
Real World Binding Structures

Susmit Sarkar

with Peter Sewell and Francesco Zappa Nardelli

Real World Binding Structures – p.1/22

Paradigm Binding

� Single binders
exp ::= X

| λ X . exp bind X in exp

| exp exp ′

Real World Binding Structures – p.2/22

Paradigm Binding

� Single binders
exp ::= X

| λ X . exp bind X in exp

| exp exp ′

� Lots of work on representations
� deBruijn

� HOAS

� Locally nameless

� Nominal

� . . .
Real World Binding Structures – p.2/22

How about: Patterns?

� Many binders

let (x , y) = z in x y

Real World Binding Structures – p.3/22

How about: Patterns?

� Many binders

let (x , y) = z in x y

exp ::= X

| (exp , exp ′)

| let pat = exp in exp ′ bind b(pat) in exp ′

pat ::= X

| _

| (pat , pat ′)

Real World Binding Structures – p.3/22

How about: Patterns?

� Many binders

let (x , y) = z in x y

exp ::= X

| (exp , exp ′)

| let pat = exp in exp ′ bind b(pat) in exp ′

pat ::= X b = X

| _ b = {}

| (pat , pat ′) b = b(pat) ∪ b(pat ′)

Real World Binding Structures – p.3/22

How about: Let rec?

� Binding one variable in multiple scopes

letrec x = (x , y) in (x , y)

Real World Binding Structures – p.4/22

How about: Let rec?

� Binding one variable in multiple scopes

letrec x = (x , y) in (x , y)

exp ::= x

| ()

| (exp , exp ′)

| let rec x = exp in exp ′ bind x in exp

bind x in exp ′

Real World Binding Structures – p.4/22

How about: Or-patterns?

� A variable does not have a binding
occurrence

let

((None , Some x)

|| (Some x , None)) = w

in

(x , x)

Real World Binding Structures – p.5/22

How about: Dependent Patterns?

� Binding within binders

let

val [X <: top, x : X] = w

in

[X , (x , y)]

Real World Binding Structures – p.6/22

This work

� A language for binding structures

� What does it mean, mathematically?

� What does it really mean, mechanically?

Real World Binding Structures – p.7/22

Bindspec language annotations

element , e ::=

| terminal

| metavar

| nonterm

prod , p ::=

| | element1 .. elementm :::: prodname (+ bs1 .. bsn +)

bindspec, bs ::=

| bindmse in nonterm

| . . .

Real World Binding Structures – p.8/22

Metavariable set expressions

� Bind arbitrary sets of metavariables in
declared nonterminals

metavar_set_expression, mse ::=

| {} Empty

| metavar Singleton

| mse unionmse ′ Union

| auxfn(nonterm) Auxiliary function

Real World Binding Structures – p.9/22

Auxiliary Functions

� Collect some particular set of metavariables

� User-defined, primitive recursive functions

� Annotation of bindspec language

bindspec, bs ::=

| . . .

| auxfn = mse

Real World Binding Structures – p.10/22

Example: Multiple Letrec

exp ::= X

| let rec lrbs in exp (+ bind b(lrbs) in lrbs +)

(+ bind b(lrbs) in exp +)

lrb ::= X pat = exp (+ b = X +)

(+ bind bpat(pat) in exp +)

lrbs ::= lrb (+ b = b(lrb) +)

| lrb and lrbs (+ b = b(lrb) ∪ b(lrbs) +)

pat ::= X (+ bpat = X +)

| (pat , pat ′) (+ bpat = bpat(pat) ∪ bpat(pat ′) +)

Real World Binding Structures – p.11/22

What does it mean?

� There is no notion of binding occurrence
� Recall: binders collected by user-defined

auxfns

Real World Binding Structures – p.12/22

What does it mean?

� There is no notion of binding occurrence
� Recall: binders collected by user-defined

auxfns

� Let us think about alpha-equivalence classes

Real World Binding Structures – p.12/22

Alpha-equivalence classes

� Concrete variables that must all vary together

� Relate by partial equivalence relations of
occurrence of variables

Real World Binding Structures – p.13/22

Alpha-equivalence classes

� Concrete variables that must all vary together

� Relate by partial equivalence relations of
occurrence of variables

let rec f x = g (x − 1)

and g x = f x + h x

and h x = 0

in (g 5)

Real World Binding Structures – p.13/22

Alpha-equivalence classes

� Concrete variables that must all vary together

� Relate by partial equivalence relations of
occurrence of variables

let rec f x = g (x − 1)

and g x = f x + h x

and h x = 0

in (g 5)

� Alpha-equivalence is equivalence upto
identity of these concrete variables

Real World Binding Structures – p.13/22

Calculating closed PER

� Calculated by induction on term structure

Real World Binding Structures – p.14/22

Calculating closed PER

� Calculated by induction on term structure

� Case: bind mse in nt annotation
exp ::= let rec lrbs in exp (+ bind b(lrbs) in lrbs +)

(+ bind b(lrbs) in exp +)

Real World Binding Structures – p.14/22

Calculating closed PER

� Calculated by induction on term structure

� Case: bind mse in nt annotation
exp ::= let rec lrbs in exp (+ bind b(lrbs) in lrbs +)

(+ bind b(lrbs) in exp +)

� Collect relevant occurences of variables and
relate them

let rec f x = f (x − 1)

in f 4

Real World Binding Structures – p.14/22

Calculating closed PER

� Calculated by induction on term structure

� Case: bind mse in nt annotation
exp ::= let rec lrbs in exp (+ bind b(lrbs) in lrbs +)

(+ bind b(lrbs) in exp +)

� Collect relevant occurences of variables and
relate them

let rec f x = f (x − 1)

in f 4

� Seal the equivalence relation of all such
variables (forget its identity). . . Real World Binding Structures – p.14/22

Open PER

� . . . but not always!

� Consider when there is binding within
binding

let

val [X <: top, x : X] = w

in [X , . . .]

Real World Binding Structures – p.15/22

Open PER

� . . . but not always!

� Consider when there is binding within
binding

[X <: top, x : X]

� Cannot forget the concrete variable (more
binding possible)

� Syntactically analyze when safe to seal

Real World Binding Structures – p.15/22

Well-formed Substitution

� Defined over our alpha-equivalence classes

� Must avoid capture (PER’s undisturbed)

� When substituting closed terms, cheap
solution possible

� Check for equality when descending
binders

� Clearly not what you want to use in
general

Real World Binding Structures – p.16/22

What does it Really Mean?

� Proof assistant representations

� Translations to a proper alpha-equivalent
representation: deBruijn, HOAS, locally
nameless, nominal. . .

� Not clear how to translate the entire language

Real World Binding Structures – p.17/22

The way forward?

� Simple cases are easy
� Single binders in one or more terms

Real World Binding Structures – p.18/22

The way forward?

� Simple cases are easy
� Single binders in one or more terms

� Translate (almost) everything to single
binders?

� Possibly, cases without nested binding

Real World Binding Structures – p.18/22

The way forward?

� Simple cases are easy
� Single binders in one or more terms

� Translate (almost) everything to single
binders?

� Possibly, cases without nested binding

� . . . without loss of expressiveness?

Real World Binding Structures – p.18/22

The way forward?

� Simple cases are easy
� Single binders in one or more terms

� Translate (almost) everything to single
binders?

� Possibly, cases without nested binding

� . . . without loss of expressiveness?

� . . . making idiomatic proofs possible?

Real World Binding Structures – p.18/22

Related work

� Much work on single binders

� Rich binding specifications: FreshML, Cαml
� Cαml: similar goals, but different

expressivities
� Alpha-equivalence classes coincides on

large subset
� Multiple auxiliary functions, or multiple

binding occurences, in Cαml?
� Bind only in some subterms in Ott

bindspec?

Real World Binding Structures – p.19/22

Current and future work

� Mechanized rich theory of binding (mini-Ott
in Ott)

� Showed correspondence with usual notions
in simple cases

� Define a notion of correctness (aka adequacy)

� Want: a translation to a practical
representation

Real World Binding Structures – p.20/22

Thank you!

http://www.cl.cam.ac.uk/~pes20/ott

Real World Binding Structures – p.21/22

http://www.cl.cam.ac.uk/~pes20/ott

Inexpressible binding

� Binding non-terminals in non-terminals

let x : bool = e

in (x : bool, x : int)

� Note: It is handled in the implementation
with concrete atoms

� First match patterns
� First occurrence of variable in pattern is

binding, others bound

Real World Binding Structures – p.22/22

	Paradigm Binding
	How about: Patterns?
	How about: Let rec?
	How about: Or-patterns?
	How about: Dependent Patterns?
	This work
	Bindspec language annotations
	Metavariable set expressions
	Auxiliary Functions
	Example: Multiple Letrec
	What does it mean?
	Alpha-equivalence classes
	Calculating closed PER
	Open PER
	Well-formed Substitution
	What does it {em Really} Mean?
	The way forward?
	Related work
	Current and future work
	Thank you!
	Inexpressible binding

