A SPATIAL EXAMPLE OF THE
MULTIVARIATE CENTRAL LIMIT THEOREM

Consider a set of only two adjacent spatial locations, \(\{s_1, s_2\} \), and suppose that a set of unobserved spatially depend site attributes, \(e_i = (e_{i1}, e_{i2}) \), \(i = 1, \ldots, n \), are each generated by dependent sums of dichotomous (“fair coin-flip”) events:

1. \(e_{i1} = x_{i1} + x_{i2} \)
2. \(e_{i2} = x_{i3} + x_{i4} \)

where \((x_{i1}, x_{i2}, x_{i3}, x_{i4}), i = 1, \ldots, n \) are all independently and identically distributed with \(\text{Pr}(x_{ki} = 1) = 1/2 \), \(k = 1, 2, 3, i = 1, \ldots, n \). [Here we could use values (-1,1) to ensure that \(E(e_{i1}) = E(e_{i2}) = 0 \), but we have chosen to leave them as simple sums of “coin flips”.

With these definitions,

3. \(E(e_{i1}) = E(x_{i1}) + E(x_{i2}) = .5 + .5 = 1 \)
4. \(\text{var}(e_{i1}) = \text{var}(x_{i1}) + \text{var}(x_{i2}) = .5(.5) + .5(.5) = .50 \)

and similarly for \(e_{i2} \). Moreover, the covariance between \(e_{i1} \) and \(e_{i2} \) is of the form,

5. \(\text{cov}(e_{i1}, e_{i2}) = E(e_{i1}e_{i2}) - E(e_{i1})E(e_{i2}) = E(e_{i1}e_{i2}) - (1)(1) \)

where

6. \(E(e_{i1}e_{i2}) = E[(x_{i1} + x_{i2})(x_{i3} + x_{i4})] = E(x_{i1}x_{i3}) + E(x_{i2}x_{i3}) + E(x_{i1}x_{i4}) + E(x_{i2}x_{i4}) = (.5)^2 + (.5)^2 + (.5)^2 + \text{var}(x_{i2}) + E(x_{i2})^2 = .75 + .25 + (.5)^2 = 1.25 \)

Hence this covariance is given by

7. \(\text{cov}(e_{i1}, e_{i2}) = .25 > 0 \)

which in turn quantifies the degree of spatial dependency in terms of the correlation

8. \(\rho(e_{i1}, e_{i2}) = \frac{\text{cov}(e_{i1}, e_{i2})}{\sigma(e_{i1})\sigma(e_{i2})} = \frac{.25}{\sqrt{.5}\sqrt{.5}} = \frac{.25}{.5} = .5 \)
Then if the unobserved residuals at locations \(\{s_1, s_2\} \) are the cumulative sums of these unobserved attributes, say

\[
\varepsilon = \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \end{pmatrix} = \sum_{i=1}^{n} \begin{pmatrix} \varepsilon_{1i} \\ \varepsilon_{2i} \end{pmatrix} = \sum_{i=1}^{n} \varepsilon_i
\]

then the Multivariate Central Limit Theorem says that for large \(n \), the standardized version

\[
z = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \quad \text{with} \quad z_i = \frac{\varepsilon_i - E(\varepsilon_i)}{\sigma(\varepsilon_i)}, \quad i = 1, 2
\]

of this random vector should be approximately Normally Distributed as \(\varepsilon \sim N(0, \Sigma) \)

where

\[
\Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} = \begin{pmatrix} 1 & .5 \\ .5 & 1 \end{pmatrix}
\]

To illustrate this, a Matlab program, \texttt{bi_normal.m}, was written to plot this limit distribution [with the command: \texttt{bi_normal (.5)}] as shown below.
To compare this limit with an actual simulated distribution, a second program, `bi_normal_sim.m`, was written to approximate the sampling distribution of z for various choices of n for a large number of simulated samples ($sims$) from this distribution. For the choice, $n = 100$ and $sims = 10,000$, the command `bi_normal_sim(100, 10000)` yielded the following example:

![Simulated Sum of Spatially Dependent Effects](image)

Simulated Sum of Spatially Dependent Effects

Hence it should be clear from a comparison of these two results that the Multivariate Central Limit Theorem is indeed at work.