4. K-Function Analysis of Point Patterns

In the Bodmin Tors example above, notice from Figure 14a (p.20) that the clustering structure is actually quite different from that of the Redwood Seedling example in 12a (p.12). Rather than small isolate clumps, there appear to be two large groups of points in the northwest and southwest, separated by a large empty region. Moreover, the points within each group are actually quite uniform with clear subclusters. These observations suggest that the pattern of tors exhibits different structures at different scales. Hence the objective of the present section is to introduce a method of point pattern analysis that takes such scale effects into account, and in fact allows “scale” to become a fundamental variable in the analysis.

4.1 Wolf-Pack Example

To motivate the main ideas, we begin with a new example involving wolf packs. A map is shown in Figure 1a below representing the relative locations of wolf packs in a portion of the Central Arctic Region in 1998.1 The enlarged portion in Figure 1b is a schematic map depicting individual wolves in four of these packs.

At the level of individual wolf locations in Figure 1b, there is a pattern of isolated clumps that bears a strong resemblance to that of the Redwood seedlings above.2 Needless to say, this pattern would qualify as strongly clustered. But if one considers the larger map in Figure 1a, a different picture emerges. Here, the dominant feature is the remarkable uniformity of spacing between wolf packs. Each pack establishes a hunting territory large enough for its survival (roughly 15 to 20 km in diameter), and actively discourages other

---

1 This map is based on a more detailed map published in the Northwest Territories Wolf Notes, Winter 1998/99. See also http://www.nwtwildlife.rwed.gov.nt.ca/Publications/wolfnotes/wolf32.htm.
2 The spacing of individual wolves is of course exaggerated to allow a representation at this scale.
packs from invading its territory. Hence this pattern of wolf locations is very clustered at small scales, and yet very uniform at large scales.

But if one were to analyze this wolf-location pattern using any of the nearest-neighbor techniques above, it is clear that only the small-scale clustering would be detected. Since each wolf is necessarily close to other wolves in the same dens, the spacing between dens would never be observed. In this simple example one could of course redefine wolf dens to be aggregate “points”, and analyze the spacing between these aggregates at a larger scale. But there is no way to analyze multiple scales using nearest neighbors without some form of re-aggregation.

4.2 K-Function Representations

To capture a range of scales in a more systematic way, we now consider what amounts to an extension of the quadrat (or cell-count) method discussed in section 1 above. In particular, recall that the quadrat method was criticized for being too dependent on the scale of individual cells. Hence the key idea of K-functions is to turn this dependency into a virtue by explicitly incorporating “scale” as a variable in the analysis. Thus, rather than fixing the scale and locations of cell grids, we now consider randomly sampled cells of varying sizes. While many sampling schemes of this type can be defined, we shall focus on the single most basic scheme which is designed to answer the following question for a given point process with density $\lambda$: What is the expected number of point events within distance $h$ from any randomly sampled point event? Note that this expected number is not very meaningful without specifying the point density $\lambda$, since it will of course increase with $\lambda$. Hence if we divide by $\lambda$ in order to eliminate this obvious “density effect” then the quantities of interest take the form:

\[
K(h) = \frac{1}{\lambda} E (\text{number of additional events within distance, } h, \text{ of an arbitrary event})
\]

If we allow the distance or scale, $h$, to vary then expression (1) is seen to define a function of $h$, designated as a K-function. As with nn-distances, these values, $K(h)$, yield information about clustering and uniformity. In the wolf-pack example above, if one were to define $K(h)$ with respect to small distances, $h$, around each wolf in Figure 1b, then given the close proximity to other wolves in the same pack, these values would surely be too high to be consistent with CSR for the given density of wolves in this area. Similarly, if one were to define $K(h)$ with respect to much larger distances, $h$, around each wolf in Figure 1a, then given the wide spacing between wolf packs (and the relative uniformity of wolf-pack sizes), these values would surely be too low to be consistent

---

3 Since wolves are constantly on the move throughout their hunting territories, the actual locations shown in Figure 1a are roughly at the centers of these territories.

4 One could also incorporate larger scales by using higher-order nearest neighbors [as discussed for example in Ripley (1996, sec.6.2)]. But these are not only more complex analytically, they are difficult to associate with specific scales of analysis.

5 This concept was popularized by the work of Ripley (1976,1977). Note also that following standard convention, we now denote distance by $h$ to distinguish it from nn-distance, $d$.

6 Wolf packs typically consist of six to eight wolves (see the references in footnote 1 above).
with CSR for the given density of wolves. Hence if one can identify appropriate benchmark values for \( K(h) \) under CSR, then these K-functions can be used to test for clustering and uniformity at various scales of analysis. We shall consider these questions in more detail in Section 4.4 below.

But for the moment, there are several features of definition (1) that warrant further discussion. First, while the distance metric in (1) is not specified, we shall always refer to Euclidean distance, \( d(s,v) \) between pairs of points, as defined expression 3.2(6) above. Hence with respect to any given point event, \( s \), the expected number of point events within distance \( h \) of \( s \) is simply the expected number of such events a circle of radius \( h \) about \( s \), as shown in Figure 2 below.

\[
\lambda K(h) = \text{Expected Number of Points in here}
\]

This graphical image helps to clarify several additional assumptions implicit in the definition of \( K(h) \). First, since this value is taken to depend only on the size of the circle (i.e., the radius \( h \)) and not its position (i.e., the coordinates of \( s \)) there is an implicit assumption of spatial stationarity [as in expression 2.5(16) above]. In other words, it is assumed that the expected number of additional points in this circle is the same regardless of where \( s \) is located. (This assumption will later be relaxed in our Monte Carlo applications of K-functions).

Observe next that the circularity of this region implicitly assumes that direction is not important, and hence that the underlying point process is isotropic (as in Figure 2.5[2] above). On the other hand, if the point process of interest were to exhibit some clear directionality, such as the vertical directionality in shown in Figure 2.5[3] above, then it might be more appropriate to use directional ellipses as defined by weighted Euclidean distances of the form:

\[
d(s,v) = \sqrt{w_1 \cdot (s_1 - v_1)^2 + w_2 \cdot (s_2 - v_2)^2}
\]

where the weights \( w_1 \) and \( w_2 \) reflect relative sensitivities of point counts to movements in the horizontal or vertical direction, respectively.\(^7\) More generally, if the relevant point

\(^7\) One can also use appropriate quadratic forms to define anisotropic distances with any desired directional orientations. We shall consider such distances in more detail in the analysis of spatial variograms in Part II of this NOTEBOOK.
events occur in specific environments (such as the patterns of Philadelphia housing abandonments in Figures 1.2[1] and 1.2[2]), then the relevant distances might be determined by these environments (such as travel distance on the Philadelphia street system).\textsuperscript{8}

Finally, it is important to emphasize that the expected value in (1) is a conditional expected value. In particular, given that there is a point event, \( s \), at the center of the circle in Figure 8 above, this value gives the expected number of additional points in this circle. This can be clarified by rewriting \( K(h) \) in terms of conditional expectations. In particular if [as in Section 3.2.1 above] we now denote the circle in Figure 8 minus its center by

\[
C_h - \{s\} = \{v \in R : 0 < d(v, s) \leq h\}
\]

then \( K(h) \) can be written more precisely as follows:

\[
K(h) = \frac{1}{\lambda} E[N(C_h - \{s\}) | N(s) = 1]
\]

To see the importance of this conditioning, recall from expression 2.3(10) that for any stationary process (not just CSR processes) it must be true that the expected number of points in \( C_h - \{s\} \) is simply proportional to its area, i.e., that

\[
E(C_h - \{s\}) = \lambda a(C_h - \{s\})
\]

But this is not true of the conditional expectation above. Recall from the wolf-pack case, for example, that for small circles around any given wolf, the expected number of additional wolves is much larger than what would be expected based on area alone [i.e., is larger than \( \lambda a(C_h - \{s\}) \)]. These ideas will be developed in more detail in Section 4.4, where it is shown that such deviations from simple area proportionality form the basis for all K-function tests of the CSR Hypothesis.

### 4.3 Estimation of K-Functions

Given this general definition of K-functions as (conditional) expected values, we now consider the important practical question of estimating these values. To do so, we introduce the following notation analyzing for point counts. For any given realized point pattern, \( S_n = (s_i : i = 1,..,n) \), and pair of points \( s_i, s_j \in S_n \) we now denote the Euclidean distance between them by

\[
d_{ij} = d(s_i, s_j)
\]

\textsuperscript{8} Here it should be noted that tools are available in the \textit{spatial analyst extension} of ARCMAP for constructing cost-weighted and shortest-paths distances. However, we shall not do so in this NOTEBOOK.
and for any distance, \( h \), define the indicator function, \( I_h \), for point pairs in \( S_n \) by

\[
I_h(d_{ij}) = I_h[d(s_i, s_j)] = \begin{cases} 
1, & d_{ij} \leq h \\
0, & d_{ij} > h 
\end{cases}
\]

From this definition it follows at once that for any given point \( s_i \in S_n \), the total number of additional points \( s_j \) within distance \( h \) of \( s_i \) is given by the sum \( \sum_{j \neq i} I_h(d_{ij}) \). Hence, if \( i \) now refers to a randomly selected point generated by a point process on \( R \), and if both the number and locations of points in \( R \) are treated as random variables, then in terms of (4) the K-function in (1) above can now be given the following equivalent definition:

\[
K(h) = \frac{1}{\lambda} E \left[ \sum_{j \neq i} I_h(d_{ij}) \right]
\]

Observe also that for stationary point process the value of \( K(h) \) must be independent of the particular point event \( i \) chosen. So multiplying through by \( \lambda \) in (5) and summing over all point events \( i = 1, \ldots, n \) in region \( R \), it follows that

\[
E \left[ \sum_{j \neq i} I_h(d_{ij}) \right] = \lambda K(h) , \quad i = 1, \ldots, n \\
\Rightarrow \sum_{i=1}^{n} E \left[ \sum_{j \neq i} I_h(d_{ij}) \right] = n\lambda K(h)
\]

\[
\Rightarrow K(h) = \frac{1}{\lambda n} \sum_{i=1}^{n} E \left[ \sum_{j \neq i} I_h(d_{ij}) \right]
\]

This “pooled” version of \( K(h) \) motivates the following pooled estimate, \( \hat{K}(h) \), using all points of the given realized point pattern \( S_n \) in \( R \),

\[
\hat{K}(h) = \frac{1}{\hat{\lambda} n} \sum_{i=1}^{n} \sum_{j \neq i} I_h(d_{ij})
\]

where again, \( \hat{\lambda} = n / a(R) \).\(^9\) Alternatively, if we rewrite this estimator as

\[
\hat{K}(h) = \frac{1}{\hat{\lambda} n} \left[ \frac{1}{n} \sum_{i=1}^{n} \left( \sum_{j \neq i} I_h(d_{ij}) \right) \right]
\]

then the expression in brackets is seen to be simply an average of the relevant point counts for each of the pattern points, \( s_i \in S_n \). Hence, if the underlying process were truly

\[^9\] At this point it should be noted that our notation differs from [BG] where regions are denoted by a script \( R \) with area \( R \). Here we use \( R \) for region, and make the area function, \( a(R) \), explicit. In these terms, (7) is seen to be identical to the estimate on the top of p. 93 in [BG], where \( 1 / (\hat{\lambda} n) = a(R) / \pi \).

ESE 502 I.4-5 Tony E. Smith
stationary, then this would be an unbiased (and reasonably efficient) estimator of their common expected point count $E[\sum_{j \neq i} I_h(d_{ij})]$ in (5).

However, since this idealization can never hold exactly in bounded regions $R$, it is necessary to take into account the edge effects created by the boundary of $R$. Unlike the case of nn-distances, where the expected values of nn-distances are increased for points near the boundary (as in Figure 3.4[16]), the expected value of point counts are reduced for these points, as shown in Figure 3a below.

![Fig.3a. Edge Effects for $K(h)$](image)

![Fig.3b. Ripley's Correction](image)

To counter this downward bias, Ripley (1976) proposed a “corrected” version of (8) that is quite effective in practice. His correction consists of weighting each point, $s_j$, in the count $\sum_{j \neq i} I_h(d_{ij})$ in a manner that inflates counts for points near the boundary. If one considers the circle about $s_i$ passing through $s_j$ (as shown in Figure 3b) and defines $w_{ij}$ to be the fraction of its circumference that lies inside $R$, then the appropriate reweighting of $s_j$ in the count for $s_i$ is simply to divide $I_h(d_{ij})$ by $w_{ij}$, producing a new estimate known as Ripley’s correction:

$$
\hat{K}(h) = \frac{1}{\lambda n} \sum_{i=1}^{n} \sum_{j \neq i} \frac{I_h(d_{ij})}{w_{ij}}
$$

One can gain some intuition here by observing in Figure 3b that weights will be unity unless circle about $s_i$ passing through $s_j$ actually leaves $R$. So only those point pairs will be involved that are close to the boundary of $R$, relative to distance $h$. Moreover, the closer that $s_j$ is to the edge of $R$, the more of this circumference is outside $R$, and hence the smaller $w_{ij}$ becomes. This means that values $I_h(d_{ij})/w_{ij}$ are largest for points closest
to the edge, thus inflating $\hat{K}(h)$ to correct the bias. [An explicit derivation of Ripley’s correction is given in Section 6 of the Appendix to Part I.]

It should be emphasized that while Ripley’s correction is very useful for estimating the true K-function for a given stationary processes, this is usually not the question of most interest. As we have seen above, the key questions relate to whether this process exhibits structure other than what would be expected under CSR, and how this structure may vary as the spatial scale of analysis is increased. Here it turns out that in most cases, Ripley’s correction is not actually needed. Hence this correction will not be used in the analysis to follow.\textsuperscript{10}

4.4 Testing the CSR Hypothesis

To apply K-functions in testing the CSR Hypothesis, it is convenient to begin by ignoring edge effects, and considering the nature of K-functions under this hypothesis for points, $s \in R$ and distances, $h$, that are not influenced by edge effects. Hence, in contrast to Figure 3a above, we now assume that the set of locations, $C_h$, within distance $h$ of $s$ is entirely contained in $R$, i.e., that

$$C_h = \{v \in R : d(s, v) \leq h\} \subseteq R$$

Next recall from the basic independence assumption about individual point locations in CSR processes (Section 2.2 above) that for such processes, the expected number of points in $C_h - \{s\}$ does not dependent on whether or not there is a point event at $s$, so that

$$E[N(C_h - \{s\}) | N(s) = 1] = E[N(C_h - \{s\})]$$

Hence from expression 4.2(5), together with the area formula for circles [and the fact that $a(C_h - \{s\}) = a(C_h)$], it follows that

$$E[N(C_h - \{s\}) | N(s) = 1] = \lambda a(C_h - \{s\}) = \lambda a(C_h) = \lambda \pi h^2$$

which together with expression 4.2(4) yields the following simple K-function values:

$$K(h) = \frac{1}{\lambda} (\lambda \pi h^2) = \pi h^2$$

Hence by standardizing with respect to density, $\lambda$, and ignoring edge effects as in (8), we see that the K-function reduces simply to area under the CSR Hypothesis. Note also that when $K(h) > \pi h^2$, this implies a mean point count higher than would be expected under CSR, and hence indicates some degree of clustering at scale $h$ (as illustrated in Section

\textsuperscript{10} Readers interested in estimating the true K-function for a given process are referred to Section 8.4.3 in Cressie (1993), and to the additional references found therein.
4.2 above). Similarly, a value \( K(h) < \pi h^2 \) implies a mean point count lower than would be expected under CSR, and hence indicates some degree of uniformity at scale \( h \). Thus for any given \( h > 0 \),

\[
K(h) > \pi h^2 \Rightarrow \text{clustering at scale } h
\]

\[
K(h) < \pi h^2 \Rightarrow \text{uniformity at scale } h
\]

While these relations are adequate for testing purposes, area values are difficult to interpret directly. Hence it usually convenient to further standardize K-functions in a manner that eliminates the need for considering these values. If for each \( h \) we let

\[
L(h) = \sqrt{\frac{K(h)}{\pi}} - h
\]

then under CSR, this \( L\)-function has the property that

\[
L(h) = \sqrt{\frac{\pi h^2}{\pi}} - h = h - h = 0
\]

for all \( h \geq 0 \). In other words, this associated L-function is identically zero under CSR. Moreover, since \( L(h) \) is an increasing function of \( K(h) \), it follows that \( L(h) \) is positive exactly when \( K(h) > \pi h^2 \), and is negative exactly when \( K(h) < \pi h^2 \). Hence the relations in (12) can be given the following simpler form in terms of L-functions:

\[
L(h) > 0 \Rightarrow \text{clustering at scale } h
\]

\[
L(h) < 0 \Rightarrow \text{uniformity at scale } h
\]

Given the estimate, \( \hat{K}(h) \), in 4.3(7) above, one can estimate \( L(h) \) by

\[
\hat{L}(h) = \sqrt{\frac{\hat{K}(h)}{\pi}} - h
\]

and can in principle use (15) to test for clustering or uniformity.

**4.5 Bodmin Tors Example**

We can apply these testing ideas to Bodmin by using the MATLAB program, \texttt{k_function.m}. The first few lines of this program are shown below:
function C = k_function(loc,area,b,extent)

% K_FUNCTION computes the raw k-Function for a point pattern
% and plots the normalized L-Function (without
% edge corrections)

% Written by: TONY E. SMITH, 11/26/01

% INPUTS:
% (i) loc = file of locations (xi,yi), i=1..m
% (ii) area = area of region
% (iii) b = number of bins to use in CDF (and plot)
% (iv) extent = 1 if max h = half of max pairwise distance (typical case)
% = 2 if max h = max pairwise distance to be considered
% DATA OUTPUTS: C = (1:b) vector containing raw Point Count
% SCREEN OUTPUTS: Plot of L-Function over the specified extent.

To apply this program, again open the data file, Bodmin.mat, and recall that the tor locations are given in the matrix, Bodmin. As seen above, the program first computes \( \hat{K}(h) \) for a range of distance values, \( h \), and then converts this to \( \hat{L}(h) \) and plots these values against the reference value of zero. The maximum value of \( h \) for this illustration is chosen to be the maximum pairwise distance between pattern points (tors), listed as option 2 in input (iv) above. The number of intermediate distance values (bins) to be used is specified by input (iii). Here we set \( b = 20 \). Hence to run this program, type:

```matlab
>> k_function(Bodmin,area,20,2);
```

The resulting plot is shown in Figure 4 to the right. Here the horizontal line indicates the “theoretical” values of \( L(h) \) under the CSR Hypothesis. So it would appear that there is some degree of clustering at small scales, \( h \). However, recall that the above analysis was predicated on the assumption of no edge effects. Since there are clearly strong edge effects in the Bodmin case, the real question here is how to incorporate these effects in a manner that will allow a meaningful test of CSR.

One approach is suggested by recalling that random point pattern for Bodmin was also generated in Figure 3.4[14b] above. Hence if the L-function for such a random pattern is
plotted, then this can serve as a natural benchmark against which to compare the L-function for tors. This random pattern is contained in the matrix, \textbf{Bodrn2}, of data file \texttt{Bodmin.mat} (an is also shown again in Figure 7 below). Hence the corresponding command, \texttt{k_function(Bodrn2,area,20,2)}, now yields a comparable plot of this benchmark L-function as shown in Figure 5 below.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig5.png}
\caption{Random L-function}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig6.png}
\caption{L-function Overlay}
\end{figure}

Here it is clear that the L-function for this random pattern is \textit{not flat}, but rather is everywhere negative, and decreases at an increasing rate. Hence relative to zero, this pattern appears to exhibit more and more dispersion as the scale increases.

The reason for this of course is that the theory above [and expression 4.4(8) in particular] ignores those points near the boundary of the Bodmin region, such as the point shown in Figure 7. Here it is clear that for sufficiently small scales, \( h \), there is little effect on \( \hat{L}(h) \), so that values are close to zero for small \( h \). But as this radius increases, it is also clear that most of the circle is eventually outside of \( R \), and hence is mostly empty. Thus, given the estimated point density, \( \hat{\lambda} \), for Bodmin tors inside \( R \), point counts for large \( h \) start to look very small relative to the area \( \pi h^2 \). This is precisely the effect that Ripley’s correction [expression 4.3(7)] attempts to eliminate.\(^{11}\)

But if we now ignore the zero reference line and use this random L-function as a benchmark, then a perfectly meaningful comparison can be made by overlaying these two

\(^{11}\) A nice comparison of Ripley’s correction with uncorrected L-functions (such as in Figure 4 above) is given in Figure 8.15 of Cressie (1993, p.617).
L-functions, as in Figure 6 above. Here one can see that the region of relative clustering is now considerably larger than in Figure 4, and occurs up to a scale of about \( h = 8 \) (see the scale shown in Figure 3.4[14]). But observe even these benchmark comparisons have little meaning at scales so large that circles of radius \( h \) around all pattern points lie mostly outside the relevant region \( R \). For this reason, the commonly accepted rule-of-thumb is that for any given point pattern, \( S_n \), one should not consider \( h \)-values larger that half the maximum pairwise distance between pattern points. Hence if we now denote the maximum pairwise distance for \( S_n \) by \( h_{\text{max}} = \max \{ d(s_i, s_j) : s_i, s_j \in S_n \} \), and use \( \bar{h} \) to indicate the largest value of \( h \) to be considered in a given case, then the standard rule-of-thumb is to set

\[
\bar{h} = h_{\text{max}} / 2
\]

This corresponds to option 1 for input (iv) of \texttt{k_function} above, and option 2 correspond to \( \bar{h} = h_{\text{max}} \). We shall have occasion to use (18) in many of our subsequent analyses, and in fact this will usually denote the “default” value of \( \bar{h} \).

A more importation limitation of this benchmark comparison is that (like the JMPIN version of the Clark-Evans test in Section 3.3.1 above) the results necessarily depend on the random point pattern that is chosen for a benchmark. Hence we now consider a much more powerful testing procedure using Monte Carlo methods.

### 4.6 Monte Carlo Testing Procedures

As we saw in Section 3.5 above, it is possible to use Monte Carlo methods to estimate the sampling distribution of nn-distances for any pattern size in a given region of interest. This same idea extends to the sampling distribution of any statistics derived from such patterns, and is of sufficient importance to be stated as a general principle:

**SIMULATION PRINCIPLE:** To test the CSR Hypothesis for any point pattern, \( S_n \), of size \( n \) in a given region, \( R \), one can simulate a large number of random point patterns, \( \{ S_n^{(i)} : i = 1, \ldots, N \} \), of the same size, and compare \( S_n \) with this statistical population.

Essentially, this simulation procedure gives us a clear idea statistical picture of what realized patterns from a CSR process on \( R \) should look like. In the case of K-function tests of CSR, we first consider the standard application of these ideas in terms of “simulation envelopes”. This method is then refined in terms of a more explicit P-value representation.
4.6.1 Simulation Envelopes

The essential idea here is to simulate $N$ random patterns as above and to compare observed estimate $\hat{L}(h)$ with the range of estimates $\hat{L}_i(h), i = 1,..,N$ obtained from this simulation. More formally, if one defines the lower-envelope and upper-envelope functions respectively by

\begin{align}
L_N(h) &= \min \{ \hat{L}_i(h) : i = 1,..,N \} \\
U_N(h) &= \max \{ \hat{L}_i(h) : i = 1,..,N \}
\end{align}

then $\hat{L}(h)$ is compared with $L_N(h)$ and $U_N(h)$ for each $h$. So for a given observed pattern, $S_n$, in region $R$ the steps of this Monte Carlo testing procedure can be outlined as follows:

(i) Generate a number of random patterns, $\{S^{(i)}_n : i = 1,..,N\}$, of size $n$ in region $R$ (say $N = 99$).
(ii) Choose a selection of $h$-values, $H = \{h_1, h_2,..,\bar{h}\}$, and compute $\hat{L}_i(h)$ for each $h \in H$ and $i = 1,..,N$.
(iii) Form the lower- and upper-envelope functions, and $L_N(h)$ and $U_N(h)$ in (18) and (19).
(iv) Plot the L-values, $\hat{L}(h)$, for the observed pattern $S_n$ along with the upper and lower values, $U_N(h)$ and $L_N(h)$, for each $h \in H$.

The result of this procedure is to yield a plot similar that shown in Figure 8 to the right. Here the blue region indicates the area in which the observed L-function, $\hat{L}(\cdot)$ is outside the range defined by the upper- and lower-envelope functions. In the case shown, this area is above the envelope, indicating that there is significant clustering relative to the simulated population under CSR.

The key difference between this figure and Figure 6 above is that, rather than a single benchmark pattern, we now have a statistical population of patterns for gauging the significance of $\hat{L}(\cdot)$. This plot in fact summarizes a series of statistical tests at each
scale of analysis, \( h \in H \). In the case illustrated, if we consider any \( h \) under the blue area in Figure 8, then by definition, \( \hat{L}(h) > U_N(h) \). But if pattern \( S_n \) were just another sample from this population of random patterns, then every sample value \( \{\hat{L}(h), \hat{L}_1(h), \ldots, \hat{L}_N(h)\} \) would have the same chance of being the biggest. So the chance that \( \hat{L}(h) \) is the biggest is only \( 1/(N + 1) \). More formally, if pattern \( S_n \) is consistent with the CSR Hypothesis then:

\[
\Pr[\hat{L}(h) > U_N(h)] = \frac{1}{N + 1}, \ h \in H
\]

\[
\Pr[\hat{L}(h) < L_N(h)] = \frac{1}{N + 1}, \ h \in H
\]

These probabilities are thus seen to be precisely the \( P \)-values for one-tailed tests of the CSR Hypothesis against clustering and uniformity, respectively. For example, if \( N = 99 \) [as in step (i) above] then the chance that \( \hat{L}(h) > U_N(h) \) is only \( 1/(99 + 1) = .01 \). Hence at scale, \( h \), one can infer the presence of significant clustering at the .01-level. Similarly, if there were any \( h \in H \) with \( \hat{L}(h) < L_N(h) \) in Figure 8, then at this scale one could infer the presence of significant uniformity at the .01-level. Moreover, higher levels of significance could easily be explored by simulating larger numbers of random patterns, say \( N = 999 \).

This Monte Carlo test can be applied to the Bodmin example by using the MATLAB program, \texttt{k_function_sim.m}, shown below.

```matlab
function k_function_sim(loc,area,b,extent,sims,poly)
% K_FUNCTION_SIM computes the raw k-Function for a point
% pattern plus N random point patterns for a single polygon and
% plots the normalized L-Function plus Upper and Lower envelopes

% INPUTS:
% (i) loc = file of locations (xi,yi), i=1..n
% (ii) area = area of region
% (iii) b = number of bins to use in CDF (and plot)
% (iv) extent = 2 if max h = max pairwise distance to be considered
% = 1 if max b = half of max pairwise distance (typical case)
% (v) sims = number of simulated random patterns
% (vi) poly = polygon boundary file
```
Note that the two key additional inputs are the numbers of simulations (here denoted by \texttt{sims} rather than \texttt{N}) and the boundary file, \texttt{poly}, for the region, \( R \). As with the program, \texttt{clust_sim}, in Section 3.5 above, \texttt{poly} is needed in order to generate random points in \( R \).

To apply this program to Bodmin with \texttt{sims} = 99, be sure the data file, \texttt{Bodmin.mat}, is open in the Workspace, and write:

\begin{verbatim}
>> k_function_sim(Bodmin,area,20,1,99,Bod_poly);
\end{verbatim}

The results of this program are shown in Figure 9 to the right. Notice first that there is again some clustering, and that now it can be inferred that this clustering is significant at the .01-level (\( N = 99 \)). Notice also that the range of significant clustering is considerably smaller than that depicted in Figure 6 above. This will almost always be the case, since here the \( \hat{L}(h) \) values must be bigger than 99 other random values, rather than just one “benchmark” value. Notice also that this scale, roughly \( 1.5 \leq h \leq 4.5 \), appears to be more consistent with Figure 3.4[14a].

However, this approach is still rather limited in the sense that it provides information only about the relation of \( \hat{L}(h) \) to the maximum and minimum simulated values \( U_N(h) \) and \( L_N(h) \) for each \( h \in H \). Hence the following refinement of this approach is designed to make fuller use of the information obtained from the above Monte Carlo procedure.

4.6.2 Full P-Value Approach

By focusing on the maximum and minimum values, \( U_N(h) \) and \( L_N(h) \) for each \( h \in H \), the only P-values that can be obtained are those in (20) and (21) above. But it is clear for example that values of \( \hat{L}(h) \) that are just below \( U_N(h) \) are probably still very significant. Hence a natural extension of the above procedure is to focus directly on P-values for clustering and uniformity, and attempt to estimate these values on the basis of the given samples. Turning first to clustering, the appropriate P-value is given by the answer to the following question: \textit{If the observed pattern were coming from a CSR process in region R, then how likely it would be to obtain a value as large as \( \hat{L}(h) \)?} To answer this question let the \textit{observed L-value} be denoted by \( l_0 = \hat{L}(h) \), and let the random variable, \( L_{CSR}(h) \), denote the L-value (at scale \( h \)) obtained from a randomly sampled CSR pattern of size \( n \) on \( R \). Then the answer to the above question is given
formally by the probability that $L_{CSR}(h)$ is at least as large as $l_0$, which we designate as the *clustering P-value*, $P_{\text{cluster}}(h)$, at scale $h$ for the observed pattern, $S_n$:

$$P_{\text{cluster}}(h) = \Pr[L_{CSR}(h) \geq l_0].$$

To estimate this probability, observe that our simulation has by construction produced a sample of $N$ realized values, $l_i = \hat{L}_i(h)$, $i = 1,..,N$, of this random variable $L_{CSR}(h)$. Moreover, under the CSR Hypothesis the observed value, $l_0$, is just another sample, which for convenience we designate as sample $i = 0$. Hence the task is to estimate (22) on the basis of a random sample, $(l_0,l_1,..,l_N)$ of size $N+1$. The standard approach to estimating event probabilities is simply to count the number of times the event occurs, and then to estimate its probability by the relative frequency of these occurrences. In the present case, the relevant event is “$L_{CSR}(h) \geq l_0$”. Hence if we now define the indicator variables for this event by

$$\delta_0(l_i) = \begin{cases} 1 & l_i \geq l_0 \\ 0 & l_i < l_0 \end{cases}, \quad i = 0,1,..,N$$

then the relative-frequency estimator, $\hat{P}_{\text{cluster}}(h)$, of the desired P-value is given by

$$\hat{P}_{\text{cluster}}(h) = \Pr[L_{CSR}(h) \geq l_0] = \frac{1}{N+1} \sum_{i=0}^{N} \delta_0(l_i)$$

To simplify this expression, observe that if $m$ denotes the number of simulated samples, $i = 1,..,N$, that are at least as large as $l_0$ [i.e., with $\delta_0(l_i) = 1$], then this estimated P-value reduces to

$$\hat{P}_{\text{cluster}}(h) = \frac{m+1}{N+1}$$

Observe that expression (20) above is now the special case of (25) in which $\hat{L}(h)$ happens to be bigger than all of the $N$ simulated values. But (25) conveys a great deal more information. For example, suppose that $N = 99$ and that $\hat{L}(h)$ is only the fifth highest among these $N+1$ values. Then in Figure 9 this value of $\hat{L}(h)$ would be inside the envelope [probably much closer to $U_N(h)$ than to $L_N(h)$]. But no further information could be gained from this envelope analysis. However in (25) the estimated the chance of observing a value as large as $\hat{L}(h)$ is $5/(99 + 1) = .05$, so that this L-value

---

12 This is also the maximum-likelihood estimator of $P_{\text{cluster}}(h)$, such estimators will be considered in more detail in Part III of this NOTEBOOK.

13 An alternative derivation of this P-value is given in Section 7 of the Appendix to Part I.
is still sufficiently large to imply some significant degree of clustering. Such examples show that the P-values in (25) are considerably more informative than the simple envelopes above.

Turning next to *uniformity*, the appropriate P-value is now given by the answer to the following question: *If the observed pattern were coming from a CSR process in region R, then how likely it would be to obtain a value as small as \( \hat{L}(h) \)?* The answer to this question is given by the *uniformity P-value*, \( P_{\text{uniform}}(h) \), at scale \( h \) for the observed pattern, \( S_n \):

\[
(26) \quad P_{\text{uniform}}(h) = \Pr[L_{\text{CSR}}(h) \leq l_0].
\]

Here, if we let \( m \) denote the number of simulated L-values that are *no larger than* \( l_0 \), then exactly the same argument above [with respect to the event “\( L_{\text{CSR}}(h) \leq l_0 \)”] now shows that the appropriate *relative-frequency estimate* of \( P_{\text{uniform}}(h) \), is given by

\[
(27) \quad \hat{P}_{\text{uniform}}(h) = \frac{m + 1}{N + 1}
\]

To apply these concepts, observe first that (unless many \( l_i \) values are the same as \( l_0 \))\(^{14}\) it must be true that \( \hat{P}_{\text{uniform}}(h) \approx 1 - \hat{P}_{\text{cluster}}(h) \). So there is generally no need to compute both. Hence we now focus on clustering P-values, \( \hat{P}_{\text{cluster}}(h) \) for a given point pattern, \( S_n \), in region \( R \). Observe next that to determine \( \hat{P}_{\text{cluster}}(h) \), there is no need to use L-values at all. One can equally well order the K-values. In fact, there is no need to normalize by \( \hat{\lambda} \) since this value is the same for both the observed and simulated patterns. Hence we need only compute “raw” K-function values, as given by the bracketed part of expression 4.3(8). Finally, to specify an appropriate range of scales to be considered, we take the appropriate maximum value of \( h \) to be the default value \( \bar{h} = h_{\text{max}} / 2 \) in (17), and specify a number \( b \) of equal divisions of \( \bar{h} \). The values of \( \hat{P}_{\text{cluster}}(h) \) are then computed for each of these \( h \) values, and the result is plotted.

This procedure is operationalized in the MATLAB program, \texttt{k_count_plot.m}. This program will be discussed in more detail in the next section. So for the present, we simply apply this program to Bodmin (with \texttt{Bodmin.mat} in the Workspace), by setting \( N = 99, \ b = 20 \) and writing:

\[
>> \texttt{k_count_plot(Bodmin, 99,20,1,Bod_poly)};
\]

\(^{14}\) The question of how to handle such ties is treated more explicitly in Section 7 of the Appendix to Part I.
(Simply ignore the fourth input “1” for the present.) The screen output of `k_count_plot` gives the value of $\hat{h}$ computes by the program, which in this case is $D_{max}/2 = 8.6859$. The minimum pairwise distance between all pairs of points ($D_{min} = 0.5203$) is also shown. This value is useful for interpreting P-values at small scales, since all values of $h$ less that this minimum must have $\hat{K}(h) = 0$ and hence must be “maximally uniform” by definition [since no simulated pattern can have smaller values of $\hat{K}(h)$].

The cluster P-value plot for Bodmin is shown in Figure 10. With respect to significant clustering, there is seen to be general agreement with the results of the envelope approach above. Here we see significant clustering at the .05 level (denoted by the lower dashed red line) for scale values in the range $1.3 \leq h \leq 6.1$ (remember that one will obtain slightly different values for each simulation). But this figure clearly shows more. In particular, clustering at scales in the range $1.7 \leq h \leq 5.7$ is now seen to be significant at the .01 level, which by definition the highest level of significance possible for $N = 99$.

Here it is also worth noticing that the clustering P-value at scale $h = .5$ is so large (in fact .93 in the above simulation) that it shows weakly significant uniformity (where the upper dashed red line indicates significant uniformity at the .05 level). The statistical reason for this can be seen from the screen output that shows the minimum distance between any two tors to be .52. Hence at scale $h = .5$ it must be true that no circle of radius .5 about any tor can contain other tors, so that we must have $\hat{K}(0.5) = 0$. But since random point patterns such as in Figure 3.4[14b] often have at least one pair of points this close together, it becomes clear that there is indeed some genuine local uniformity here. Further reflection suggests that this is probably due to the nature of rock outcroppings, which are often only the exposed portion of larger rock formations and thus cannot be too close together. So again we see that the P-value map adds information about this pattern that may well be missed by simply visual inspection.

4.7 Nonhomogeneous CSR Hypotheses

As mentioned in Section 2.4 above, it is possible to employ the Generalized Spatial Laplace Principle to extend CSR to the case of nonhomogeneous reference measures.

---

15 Simulations with $N = 999$ yield about the same results as Figure 10, so this appears to be a more accurate range than given by the envelope in Figure 9.
While no explicit applications are given in [BG], we can illustrate the main ideas with the following housing abandonment example.

### 4.7.1 Housing Abandonment Example

As in the Philadelphia example of Section 1.2 above, suppose that we are given the locations of \( n \) currently abandoned houses in a given city, \( R \), such as in Figure 11a below.

In addition, suppose that data on the number of housing units, \( H_i = \rho(C_i) \), in each census tract, \( C_i \), \( i=1,\ldots,m \) within city \( R \) is also available, as in Figure 11b. If the number of total housing units in the city is denoted by

\[
(1) \quad H = \rho(R) = \sum_{i=1}^{m} \rho(C_i) = \sum_{i=1}^{m} H_i
\]

then the probability that a randomly sampled housing unit will be located in tract \( i \) is given by

\[
(2) \quad P_i = \frac{H_i}{H} = \frac{\rho(C_i)}{\rho(R)}, \quad i = 1,\ldots,m
\]

Thus if these \( n \) housing abandonments were complete random events (i.e., with no housing unit is more likely to be abandoned than any other) then one would expect the distribution of abandoned houses across census tracts to be given by \( n \) independent random samples from the distribution in (2).\(^\text{16}\) More formally, this is an example of a nonhomogeneous CSR hypothesis with respect to an appropriate reference measure, \( \rho \).

---

\(^{16}\) In particular, this will yield a marginal distribution of abandonments in each tract \( C_i \) given by the binomial distribution in expression 2.4(13) above with \( C = C_i \).
4.7.2 Monte Carlo Tests of Nonhomogeneous CSR Hypotheses

To test such hypotheses, we proceed exactly the same way as in the homogeneous case. The only real difference here is that the probability distributions corresponding to nonhomogeneous spatial hypotheses are somewhat more complex. Using the above example as an illustration, we can simulate samples of $n$ random abandonments from the appropriate distribution by the following two-stage sampling procedure:

(i) Randomly sample a census tract, $C_{i}$, from the distribution in expression (2).

(ii) Randomly locate a point $s_{i}^{(o)}$ in $C_{i}$.

(iii) Repeat (i) and (ii) $n$ times to obtain a point pattern $S_{n}^{(o)} = (s_{j}^{(o)} : j = 1,\ldots,n)$.

The resulting pattern $S_{n}^{(o)}$ corresponds to the above hypothesis in the sense that individual abandonment locations are independent, and the expected number of abandonments in each tract $C_{j}$ is proportional to the reference measure, $H_{j} = \rho(C_{j})$. However, this reference measure $\rho$ is only an approximation to the theoretical measure, since the actual locations of individual housing units are not known. [This is typical of situations where certain key spatial data is available only at some aggregate level.] Hence in step (ii) the location of a housing unit in $C_{i}$ is taken to be uniformly (homogeneously) distributed throughout this subregion. The consequences of this “local uniformity” approximation to the ideal reference measure, $\rho$, will be noted in the numerical examples below.

Given a point pattern, $S_{n} = (s_{j} : j = 1,\ldots,n)$, such as the locations of $n$ abandonments above, together with $N$ simulated patterns $\{S_{n}^{(i)} : i = 1,\ldots,N\}$ from the Monte Carlo procedure above, we are now ready to test the corresponding nonhomogeneous CSR hypothesis based on this reference measure $\rho$. To do so, we can proceed exactly as before by constructing K-counts, $\hat{K}(h)$, for the observed pattern, $S_{n}$, over a selected range of scales, $h$, and then constructing the corresponding K-counts, $\hat{K}^{(i)}(h)$, for each simulated pattern, $i = 1,\ldots,N$.

This procedure is operationalized in the same MATLAB program, `k_count_plot` (which is more general than the Bodmin application above). Here the only new elements involve a partition of region $R$ into subregions, $\{C_{i} : i = 1,\ldots,m\}$, together with a specification of the appropriated reference measure, $\rho$, defined on this set of subregions.

17 Such aggregate data sets will be treated in more detail in Part III of this NOTEBOOK.
4.7.3 Lung Cancer Example

To illustrate this testing procedure, the following example has been constructed from the Larynx and Lung Cancer example of Section 1.2 above. Here we focus only on Lung Cancer, and for simplicity consider only a random subsample of \( n = 100 \) lung cases, as shown in Figures 12 below.

Note from Figures 1.2[7] and 1.2[8] that this subsample is fairly representative of the full data set (917 lung cancers). To analyze this data set we begin by observing that in terms of area alone, the point pattern in Figure 12 is obviously quite clustered.

One can see this by comparison with a typical random pattern of the same size in Figure 13. This can be verified statistically by using the program `k_function_plot` (as in the Bodmin case) to conduct a Monte Carlo test for the homogenous case developed above. The results are shown in Figure 14 to the right. Here it is evident that there is extreme clustering. In fact, note from the scale in Figure 12 above that there is significant clustering up to radii of \( h = 20 \text{ km} \), which are large enough to encompass the entire region. Notice also that the significance levels here are as high as possible, given the simulation sample size \( N = 99 \). This appears to be due to the fact that the overall pattern of points in Figure 12 is not only more clustered but is also more compact. So for the given common point density in these figures, cell counts centered at pattern points in Figure 12 tend to be uniformly higher than in Figure 13.
But the single most important factor contributing to this clustering (as observed in Section 2.4 above) is the conspicuous absence of an appropriate reference measure – namely population. In Figure 15 below, the given subsample of lung cases in Figure 12 above is now depicted on the appropriate population backcloth of Figure 1.2[8].

Here it is clear that much of the clustering in Figure 12 can be explained by variations in population density. Notice also that the relative sparseness of points in the west and east are also explained by the lower population densities in these areas (especially in the east). For comparison, a random pattern generated using the two-stage sampling procedure above is shown in Figure 16. Here there still appears to be somewhat less clustering than in Figure 15, but the difference is now far less dramatic than above.

Using these parish population densities as the reference measure, $\rho$, a Monte Carlo test was run with $N=99$ simulated patterns (including the one shown in Figure 16). The results of this test are plotted in Figure 17 to the right. Notice that the dramatic results of Figure 14 above have all but disappeared. There is now only significant clustering at the local scale (with $h \leq 2 km$). Moreover, even this local clustering appears to be an artifact of the spatial aggregation inherent in the parish population density measure, $\rho$. As pointed out above, this aggregation leads to simulated point patterns under the nonhomogeneous CSR hypothesis that tend to be much too homogeneous at the parish level. This is particularly evident in the densely populated area of the south-central portion of the region shown. Here the tighter clustering of lung cancer cases seen in Figure 15 more accurately reflects local variations in population density than does the relatively uniform scattering of points in Figure 16. So in fact, a
more disaggregated representation of population density would probably show that there is no significant clustering of lung cancer cases whatsoever.