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Paradigm Binding

Single binders
exp = X
| A X . exp bind X in exp
| exp exp’

Lots of work on representations
deBruijn
HOAS
Locally nameless

Nominal
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How about: Patterns?

Many binders

let (z,y) = zinxy



How about: Patterns?

Many binders

let (z,y) = zinxy

exrp = X

| (eap, exp’)

| let pat = exp in exp’
pat = X

bind b(pat) in exp’
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How about: Patterns?

Many binders

let (z,y) = zinxy

exrp = X

| (eap, exp’)

| let pat = exp in exp’ bind b(pat) in exp’
pat = X b=X

- b=}

| (pat, pat’) b = b(pat) U b(pat’)
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How about: Let rec?

Binding one variable in multiple scopes

letrecr = (z, y)in(z, y)



How about: Let rec?

Binding one variable in multiple scopes

letrecr = (z, y)in(z, y)

exp = X
()
(‘exp, exp”)
let rec x = exp in exp’ bind z in exp

bind z in exp’
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How about: Or-patterns?

A variable does not have a binding
occurrence

let
( (None , Some z )
| (Some z, None) ) = w
in

(7, x)



How about: Dependent Patterns?
Binding within binders

let
val [ X <: top,z : X]| = w
in

X, (2, y)]



This work

A language for binding structures
What does it mean, mathematically?

What does it really mean, mechanically?



Bindspec language annotations

element, e ::=
terminal

metavar

nonterm

prod, p =

| | element, .. element,,: : . : prodname ( + bs; .. bs,, +)

bindspec, bs ::=

| bi nd msei nnonterm
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Metavariable set expressions

Bind arbitrary sets of metavariables in

declared nonterminals

metavar_set_erpression, mse ::=

1}

metavar

mse uni on mse’

auzfn( nonterm)

Empty
Singleton
Union

Auxiliary function
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Auxiliary Functions

Collect some particular set of metavariables
User-detined, primitive recursive functions

Annotation of bindspec language

bindspec, bs ::=

| auzfn = mse
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Example: Multiple Letrec

exp

Irb

Irbs

pat

X

let rec Irbs in exp (+ bind b(Irbs) in lrbs +)

X pat = exp

[rb
Irb and Irbs
X

( pat , pat’)

( + bind b(lrbs) in exp +)
(+b=X+)

( + bind bpat(pat) in exp +)
(+b=>b(lrb) +)

(+0=>5(lrb) Ub(lrbs) +)

(+ bpat = X +)

( + bpat = bpat(pat) U bpat(pat’) +)
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What does it mean?

There is no notion of binding occurrence

Recall: binders collected by user-defined
auxins
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What does it mean?

There is no notion of binding occurrence

Recall: binders collected by user-defined
auxins

Let us think about alpha-equivalence classes
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Alpha-equivalence classes

Concrete variables that must all vary together

Relate by partial equivalence relations of
occurrence of variables
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Alpha-equivalence classes

Concrete variables that must all vary together

Relate by partial equivalence relations of
occurrence of variables

letrecfz = g(x—1)
and gr = fox+huo
and  z = 0

in(¢g5)
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Alpha-equivalence classes

Concrete variables that must all vary together

Relate by partial equivalence relations of
occurrence of variables

letrecfz = g(x—1)
and gr = fox+huo
and  z = 0

in(¢g5)

Alpha-equivalence is equivalence upto
identity of these concrete variables
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Calculating closed PER

Calculated by induction on term structure
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Calculating closed PER

Calculated by induction on term structure

Case: bind mse in nt annotation
exp == let rec lrbs in exp ( + bind b(lrbs) in lrbs +)

(+ bind b(lrbs) in exp +)
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Calculating closed PER

Calculated by induction on term structure
Case: bind mse in nt annotation
exp == let rec Irbs in exp (+ bind b(lrbs) in Irbs +)
(+ bind b(lrbs) in exp +)

Collect relevant occurences of variables and
relate them

letrecfz = f(2xz — 1)
in [ 4
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Calculating closed PER

Calculated by induction on term structure
Case: bind mse in nt annotation
exp == let rec Irbs in exp (+ bind b(lrbs) in Irbs +)
(+ bind b(lrbs) in exp +)

Collect relevant occurences of variables and
relate them

letrecfz = f(2xz — 1)
in [ 4

Seal the equivalence relation of all such
variables (forget its identity). .. S ——



Open PER

...but not always!

Consider when there is binding within
binding
let
val [ X <: top,z : X]| = w
in| X, .. ]
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Open PER

...but not always!

Consider when there is binding within
binding

X <: top,z : X|

Cannot forget the concrete variable (more

binding possible)

Syntactically analyze when safe to seal
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Well-formed Substitution

Defined over our alpha-equivalence classes
Must avoid capture (PER’s undisturbed)

When substituting closed terms, cheap
solution possible

Check for equality when descending
binders

Clearly not what you want to use in
general
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What does it Really Mean?

Proof assistant representations

Translations to a proper alpha-equivalent
representation: deBruijn, HOAS, locally
nameless, nominal. ..

Not clear how to translate the entire language
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The way forward?

Simple cases are easy
Single binders in one or more terms
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The way forward?

Simple cases are easy
Single binders in one or more terms

Translate (almost) everything to single
binders?

Possibly, cases without nested binding
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The way forward?

Simple cases are easy
Single binders in one or more terms

Translate (almost) everything to single
binders?

Possibly, cases without nested binding

... without loss ot expressiveness?
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The way forward?

Simple cases are easy
Single binders in one or more terms

Translate (almost) everything to single
binders?

Possibly, cases without nested binding
... without loss ot expressiveness?

...making idiomatic proots possible?

Real World Binding Struc
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Related work

Much work on single binders

Rich binding specifications: FreshML, Caml
Caml: similar goals, but different
expressivities
Alpha-equivalence classes coincides on
large subset

Multiple auxiliary functions, or multiple
binding occurences, in Cam]l?

Bind only in some subterms in Ott
bindspec?
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Current and future work

Mechanized rich theory of binding (mini-Ott
in Ott)

Showed correspondence with usual notions
in simple cases

Define a notion of correctness (aka adequacy)

Want: a translation to a practical
representation
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Thank you!

http://ww.cl.cam ac. uk/ ~pes20/ ot t

Real World Binding Structures — p.21/22


http://www.cl.cam.ac.uk/~pes20/ott

Inexpressible binding

Binding non-terminals in non-terminals

let x : bool = e

in (2 : bool, z : int )

Note: It is handled in the implementation
with concrete atoms
First match patterns

First occurrence of variable in pattern is
binding, others bound
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