Case: bind mse in nt annotation
exp == let rec lrbs in exp (+ bind b(lrbs) in lrbs +)

(+ bind b(lrbs) in exp +)

Real World Binding Structures — p.14/22

Calculating closed PER

Calculated by induction on term structure
Case: bind mse in nt annotation
exp == let rec Irbs in exp (+ bind b(lrbs) in Irbs +)
(+ bind b(lrbs) in exp +)

Collect relevant occurences of variables and
relate them

letrecfz = f(2xz — 1)
in [4

Real World Binding Structures — p.14/22

Calculating closed PER

Calculated by induction on term structure
Case: bind mse in nt annotation
exp == let rec Irbs in exp (+ bind b(lrbs) in Irbs +)
(+ bind b(lrbs) in exp +)

Collect relevant occurences of variables and
relate them

letrecfz = f(2xz — 1)
in [4

Seal the equivalence relation of all such
variables (forget its identity). .. S ——

Open PER

...but not always!

Consider when there is binding within
binding
let
val [X <: top,z : X]| = w
in| X, ..]

Real World Binding Structures — p.15/22

Open PER

...but not always!

Consider when there is binding within
binding

X <: top,z : X|

Cannot forget the concrete variable (more

binding possible)

Syntactically analyze when safe to seal

Real World Binding Structures —

Well-formed Substitution

Defined over our alpha-equivalence classes
Must avoid capture (PER’s undisturbed)

When substituting closed terms, cheap
solution possible

Check for equality when descending
binders

Clearly not what you want to use in
general

Real World Binding Structures —

What does it Really Mean?

Proof assistant representations

Translations to a proper alpha-equivalent
representation: deBruijn, HOAS, locally
nameless, nominal. ..

Not clear how to translate the entire language

Real World Binding Structures —

The way forward?

Simple cases are easy
Single binders in one or more terms

Real World Binding Structures —

The way forward?

Simple cases are easy
Single binders in one or more terms

Translate (almost) everything to single
binders?

Possibly, cases without nested binding

Real World Binding Structures —

The way forward?

Simple cases are easy
Single binders in one or more terms

Translate (almost) everything to single
binders?

Possibly, cases without nested binding

... without loss ot expressiveness?

Real World Binding Structures — p.18/22

The way forward?

Simple cases are easy
Single binders in one or more terms

Translate (almost) everything to single
binders?

Possibly, cases without nested binding
... without loss ot expressiveness?

...making idiomatic proots possible?

Real World Binding Struc

tures — p.18/22

Related work

Much work on single binders

Rich binding specifications: FreshML, Caml
Caml: similar goals, but different
expressivities
Alpha-equivalence classes coincides on
large subset

Multiple auxiliary functions, or multiple
binding occurences, in Cam]l?

Bind only in some subterms in Ott
bindspec?

Real World Binding Structures —

Current and future work

Mechanized rich theory of binding (mini-Ott
in Ott)

Showed correspondence with usual notions
in simple cases

Define a notion of correctness (aka adequacy)

Want: a translation to a practical
representation

Real World Binding Structures —

Thank you!

http://ww.cl.cam ac. uk/ ~pes20/ ot t

Real World Binding Structures — p.21/22

http://www.cl.cam.ac.uk/~pes20/ott

Inexpressible binding

Binding non-terminals in non-terminals

let x : bool = e

in (2 : bool, z : int)

Note: It is handled in the implementation
with concrete atoms
First match patterns

First occurrence of variable in pattern is
binding, others bound

Real World Binding Struct

ures — p.22/22

	Paradigm Binding
	How about: Patterns?
	How about: Let rec?
	How about: Or-patterns?
	How about: Dependent Patterns?
	This work
	Bindspec language annotations
	Metavariable set expressions
	Auxiliary Functions
	Example: Multiple Letrec
	What does it mean?
	Alpha-equivalence classes
	Calculating closed PER
	Open PER
	Well-formed Substitution
	What does it {em Really} Mean?
	The way forward?
	Related work
	Current and future work
	Thank you!
	Inexpressible binding

