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Abstract There is a common belief that the presence of residual spatial auto-

correlation in ordinary least squares (OLS) regression leads to inflated significance

levels in beta coefficients and, in particular, inflated levels relative to the more

efficient spatial error model (SEM). However, our simulations show that this is not

always the case. Hence, the purpose of this paper is to examine this question from a

geometric viewpoint. The key idea is to characterize the OLS test statistic in terms

of angle cosines and examine the geometric implications of this characterization.

Our first result is to show that if the explanatory variables in the regression exhibit

no spatial autocorrelation, then the distribution of test statistics for individual beta

coefficients in OLS is independent of any spatial autocorrelation in the error term.

Hence, inferences about betas exhibit all the optimality properties of the classic

uncorrelated error case. However, a second more important series of results show

that if spatial autocorrelation is present in both the dependent and explanatory

variables, then the conventional wisdom is correct. In particular, even when an

explanatory variable is statistically independent of the dependent variable, such

joint spatial dependencies tend to produce ‘‘spurious correlation’’ that results in

over-rejection of the null hypothesis. The underlying geometric nature of this

problem is clarified by illustrative examples. The paper concludes with a brief

discussion of some possible remedies for this problem.
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1 Introduction

There is a common belief that the presence of residual spatial autocorrelation in

ordinary least squares (OLS) regression leads to inflated significance levels in beta

coefficients and, in particular, inflated levels relative to the more efficient spatial

error model (SEM). However, it is well known that OLS can continue to be very

efficient in cases where spatial dependencies are very weak.1 What is less well

known is that the same can happen even when the spatial residual autocorrelation is

very strong. In particular, this is true when spatial autocorrelation in the explanatory
variables is very weak or nonexistent. Hence, one objective of this paper is to clarify

this type of OLS efficiency from a geometric viewpoint.

A second more important objective is to show that if similar types of spatial

autocorrelation are present in both the dependent and explanatory variables, then the

conventional wisdom is correct. In particular, even when an explanatory variable is

statistically independent of the dependent variable, such joint spatial dependencies

tend to produce ‘‘spurious correlation’’ that results in over-rejection of the null

hypothesis.

This problem of ‘‘spurious regression’’ between independent autocorrelated

variates, y and x, is by no means new and appears to have been first studied by

Bivand (1980) in the context of estimating correlations between such variables.

Subsequently, Fingleton (1999) studied this problem more explicitly in terms of

regression and, in particular, linked such spurious regression problems in space to

the long-standing literature on spurious regressions between independent time

series. Both of these papers focus on simulation analyses (as we do in Sect. 2 below;

see also Legendre et al. 2002). However, a separate line of formal investigation,

starting with the work of Clifford et al. (1989), has attempted to develop improved

test statistics for dealing with this problem (including the work of Dutilleul 1993,

2008, Alpargu and Dutilleul 2003a, b, 2006, Mur and Trivez 2003 and Lauridsen

and Kosfeld 2006). We shall return to this issue in the concluding section, but for

the present, it should be emphasized that even these analytical results are often

indirect and leave open the question of why these spurious correlation problems

occur.

Hence, the major purpose of this paper is to propose a geometric approach that

can serve to shed further light on this issue. This geometric approach is made

possible by characterizing the standard OLS test statistic in terms of angle cosines.

Although this characterization is well known (as for example in Davidson and

1 In fact, the same is true for the much broader class of feasible generalized least square (FGLS)

estimators. For as out by Green (2003, p. 211) and others, OLS is usually more efficient than FGLS when

departures from classical assumptions of linear models are not too severe. For specific simulation results

in the context of temporal autocorrelation, see for example Dutilleul and Alpargu (2001).
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MacKinnon 1993), to the best of our knowledge, it has not been fully exploited in

the present context. In particular, this approach allows the general case of multiple

regression to be reduced to an equivalent simple regression for analyzing test

statistics on individual beta coefficients. This simplification yields geometric

insights that do not appear to be accessible by other means.

Using this approach, our analysis will show that the presence or absence of

spurious correlation between independent spatial variables, y = (y1, …, yn) and

x = (x1, …, xn), is determined by the sphericity properties of their marginal

distributions on the underlying n-dimensional sample space. In particular, it is the

degree of nonsphericity created by spatial autocorrelation among their individual

components that leads to spurious correlation.

To develop these results, we begin in the next section with a series of simulated

examples that illustrate the behavior of OLS tests as described above. Our geometric

approach is then developed in Sect. 3 and is applied to show why OLS efficiency

persists when explanatory variables are free of spatial autocorrelation. This is

summarized by invariance theorems (Theorems 1 and 2) that make this property

explicit. The more important case of spatially autocorrelated explanatory variables

is then addressed in Sect. 4. Here, our strategy is to begin with a nonspatial setting in

which the role of individual component correlations can be made more transparent.

These general relationships are then applied to the spatial case. In particular, a limit

theorem (Theorem 3) is developed which characterizes the exact type of linear

dependencies arising among components of random vectors as spatial autocorre-

lation approaches its upper limit. This yields a natural range of dependencies from

zero-correlated to perfectly correlated components that exactly parallel the

nonspatial case. The paper concludes in Sect. 5 with a brief discussion of methods

for resolving these spurious correlation problems.

2 Examples to illustrate the main ideas

To illustrate the general statistical phenomena described above, it is convenient to

begin with the ‘‘classroom’’ example shown in Fig. 1 below. This one-dimensional

example is sufficiently simple to provide a visual motivation for spatial regression

models. Here, one can imagine that the x-axis represents distances (locations) along

a city street emanating from the city center (CBD), with y denoting population

density at each location. The true trend, EðyjxÞ; shown by the solid line in Fig. 1a,

can be then viewed as expected density at distance x from the CBD throughout the

city.2 The actual densities shown at sampled points along this street exhibit some

degree of deviation from the mean but are highly correlated with their neighbors and

vary much more smoothly than random deviations.3 Hence, an OLS regression of

y on x using such points will tend to yield a line of fit with a smaller sum-of-squared

deviation than the true trend, as shown by the dashed line in Fig. 1b. More

2 As with most linear models, this trend line is at best only locally linear. But it may still provide a

reasonable description of mean population density within the range shown.
3 Of course not all correlated deviation patterns will be as smooth as those depicted. This stylized

representation is only meant to illustrate a general tendency toward smoothness.
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generally, there is a clear tendency of least-squares estimation to underestimate true

variance in the presence of such spatially correlated errors. But since smaller

variance estimates tend to inflate the associated t statistics for betas, it follows that

significance levels for these betas will also be inflated. This simple example thus

motivates the need for regression models such as SEM that take explicit account of

such spatial correlation effects.

2.1 OLS versus SEM for spatially independent explanatory variables

The simplicity of the example above turns out to be somewhat deceptive. In

particular, the inference properties of OLS depend critically on the spatial

dependency properties of explanatory variables as well as those of the dependent

variable. This can be illustrated by the following more typical example. Here, we

consider a two-dimensional simulated regression based on the 49 neighborhoods of

Columbus, Ohio.4 For most of the discussion and analysis to follow, we focus on

simple regressions using the standard linear model:

y ¼ b01n þ b1xþ t; t �
iid

Nð0; r2Þ ð1Þ

where 1n is the unit n-vector and ðy; x; tÞ are random n-vectors (with n = 49 in the

present case). Our main interest focuses on significance tests for explanatory

variables, which amounts in the present case to tests of the null hypothesis that

b1 = 0. In this context, we shall evaluate the efficacy of specific testing procedures

in terms of the actual size of such tests (i.e., the fraction of null hypothesis

rejections) versus their nominal size, which we here set to be 0.05.

To introduce spatial autocorrelation effects into Eq. 1, we simulate t as a

standard spatial autoregressive process, with spatial weight matrix, W = (wij: i,
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Fig. 1 Stylized example of spatial autocorrelation. a Autocorrelated urban density levels. b Effects on
linear regression

4 This set of spatial boundaries (as illustrated in Fig. 2 of Smith and Lee 2011a) is taken from Anselin

(1988) and also constitutes one of the standard examples used in Geoda software.
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j = 1, …, n), and spatial dependency parameter, qy. Thus, our simulated values of y
are drawn from a model of the form:

y ¼ b01n þ t; t ¼ qyWtþ e; e�Nð0; r2
yInÞ ð2Þ

where In is the n-square identity matrix, and the y-subscript in both qy and r2
y reflects

the fact that y itself is spatially autocorrelated with spatial dependence parameter,

qy, and (intrinsic) variance, r2
y : Here, W is specified to be a ‘‘queen-contiguity’’

matrix,5 so that direct spatial dependencies are essentially limited to immediate

neighbors. For convenience, W is also scaled to have a maximum eigenvalue of one,

so that the range of qy is restricted to the unit interval.6 Moreover, since we are

primarily interested in positive spatial dependencies, the relevant range of qy for our

simulations is taken to be the interval, [0,1).

To complete the simulation model, we must also draw samples of the explanatory

variable, x, in Eq. 1 which is by hypothesis taken to be independent of y. Moreover,

since the marginal distribution of x is typically of less interest in this regression

framework, we start with the simple assumption that the components of x are iid
normal:

x�Nðlx1n; r
2
xInÞ ð3Þ

With these specifications, 100,000 simulations7 of model (Eqs. 2, 3) were

generated using values b0 ¼ lx ¼ rx ¼ ry ¼ 1 together with a selected set of qy

values in [0,1).8 Each of the resulting y-vectors yielded data for OLS estimation of

model Eq. 1. For comparison, the following spatial error model (SEM)

y ¼ b01n þ b1xþ t; t ¼ qyWtþ e; e�Nð0; r2
yInÞ ð4Þ

was also estimated for unknown parameters ðb0; b1; qy; r
2
yÞ using standard

maximum likelihood (ML) procedures. To compare the inference properties of

these two estimation procedures, we start with the OLS test for b1, which in this

case is simply the standard t test based on a t distribution with n - 2 degrees of

freedom. However, to construct a comparable test of b1 for SEM, we note first that

in samples as small as the present one, the usual asymptotic z test for ML

estimators (based on the standard normal distribution) is well known to be biased

and in particular suffers from precisely the type of ‘‘over-rejection’’ problems that

we wish to study. Hence, to minimize this particular source of over-rejections, our

SEM test of b1 is also based on the t distribution with n - 2 degrees of freedom,

rather than the z test. This not only helps to minimize the small-sample bias of

5 Queen contiguity implies that equal positive weights, wij [ 0, are assigned to all distinct neighborhood

pairs, ij, and that wij = 0 elsewhere.
6 The restriction, jqyj\1, ensures that the matrix inverse, (In - qy W)-1, exists over the full range of qy,

so that the autoregressive process has a well-defined reduced form, t ¼ ðIn � qyWÞ�1e.
7 This unusually large number of simulations was employed to minimize any possible sampling error in

the results of Table 1a below.
8 The specific values of qy used were in increments of 0.1 from 0 to 0.9, together with the end value, 0.95.

Given the singularity of (In - qy W)-1 at qy = 1.0, values larger than 0.95 tend to exhibit computational

instabilities.
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SEM tests,9 it also renders the test results more directly comparable to those of the

OLS test for b1.

But in spite of this modification favoring SEM tests, the simulation results in part

(a) of Table 1 show that in terms of test size, OLS is almost uniformly superior to
SEM for all values of qy.

10 For example, when qy = 0.3, the size of the test for b1

under OLS is almost exactly 0.05, while that under SEM is slightly larger (0.057).

This is even more surprising given that the SEM test is correctly specified in terms

of the actual autocorrelation process simulated in Eq. 2,11 while the OLS test is

based on the misspecified error model in Eq. 1. However, one should hasten to add

that SEM is not performing badly here (with sizes generally between 0.05 and 0.06)

and is only noticeably worse that OLS under conditions of weak autocorrelation

where OLS is expected to work well (see footnote 1). So the most striking feature of

these results for our purposes is the uniformly strong performance of OLS, even at

extreme levels of spatial autocorrelation in the dependent variable, y. This would

appear to contradict all intuition gained from the one-dimensional example above

and indeed forms one major focus of the present paper.

The key to this apparent contradiction can be found in our seemingly innocent

assumptions about the distribution of the explanatory variable, x. In particular, we

have assumed that the components of x are independently distributed and hence

exhibit no spatial autocorrelation. Under these conditions, it is shown in Sect. 3 below

that OLS exhibits all the optimality properties of the classical linear model with

respect to tests about b1. In particular, spatial autocorrelation in y has no effect

whatsoever. Hence, problems of inflated significance in OLS tests of betas only arise

when the associated explanatory variables are also spatially autocorrelated. In

particular, this is precisely the reason for the inflated significance observed in the one-

dimensional example above. Indeed, the explanatory variable in this case, namely

‘‘distance to CBD’’, is spatially autocorrelated in the most obvious way: locations

close together in space must necessarily exhibit similar distances to the CBD.

2.2 OLS versus SEM for spatially autocorrelated explanatory variables

While the strong performance of OLS under conditions of spatially independent

explanatory variables is very striking, it should be emphasized that in terms of

practical applications, this result is generally not very helpful. Indeed, since most

spatial data exhibit some degree of spatial dependence, it is natural to expect that

explanatory variables, x, are as likely to be spatially dependent as is the y variable of

interest. So perhaps the main practical consequence of this result is to suggest that

one can expect OLS to perform reasonably well whenever spatial autocorrelation in

explanatory variables is very weak. But when this is not the case, spatial regression

models such as SEM do indeed perform better than OLS.

9 Of course all variance estimates are still based on the standard asymptotic covariance matrix for ML

estimation, so that some small-sample bias remains.
10 There are six separate illustrations in Table 1, labeled (a) through (f). We shall refer to each by its

label, such as Table 1a for the present case. Graphical representations of each illustration are given in the

longer version of this paper, Smith and Lee (2011a), available online.
11 In particular, Eq. 2 is precisely Eq. 4 under the null hypothesis, b1 = 0.
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To illustrate these properties more systematically, we begin by extending the

simulation framework above to allow for spatial autocorrelation in x as well as in y.

In particular, we now assume that both y and x are governed by independent

autocorrelation processes as in Eq. 2 above.12 More precisely, it is now assumed

that

y ¼ ly1n þ ty; ty ¼ qyWty þ ey ð5Þ

x ¼ lx1n þ tx; tx ¼ qxWtx þ ex ð6Þ

Table 1 Test sizes for simulated examples with nominal size = 0.05

(a) Columbus (n = 49)

qx = 0

(b) Columbus (n = 49)

qx = 0.5

(c) Columbus (n = 49)

qx = 0.8

OLS SEM OLS SEM OLS SEM

qy

0 0.049 0.060 0.051 0.071 0.049 0.080

0.1 0.049 0.059 0.055 0.069 0.067 0.079

0.2 0.049 0.058 0.059 0.068 0.066 0.078

0.3 0.050 0.057 0.064 0.067 0.069 0.076

0.4 0.050 0.056 0.071 0.066 0.094 0.074

0.5 0.049 0.055 0.079 0.064 0.113 0.073

0.6 0.050 0.054 0.083 0.063 0.142 0.070

0.7 0.049 0.053 0.096 0.061 0.169 0.063

0.8 0.050 0.051 0.110 0.059 0.218 0.060

0.9 0.049 0.050 0.136 0.056 0.291 0.059

0.95 0.049 0.049 0.154 0.053 0.343 0.052

(d) Columbus (n = 49)

qy = 0.5

(e) Columbus (n = 49)

qy = 0.8

(f) Philadelphia (n = 367)

qy = 0.5

OLS SEM OLS SEM OLS SEM

qx

0 0.051 0.058 0.051 0.051 0.051 0.050

0.1 0.053 0.059 0.056 0.051 0.058 0.051

0.2 0.055 0.061 0.064 0.053 0.062 0.052

0.3 0.065 0.062 0.072 0.054 0.069 0.053

0.4 0.072 0.063 0.093 0.055 0.081 0.054

0.5 0.079 0.065 0.124 0.056 0.088 0.055

0.6 0.084 0.066 0.142 0.058 0.094 0.056

0.7 0.092 0.068 0.181 0.061 0.101 0.057

0.8 0.123 0.070 0.245 0.067 0.122 0.058

0.9 0.134 0.078 0.332 0.079 0.163 0.059

0.95 0.153 0.092 0.363 0.121 0.194 0.061

12 Note that ly in Eq. 5 below now plays the role of b0 in Eq. 2.
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ey

ex

� �
�N

0

0

� �
;

r2
yIn

r2
xIn

� �� �
: ð7Þ

Here, independence of y and x is implicit from the joint normal distribution of

ðey; exÞ: Since both the y and x distributions are simple instances of spatial error

models, we shall refer to (Eqs. 5–7) as a joint spatial error (JSE) model.

For our later purposes, it is convenient to rewrite the JSE model in reduced form
by eliminating ty and tx to obtain:

y ¼ ly1n þ ðIn � qyWÞ�1ey ¼ ly1n þ B�1
qy

ey ð8Þ

x ¼ lx1n þ ðIn � qxWÞ�1ex ¼ lx1n þ B�1
qx

ex ð9Þ

where Bqy
¼ In � qyW and Bqx

¼ In � qxW . In these terms, an equivalent formu-

lation of our JSE model is given by (Eqs. 7–9).

This model is essentially the same as that employed by Bivand (1980) and

Fingleton (1999) except that here, we allow both y and x to have a nonzero

mean. Note in particular that, like these authors, we assume a common weight

matrix, W, for each process. Hence, a fundamental assumption of this JSE

model is that spatial autocorrelation in both y and x is of a similar type and

differs only in degree (as reflected by the spatial dependency parameters, qy

and qx). While the presence of spurious correlation does not depend on this

assumption, it is most easily illustrated in this setting.13 Our only additional

assumption for the present is that W is normalized to have unit eigenvalue,14 so

that the relevant range of both spatial dependence parameters, qy and qx, for all

nonnegative spatial autocorrelation effects is again taken to be the interval

[0,1).15

With this more general setup, we now extend the Columbus simulation example

above to consider positive values of spatial dependency values, qx, for the x process

(where the same queen-contiguity matrix, W, is applied to x as well as to y). To

illustrate these test-size results, we now assume a fixed spatial dependence value,

qx = 0.5, for the x process, which is taken to represent a substantial degree of

spatial autocorrelation in x. Table 1b shows the results of 10,000 simulations of this

JSE model for parameter values, ly = lx = rx = ry = 1, and a selected range of qy

values. Notice first that OLS again continues to outperform SEM for low values of

qy, where spatial dependency in the y process is relatively weak. However, as qy

increases, the situation changes dramatically. For while SEM behaves only slightly

worse than in the independence case with qx = 0, the over-rejection problem for

OLS now becomes quite severe. So for substantial autocorrelation in the x process,

we see that ‘‘conventional wisdom’’ about the failure of OLS inferences is restored.

13 The effects of different weight matrices for y and x are illustrated in the longer version of this paper

(Smith and Lee 2011a, Section 4.4.3).
14 An additional restriction on W will be considered in Sect. 4.3.1 below.

15 We also note that the inverses B�1
qy

and B�1
qx

are guaranteed to exist when qy;qx 2 ½0; 1Þ. For an

analysis of this model in the case of ‘‘unit roots’’ where either qy = 1 or qx = 1, see for example

Lauridsen and Kosfeld (2006).
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Our ultimate goal is to explain why this should be so. But for the present, we

explore the properties of this simulated example.

First one may ask how test sizes vary with qx for a fixed value of qy. Here, we

again choose qy = 0.5 to represent substantial spatial dependence in the y process,

and for the same selected values of qx and parameter values above, show the results

for 10,000 simulations of the JSE model in Table 1d.16 Here, we see that OLS

exhibits essentially the same over-rejection behavior as in Table 1b above. Our later

results will show that is to be expected. First, it is already clear that y and x are

treated symmetrically in the JSE model. Moreover, it will be shown that in the case

of simple regression, there is also symmetry in the way that spatial autocorrelation

in y and x influences the relevant test statistics. Hence, what is most striking about

Table 1d versus Table 1a and b is that now SEM is actually doing worse as spatial

dependency in x (rather than y) increases.

We shall attempt to explain (or at least clarify) these patterns of test-size behavior

in subsequent sections. For the present, we simply illustrate a number of different

aspects of this behavior informally. First, as a parallel to Table 1b and d above, the

same results are given for qx = 0.8 and qy = 0.8, respectively, in Table 1c and e. In

qualitative terms, these results are very similar to those for qx = 0.5 and qy = 0.5.

The single most dramatic difference is with respect to OLS, where at these higher

levels of spatial autocorrelation, the over-rejection rates have virtually doubled at all

scales.

Perhaps a more important question relates to the effect of sample size. As is well

known, ML estimation procedures (for correctly specified models) are asymptot-

ically efficient. So for sufficiently large samples, ML estimation of JSE models

should yield reliable test sizes even for extreme levels of spatial autocorrelation in y
and/or x. This is indeed the case, as is illustrated by the following example. Here we

extend the simulation framework for the n = 49 neighborhoods in Columbus, Ohio,

to the larger set of n = 367 census tracts in Philadelphia, Pennsylvania. Here again

we use a normalized queen-contiguity weight matrix for Philadelphia, together with

the same parameter settings for the JSE model above. The test-size results for

10,000 simulations for this larger example are shown in Table 1f, using the same

range of qx values and fixed value qy = 0.5. A comparison with Table 1b for

Columbus shows that for sample sizes this large, the asymptotic efficiency

properties of ML estimation are now in force, and the inference anomalies for SEM

have essentially vanished.17 However, the story is quite different for OLS, where

over-rejection rates are seen to remain essentially the same at these larger sample

sizes. So even in terms of this single example, it should be clear that in the presence

of spatially autocorrelated x variables, over-rejection rates for OLS are not simply a

‘‘small sample’’ problem.

Given this range of illustrative examples, we turn now to the deeper question of

what is actually causing this behavior. In the next section, we begin by analyzing the

16 A more systematic analysis would of course involve tables of test-size values allowing variation in

both qy and qx. However, our purpose here is simply to illustrate the key properties of these testing

procedures. Our main objective is to explain these properties in geometric terms.
17 This still leaves open the over-rejection problem for SEM seen in smaller samples such as Table 1d

above. We shall return to this issue in the concluding section of the paper.
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robust inference properties of OLS in the presence of only spatial autocorrelation in

the y variable. This will be followed in Sect. 4 by a consideration of full spatial

dependence in both the y variable and explanatory variables.

3 OLS inference with spatially independent explanatory variables

To analyze the inference properties of OLS, it is most natural to begin with a full

linear model involving many explanatory variables. In this setting, our first

objective is to show that inference about an individual beta parameter can be

developed by reduction to an appropriate simple linear model that produces the

same estimate of this beta parameter. This forms the basis of our present

geometric approach to inference and also helps to justify our primary focus on

the case of a single explanatory variable. It should be emphasized at the outset

that this reduction is by no means new and is based on the Frisch-Waugh-Lovell
(FWL) theorem, as developed thoroughly in Chapter 2 of Davidson and

MacKinnon (2004). Our present treatment draws more heavily on their

earlier analysis of regression inference in Davidson and MacKinnon (1993,

Section 3.5).

3.1 Cosine representation of F-statistics

Given the linear regression model,

y ¼ Xbþ e; e�Nð0; r2InÞ; ð10Þ

with an n 9 k matrix, X, of explanatory variables, we focus on the F-statistic, F1,

for a single beta coefficient, b1. To do so, we first decompose Xb as

Xb ¼ ðx1;X2Þ
b1

b2

� �
¼ x1b1 þ X2b2 ð11Þ

where b2 denotes the (k - 1)-vector of all beta coefficients other than b1. In these

terms, it is a direct consequence of the FWL Theorem that if the orthogonal pro-

jection into the orthogonal complement, X?2 , of X2 is denoted by

M2 ¼ In � X2ðX02X2Þ�1X02 ð12Þ

so that by definition,

M02 ¼ M2; M2M2 ¼ M2; M2X?2 ¼ X?2 ; and M2X2 ¼ 0; ð13Þ

then by Eqs. 10 and 11 it follows that

M2y ¼ M2x1b1 þM2X2b2 þM2e ¼ M2x1b1 þM2e ð14Þ

Hence, by defining the modified data sets, ~y ¼ M2y and ~x1 ¼ M2x1, we obtain a

simple linear model,

~y ¼ ~x1b1 þ ~e ð15Þ
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with normally distributed error term, ~e ¼ M2e.
18 This reduced form focusing on b1

allows the F-statistic for inferences about b1 to be given a simple geometric

interpretation. In particular, if we recall that the cosine, cos(z, v), of the angle

between two n-vectors, z and v, is given by:

cosðz; vÞ ¼ z0v

zk k vk k ð16Þ

then it is shown in Appendix 1 (ESM) that:19

Proposition 1 For any given set of data (y, x1, X2) in regression model (Eqs. 10,

11), the F-statistic for testing the null hypothesis, b1 = 0, is given by20

F1 ¼ ðn� kÞ cos2ðM2y;M2x1Þ
1� cos2ðM2y;M2x1Þ

: ð17Þ

As a special case of Eq. 17, observe that for the simple linear model,

y ¼ b01n þ b1xþ e; e�Nð0; r2InÞ ð18Þ

with 1n = (1, …, 1)0, it follows from Eq. 11 that X2 = 1n, and thus that M2 is given

by the deviation matrix,

M ¼ In � 1nð10n1nÞ�1
10n ¼ In � 1

n

� �
1n10n: ð19Þ

Hence, for this case, the F-statistic in Eq. 17 is of the form:

F1 ¼ ðn� 2Þ cos2ðMy;MxÞ
1� cos2ðMy;MxÞ ð20Þ

While our main focus will be on the simple regression case in Eq. 18, it should be

clear from Eq. 17 that these results are directly extendable to parameter inference

for individual explanatory variables in the multiple regression case. We shall return

to this question in Sect. 3.3 below. Note also that angles are only defined between

nonzero vectors. Hence, throughout this analysis, we shall implicitly ignore the

(measure-zero) set of exceptional realizations with either My = 0 or Mx = 0.

3.2 Invariance theorem for OLS

In this section, we attempt to clarify the robustness of OLS inference with respect to

spatial autocorrelation in y when x is spatially independent (as was seen in

Table 1a). Given the cosine representation of F1 above, our approach exploits

the geometric properties of this representation. To illuminate these properties

18 Here, it should be noted that the covariance matrix, r2M2, of ~e has rank n – 1, so that technically ~e has

a singular normal distribution. This can easily be remedied by replacing M2 with an equivalent reduced

form matrix of full column rank, as developed in Appendix 2 of the supplementary material.
19 All appendices are included in the supplementary material for this paper and can also be found in the

longer version of this paper, Smith and Lee (2011a), available on line.
20 Davidson and MacKinnon (1993) also point out that the associated t statistic for this null hypothesis

(which is simply the (signed) square route of F1) corresponds to the cotangent of the angle.
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graphically, it is convenient to focus on the simple linear model in Eq. 18 and hence

on the specific representation of F1 in Eq. 20. For this reason, we here state the

result specifically in terms of Eq. 20. Assuming that the true model of data (y, x)

data is a JSE model as in Eqs. 5 through 7, our result is stated most easily by making

the underlying spatial dependency parameters (qy, qx) explicit in F1 as F1(qy, qx).

Next, if we write Z¼
D

V whenever random variables Z and V are identically

distributed, then our first key result is to show that:

Theorem 1 (OLS invariance) If (y, x) are generated by a JSE model, then for all
qy 2 ½0; 1Þ,

F1ðqy; 0Þ¼
D

F1ð0; 0Þ: ð21Þ

In other words, if there is no spatial dependency in x, i.e., qx = 0, then the

distribution of the F-statistic in Eq. 20 is independent of the degree of spatial

autocorrelation in y. Most importantly, this implies that all the usual optimality

properties for tests of b1 = 0 in the classical regression case [(qy, qx) = (0, 0)]

continue to hold regardless of the value of qy.

A more general statement of Theorem 1 is given in Sect. 3.3 below. The

advantage of the present more limited formulation is to allow a simpler geometric

explanation of the underlying reasons for this invariance property. To illuminate the

relevant geometry here, we begin by observing that if there is no spatial dependency

in x, then qx = 0 implies that tx ¼ ex and hence that Eq. 6 reduces to

x ¼ lx1n þ ex ð22Þ

where ex�Nð0; r2InÞ by Eq. 7. Given this reduced (linear model) form of Eq. 6,

observe next from Eq. 20 that F1 does not directly involve the angle between y and

x, but rather the angle, h, between their projected images, My and Mx, in the

orthogonal complement, 1?n , of the unit vector, 1n, as shown in Fig. 2 below. (In

order to allow a meaningful graphical representation, we here focus on samples of

size n = 3.)21 Since M1n = 0 by definition, this in turn implies from Eq. 14 that

Mx ¼ lxM1n þMex ¼ Mex: ð23Þ
Of particular importance from a geometric viewpoint is the fact that M is an

orthogonal projection and hence maps spheres into spheres of smaller dimension. This

implies that the spherical contours of the normal density of ex (inRn) are mapped by M to

smaller dimensional spherical contours in the (n - 1)-dimensional image space of M

(i.e., the orthogonal complement, 1?n , of the unit vector, 1n). Hence, the contours of the

(singular) normal density, u, of Mx concentrated on 1?n are necessarily spherical.22 For

the case of n = 3, these contours must be concentric circles on 1?3 , as shown in Fig. 3

below. Note also that while the variable, x, may have a nonzero mean, lx, in Eq. 6, its

projected image, Mx, always has zero mean since by Eq. 23,

21 Fortunately, such samples are just large enough to yield nontrivial estimates of slopes such as b1.
22 As shown in Appendix 2 in ESM, this singular density can be replaced by a proper density, /ðU0xÞ,
where U are eigenvectors for the non-null eigenvalues of M.
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EðMxÞ ¼ MEðexÞ ¼ 0: ð24Þ

Hence, the spherical contours of the density, uðMxÞ, are necessarily centered about

the origin, as also shown for the n = 3 case in Fig. 3.

Now for any given values of y, say y = y1 and y = y2, with projections, My1 and

My2, shown in Fig. 3, consider the conditional distributions of the angles, h(My1,

Mx) and h(My2, Mx). Since these distributions depend only on the density, uðMxÞ,
it then follows from the rotational symmetry of this density that these two

distributions must be the same, i.e., that

hðMy1;MxÞ¼
D

hðMy2;MxÞ: ð25Þ

To see this, note simply that if the subspace, 1?n , is rotated about the origin by a

transformation, R12, which maps My1 to My2 = R12 (My1), then every angular event

hðMy1;MxÞ 2 H1 is mapped into a corresponding angular event,

hðMy2;MxÞ 2 H2 ¼ fhðMy2;MxÞ : hðMy1;MxÞ 2 H1g ð26Þ

with identical probability mass.

n1

Mx

y

My

x

θ ⊥
n1

Fig. 2 Projected angle for
n = 3

1n

My1
⊥1n

My2

( )Mxϕ

Fig. 3 Spherical invariance for
n = 3
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To complete the invariance argument, note that the identity in Eq. 25 implies in

particular that cosðMy1;MxÞ¼
D

cosðMy2;MxÞ, and hence from Eq. 22 that the

corresponding conditional distributions of F1 (qy, 0) are identical, i.e., that

F1ðqy; 0jy ¼ y1Þ¼
D

F1ðqy; 0jy ¼ y2Þ: ð27Þ

But since this in turn implies by definition that,

F1ðqy; 0Þ ¼ Ey F1ðqy; 0jyÞ
� 	

� F1ðqy; 0jy ¼ y1Þ ð28Þ

It follows (from the arbitrary choice of y1) that the distribution of F1 (qy, 0) must be

entirely independent of distribution of y. Finally, since qy is simply a parameter of

the y-distribution, we see in particular that the distribution of F1 (qy, 0) is indepen-

dent of the value of qy, and hence that Theorem 1 must hold. A more general

statement of this result will be given in Sect. 3.3 below (and is given a more

rigorous proof in Appendix 3 in ESM). But this geometric argument serves to

illuminate the main idea.

Before proceeding, it should be noted that this geometric argument also suggests

an obvious generalization of Theorem 1. In particular, the original density of x need

not be spherical for the above result to hold. From Fig. 3, it is clear that as long as

the projection, Mx, of x onto the orthogonal complement, 1?n , has a spherical density

on 1?n , the above argument goes through in tact. This generalization has been

established rigorously by Dutilleul (2008), who showed that for the normal case,

this property can be characterized in terms of ‘‘circular’’ covariance matrices.23

Note finally from the symmetry of cos(My, Mx) in y and x that the roles of these

two random vectors can be reversed.24 Hence, an immediate corollary of this result

is that for qx 2 ½0; 1Þ, it must also be true that

F1ð0; qxÞ¼
D

F1ð0; 0Þ: ð29Þ

In other words, if y satisfies all conditions of the classical linear model, then the

same argument shows that inference about b1 is not influenced by the distribution

(and in particular the spatial dependency) of x. When stated in this manner, the

result might appear to be less surprising. Indeed, it might be argued that since the

linear model in Eq. 18 implicitly focuses on the conditional distribution of y given

x, the marginal distribution of x should have no effect whatsoever. However, this

intuition, not correct, and in particular, breaks down when even the slightest spatial

dependency is present in the dependent variable, y.

3.3 The multivariate case

It should be clear from Eq. 15 above that a more general statement of Theorem 1 is

possible within a multivariate setting. To do so, we first extend the JSE model by

including a set of additional explanatory variables, as described by the matrix, X2,

23 Dutilleul also credits earlier work on this topic by Huynh and Feldt (1970), and others.
24 The consequences of this symmetry property have of course been noted by many authors, dating at

least as far back as Fingleton (1999).
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above. Here, we now assume in addition that (i) the first column of X2 is 1n (so that

the regression contains an intercept), and that (ii) X2 is of full column rank, n - k,

so that the inverse ðX02X2Þ�1
exists (and hence that M2 in Eq. 3 is well defined as

stated).25 But our single most important new assumption (which we discuss further

below) is that (iii) the explanatory variable of interest, namely x (=x1), is

independent of X2, so that relation Eq. 6 continues to hold in tact. In this setting, the

joint distribution of (y, x) given X2 [satisfying assumptions (i), (ii), and (iii)] is now

assumed to be a conditional JSE model of the following form:

y ¼ X2b2 þ ty; ty ¼ qyWty þ ey ð30Þ

x ¼ lx1n þ tx; tx ¼ qxWtx þ ex ð31Þ

ey

ex

� �
�N

0

0

� �
;

r2
yIn

r2
xIn

� �� �
ð32Þ

Here, for convenience, we have repeated (Eqs. 6, 7) as (Eqs. 31, 32). Hence, the

only real difference from the JSE model is in Eq. 30 where all explanatory variables

are included, and in particular, where ly in Eq. 5 now corresponds implicitly to the

first component of b2 in Eq. 30. With regard to the associated OLS model, it will

here be convenient to include the conditioning variates, X2, along with the spatial

dependency parameters (qy, qx) and now write the F1-statistic in Eq. 17 as F1(qy, qx,

X2), where again M2 is given in terms of X2 by Eq. 12. In these terms, we now have

the more general version of this theorem:

Theorem 2 (OLS invariance) For any data X2 satisfying (i), (ii), and (iii), if the
true distribution of (y,x) is given by the conditional JSE model above, then for all
qy 2 ½0; 1Þ,26

F1ðqy; 0;X2Þ¼
D

F1ð0; 0;X2Þ ð33Þ

(A complete proof of this result is given in Appendix 3 in ESM.) For the present,

one can gain some insight by observing from the independence assumption (iii) that

the only role of the additional explanatory variables in X2 is to transform the

orthogonal projection matrix from M in Eq. 19 to M2 in Eq. 12. But since spheres

are preserved under all orthogonal projections, it is not surprising that such an

extension is possible.

In this multivariate setting, a more interesting question concerns the degree to

which this result holds when there are dependencies between x and X2. Here, the

situation is far more complex. A key difference from the simple linear model case is

that while x and y are necessarily independent under the null hypothesis, b1 = 0

(together with normality), this hypothesis makes no assertions about the relation

between x and X2. So even if there were no spatial dependencies at all (i.e.,

25 In fact, this second assumption is for convenience only and simply avoids the need to introduce

generalized inverses.
26 As shown in the Appendix, this result actually holds for all spatial dependency values, qy, which yield

a well-defined reduced form in Eq. 8 above, i.e., for which the matrix, Bqy
¼ In � qyW , is nonsingular.

But since our main interest is on nonnegative spatial dependencies, we choose here to focus on this case.
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qy ¼ 0 ¼ qxj
; j ¼ 1; . . .; k), one would still encounter the same types of multicol-

linearity problems that distort inferences about b1 in the classical OLS case. Hence,

all that we are able to say at this point, based on simple continuity considerations

(and borne out by simulation experimentations), is that if both spatial dependencies

in x and statistical dependencies between x and X2 are relatively mild, then OLS can

be expected to perform reasonably well with respect to inferences about b1.

4 OLS inference with sample-correlated explanatory variables

We turn now to the more important case of explanatory variables exhibiting spatial

dependencies. Recall from the Columbus simulation results in Table 1b through 1e

above that higher degrees of spatial dependency tended to produce higher levels of

spurious significance in OLS tests of b1, which we shall here refer to as spurious
correlation between y and x (given X2). Moreover, as illustrated by the larger

Philadelphia example in Table 1f, this problem of spurious correlation does not

disappear with larger sample sizes. Hence, our objective in the present section is to

offer a geometric explanation of this phenomenon.

To develop this explanation, we begin by noting one key property of the F1-

statistic that holds the general case of Eq. 17. To do so, we start with the conditional

JSE model [which is implicitly taken to include assumptions (i), (ii), and (iii)] and

rewrite this model in reduced form (paralleling Eqs. 8 and 9 above) as:

y ¼ X2b2 þ ðIn � qyWÞ�1ey ¼ X2b2 þ B�1
qy

ey ð34Þ

x ¼ lx1n þ ðIn � qxWÞ�1ex ¼ lx1n þ B�1
qx

ex: ð35Þ

Next, to analyze the projected random vectors, M2y and M2x, which define the

F1-statistic, recall first from the argument in Eq. 14 that

M2y ¼ M2X2b2 þM2B�1
qy

ey ¼ M2B�1
qy

ey ð36Þ

Similarly, since 1n is a column vector in X2, it also follows from Eq. 13 that

M21n = 0 and hence that

M2x ¼ lxM21n þM2B�1
qx

ex ¼ M2B�1
qx

ex ð37Þ

Thus, we see that each of these random vectors has mean zero since

EðM2yÞ ¼ M2B�1
qy

EðeyÞ ¼ 0; and ð38Þ

EðM2xÞ ¼ M2B�1
qx

EðexÞ ¼ 0: ð39Þ

In short, if the true model of (y,x) given X2 is a conditional JSE model, then the

key F1-statistic in Eq. 17 depends on angle between two independent zero-mean
random vectors, M2y and M2x.

As will become clear below, the present notion of ‘‘spurious correlation’’ in terms

of angles between zero-mean random vectors is in fact quite general and in

particular has nothing to do with ‘‘spatial correlation’’ between vector components.

Indeed, similar problems arise from almost any form of statistical dependencies
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between components.27 Moreover, the underlying nature of spurious correlation can

in fact be made more transparent by considering this question in a somewhat

broader setting. Hence, our strategy here will be to develop the main ideas in terms

of general correlated samples and then return to the case of spatially correlated

samples.

To simplify the present discussion, we start by considering an arbitrary pair of

independent zero-mean random vectors, z ¼ ðz1; . . .; znÞ0 and w ¼ ðw1; . . .;wnÞ0
distributed on R

n.28 If this pair of random vectors (z,w) is treated as a sample of size

n from a joint statistical population, then from a geometrical perspective, their

sample correlation, r(z, w), is precisely the cosine in Eq. 16, i.e.,

rðz;wÞ ¼
Pn

i¼1 ziwiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 z2

i

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 w2

i

p ¼ z0w

zk k wk k ¼ cosðz;wÞ: ð40Þ

In these terms, our geometric explanation of spurious correlation will focus on

the structural differences between sample correlations, r(z, w), under conditions of

(i) independent random sampling and (ii) dependent (correlated) random sampling.

4.1 The perfect-correlation case

The classic properties of sample correlations under independent random sampling

are well known. So the key differences that arise under dependent random sampling

are seen most easily by examining the most extreme case. In particular, suppose that

the individual components (samples), zi, of random vector z are all perfectly
correlated. As is well known, this implies (for zero-mean random vectors) that all

components are linearly dependent and in particular can be written as linear

functions of the first component, z1, as follows:

zi ¼ aiz1; i ¼ 2; . . .; n ð41Þ
Hence, letting the vector, a = (1, a2, … , an), denote the dependency structure of

these components, it follows that z can be written simply as,

z ¼ z1a ð42aÞ

with fixed dependency structure, a, and random scale, z1 (which may be negative).29

In a similar manner, if the components of w = (w1, …, wn) are also perfectly
correlated, then there must be a fixed dependency structure, b = (1, b2, …, bn) such

that

w ¼ w1b ð42bÞ

27 In fact, spurious correlation can even arise for completely independent x-samples and y-samples. In

particular, if such samples are heteroscedastic, then such differences in variation can produce non-

spherical distributions that have the same effects as those for correlated samples. An explicit example of

this type is developed in the longer version of this paper (Smith and Lee 2011a, Section 4.3).
28 The transpose notation here indicates that these are by convention column vectors.
29 Note also that since all components of z are completely determined by its first component, this n-vector

is effectively a sample of size one.
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Hence, if z and w are both perfectly correlated, then Eq. 42 yields a very simple

form for the associated sample correlation, r(z, w). In particular, since the sign of

any nonzero number a is defined by sgnðaÞ ¼ a=jaj, it follows from Eq. 40 that30

cosðz;wÞ ¼ cosðz1a;w1bÞ ¼ ðz1aÞ0ðw1bÞ
z1ak k w1bk k ¼

z1w1ða0bÞ
ðjz1j ak kÞðjw1j bk kÞ

¼ z1

jz1j
w1

jw1j
a0b

ak k bk k ¼ sgnðz1Þsgnðw1Þ cosða; bÞ
ð43Þ

But since this in turn implies that j cosðz;wÞj ¼ j cosða; bÞj, we may conclude

from Eq. 40 that

jrðz;wÞj ¼ jrða; bÞj ð44Þ

Thus, if jrðz;wÞj is now taken to represent the degree of correlation between z and

w, then regardless of the joint distribution of random scalar variables z1 and w1, we

see that this degree of correlation is completely determined by the fixed dependency

structures a and b. So even if z1 and w1 are independent random variables, this

degree of correlation can assume any value in [0,1], as determined by a and b. In

particular, if the dependency structures of z and w are the same (i.e., if a = b), then

we must have jrðz;wÞj � 1 and may conclude that there is a maximum degree of

spurious correlation between z and w. (An explicit example of this case is given in

Sect. 4.2 below.)

Note finally that if z1 and w1 are independent normally distributed random

vectors, then the symmetry of this density about zero implies that Prðz1 [ 0Þ ¼
Prðz1\0Þ ¼ 1=2. Hence, by the independence of z1 and w1, we see from Eqs. 40

and 43 that

Pr½rðz;wÞ ¼ rða; bÞ� ¼ Pr½sgnðz1Þsgnðw1Þ ¼ 1�
¼ Prðz1 [ 0Þ Prðw1 [ 0Þ þ Prðz1\0Þ Prðw1\0Þ ¼ 1=2

ð45Þ

and similarly that

Pr½rðz;wÞ ¼ �rða; bÞ� ¼ Pr½sgnðz1Þsgnðw1Þ ¼ �1�
¼ Prðz1 [ 0Þ Prðw1\0Þ þ Prðz1\0Þ Prðw1 [ 0Þ ¼ 1=2

ð46Þ

Thus, for the case of independent z and w, we may conclude that

E½rðw; zÞ� ¼ 1

2
rða; bÞ þ 1

2
½�rða; bÞ� ¼ 0: ð47Þ

In other words, if z and w are each perfectly correlated but mutually independent,

then their sample correlation, r(z, w), is on average equal to zero.31 Hence, the

30 Recall again that we ignore the measure-zero cases in which z1 = 0 and/or w1 = 0.
31 Note also that this result depends only on symmetry of both the z1 distribution and w1 distribution

about zero and does not require normality.
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distribution of r(z, w) under perfect correlation agrees with classical independent

sampling in this sense. However, its realized values are never close to zero and are

thus in strong disagreement with independent random sampling—where it is well

known that r(z, w) must converge to zero almost surely as sample size becomes

large. This is the essence of spurious correlation.

4.2 A simple class of sample-correlation models

The extreme example above constitutes the natural limiting case as individual

components (samples) become more and more correlated. One useful feature of this

limiting case is to show that spurious correlation has nothing in particular to do

with spatial correlation. Moreover, in a manner similar to the opposite extreme of

independent samples (i.e., spherical distributions), the mathematical simplicity of

this case allows exact results to be obtained for all sample sizes, n. However, the

intermediate cases of partial dependence are analytically more complex. Hence, to

gain geometric insights, we here develop a family of simple models that (i) allow

the relevant sample correlations to be parameterized explicitly and (ii) allow the

model properties to be displayed graphically for the n = 3 case.

To do so, we begin with the simple class of JSE models in Eqs. 5–7 and relax the

spatial autocorrelation specification to allow a more direct parameterization of the

relevant sample correlations. An explicit full-dimensional reduced form of this

model is then developed to analyze the consequences of such correlations in the

n = 3 case. Here, we again start with simple regression model,

y ¼ b01n þ b1xþ ty; ty�Nð0; r2InÞ ð48Þ

in Eq. 1 above, but now assume that the true model is given by the following

relaxed version of JSE models:

y ¼ b01n þ ty ð49Þ
x ¼ lx1n þ tx ð50Þ

ty

tx

� �
�N

0

0

� �
;

Ry

Rx

� �� �
ð51Þ

Essentially, this relaxed version is an instance of a general linear model in which the

independent normal residuals, ty and tx, are allowed to have arbitrary covariance

structures.

Within this broader framework, we next make a number of simplifying

assumptions that will yield an explicit class of models encompassing the full range

of correlation possibilities. First, to allow graphical representations of key results,

we again adopt the small-sample framework (n = 3) in Sect. 3.2. In this context, it

can be shown (see Appendix 2 in ESM) that if the (3 9 3) projection matrix, M, is

replaced by the (2 9 3) transformation:32

32 In the more general development in the Appendix 2 in ESM, T is an instance of the matrix,

U02, for n = 3.
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T ¼ T 01
T 02

� �
¼ 0ð �1=

ffiffiffi
2
p

1=
ffiffiffi
2
p �

�2=
ffiffiffi
6
p�

1=
ffiffiffi
6
p

1=
ffiffiffi
6
p �

" #
ð52Þ

which is easily verified (by direct multiplication) to satisfy the two identities,

TT 0 ¼ I2; T 0T ¼ M ð53Þ

then, we obtain a well-defined 2-dimensional model by simply multiplying Eqs. 48–

51 to obtain the following reduced hypothesized model from Eq. 48,

Ty ¼ b1Txþ Tty; Tty�Nð0; I2Þ; ð54Þ

together with the following reduced true model from Eqs. 49 through 51,

Ty ¼ Tty; ð55Þ
Tx ¼ Ttx; ð56Þ

Tty

Ttx

� �
�N

0

0

� �
;

TRyT 0

TRxT 0

� �� �
: ð57Þ

The key point to notice here is that the transformed residuals, Tty and Ttx, are now

proper 2-dimensional random vectors with nonsingular (2 9 2) covariance matrices,

TRyT 0 and TRxT 0, respectively. This particular transformation not only yields a full-

dimensional model but also satisfies the identity (see Appendix 2 in ESM),

cosðMy;MxÞ � cosðTy; TxÞ ð58Þ

and hence is seen from Eq. 20 to yield precisely the same F1-statistic as M. Thus, all

analyses can be carried out in terms of these new reduced models. To visualize these

models more clearly, recall that the singular normal densities, u(My) and u(Mx), are

both concentrated on the subspace, 1?n , shown for n = 3 [using u(Mx)] in Fig. 3

above. Hence, for this n = 3 case, the transformation T essentially collapses R3onto

the 2-dimensional subspace, 1?3 , and (in terms of Eq. 52) maps each vector, z 2 R
3,

into the 2-dimensional pair ðT 01 z; T 02 zÞ. For example, the contours of u(Mx) in Fig. 3

now correspond precisely to the density contours, /ðTxÞ ¼ /ðT 01 x; T 02 xÞ, of the

proper bivariate normal distribution, N 0; TRxT 0ð Þ, given by Eqs. 56 and 57.

With these preliminaries, the family of models to be developed requires only a

specification of the true covariance matrices, Rx and Ry. Here, our objective is to

obtain a simple one-parameter family of covariance structures that range between

‘‘no correlation’’ and ‘‘perfect correlation’’ (as in Sect. 3.1 above). If the family of

all nonnegative nonsingular (2 9 2) correlation matrices is now denoted by:

Rs ¼
1 s
s 1

� �
; s 2 ½0; 1Þ ð59Þ

then for each correlation parameter, s,33 the relevant covariance matrix, Rs, for our

purposes can be defined in terms of transformation, T, by:34

33 The symbol s is employed here to avoid confusion with spatial dependency parameters, q.
34 Note that Rr can also be expressed directly as a linear matrix function of s. In particular, it may be

verified that in terms of the row representation of T in Eq. 52, Rs ¼ T 0T þ sðT1T 02 þ T2T 01Þ.
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Rs ¼ T 0 RsT : ð60Þ

In particular, we assume that the covariance matrices for Ty and Tx are precisely of

this form, i.e., that

Ry ¼ Rsy
and Rx ¼ Rsx

for some sy; sx 2 ½0; 1Þ ð61Þ

For convenience, we now designate (Eqs. 55–57, 61) as the (sy, sx)-model.35 Note

first that for each such model, the (393) covariance matrices, Rsy
and Rsx

, are

clearly of rank 2 and hence (in a manner similar to M) are singular. But by the first

equality in Eq. 53, we see that the reduced matrix

TRsT
0 ¼ ðTT 0ÞRsðTT 0Þ ¼ Rs ð62Þ

is nonsingular for each s 2 ½0; 1Þ. Hence, by Eqs. 55–56 together with Eq. 61, it

follows that for each (sy, sx)-model, the joint distribution of Ty and Tx can be

rewritten more simply as:

Ty
Tx

� �
�N

0

0

� �
;

Rsy

Rsx

� �� �
: ð63Þ

Given this representation, recall next from Eq. 20 that for both the y and x vectors,

the relevant correlations for the F1-statistic are not those between their individual

components, but rather those between the components of their images, Ty and Tx.

Hence, it should now be evident from Eq. 62 that this is precisely what is captured

by the pair (sy, sx). In particular, we see from Eq. 63 (together with Eq. 52) that for

the random vector, Ty ¼ ðT 01 y; T 02 yÞ0, the correlation between components T 01 y and

T 02 y is precisely sy. Similarly for Tx ¼ ðT 01 x; T 02 xÞ0, it follows that sx is the

correlation between T 01 x and T 02 x. Thus, the main advantage of (sy, sx)-models is

that they allow a direct parameterization of the relevant correlations influencing F1.

To examine the consequences of such correlations, we begin by making the

additional simplifying assumption that the two correlations (sy, sx) are identical, i.e.,

that (sy = sx = s) for some s 2 ½0; 1Þ. This special case, which may be referred to

as simply the s-model, will serve to facilitate our geometric explanation of spurious

correlation. Here, it suffices to compare the extreme cases of independent samples
(s = 0) and perfectly correlated samples (s = 1) with a representative intermediate

case, s = 0.8. These three cases are developed successively in the following three

subsections, followed by an illustration of a more general intermediate case with

sy = sx.

4.2.1 The independent sampling case

First, it is important to show that the independent sampling case (for n = 3) does

indeed correspond to s = 0 within the family of s-models. This is not obvious, since

35 Note that as a parallel to JSE models, the spatial dependency parameters (qy, qx) are here replaced by

the correlation parameters (sy, sx). However, this simple parameterization is only possible in the present

setting for the n = 3 case.
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independence requires covðxÞ ¼ r2I3. But for the s-model with s = 0, we see from

Eqs. 60 and 61 together with the identity R0 = I2 that

covðxÞ ¼ TI2T 0 ¼ T T 0 ¼ M 6¼ r2I3: ð64Þ

So even by setting r2 = 1, it is not evident that independent sampling is included in

the present class of s-models. However, by examining the reduced form of this

independent sampling model (with r2 = 1), we see from Eq. 53 that

covðTxÞ ¼ TI3T 0 ¼ TT 0 ¼ I2 ¼ R0: ð65Þ

Similarly, since the same argument shows that cov(Ty) = R0 for independently

sampled y components, it follows that Eq. 63 does indeed hold with sy = sx = 0.36

Moreover, since it is only these image vectors, Ty and Tx, that are relevant for the

F1-statistic in Eq. 22, we see that for our present purposes, the independent

sampling case is adequately represented within the framework of s-models.

With this preliminary observation, the distributions of both Tx and Ty can be

obtained by sampling from Eq. 63 with sy = sx = 0. Since these distributions are

identical, it suffices for the moment to focus on Tx with (standard normal) bivariate

distribution, Tx ¼ ðT 01x; T 02xÞ0 �Nð0; I2Þ. A scatter plot of 5,000 simulated draws

from this distribution is shown in panel (a1) of Fig. 4. (The panels (b1), (b2), and

(b3) are included to facilitate a comparison of the s = 0 and s = 0.8 cases, and may

be ignored for the present). As we have already seen from Sect. 3.1, this scatter plot

simply reflects the underlying circular symmetry of N(0, I2). Most important for our

purposes are the directional frequencies of these points (as vectors from the origin).

These frequencies are depicted by the directional histogram in panel (a2), where the

length of each directional (pie-shaped) sector is proportional to the frequency of

vectors in that sector. Since these frequencies are seen to be virtually identical

in each sector, it is clear that such directions are indeed completely random.37

This process was repeated for an independent set of 5,000 simulated draws of

Ty ¼ ðT 01y; T 02yÞ0 from the same distribution. The resulting scatter plot and

directional frequencies for Ty are virtually identical to those for Tx and are not

shown.

Given these two independent samples, if we compute the angles, h ½ðTyÞs; ðTxÞs�,
between each pair of simulated vectors ½ðTxÞs; ðTyÞs�; s ¼ 1; . . .; 5; 000, then the

sample histogram of these values (in radians) can be plotted, as shown in panel (a3)

of Fig. 4. As expected, this histogram is again seen to be almost flat, indicating that

these angles are completely random. Hence, the cosines of these angles must be also

consistent with complete randomness,38 implying that F1 in Eq. 20 is indeed

36 Note that this argument is in fact an instance of the more general geometric fact (mentioned in Sect.

3.2 above) that orthogonal projections of spheres are always spheres of lower dimension.
37 While the simulation size, 5,000, yields a clear visual scatter plot in panel (a1), it is not sufficiently

large to overcome the extreme variation in samples of size n = 3. Hence, all histograms in this section

[such as in panels (a1) and (a3)] are based on much larger simulations of 100,000 draws. At this

simulation size, the true shape of each sampling distribution [such as the uniform distribution in panel

(a3)] is much more evident.
38 A histogram of these cosine values is somewhat less informative since the cosine itself is a very

nonlinear function.
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F-distributed in accordance with the null hypothesis, b1 = 0, for the classical OLS

model in Eq. 48. Moreover, although the sample size (n = 3) is extremely small, it

is just large enough to yield a nondegenerate F(1,1)-distribution (with numerator

and denominator degrees of freedom both equal to 1). Hence, the size of the OLS

test in this case can be checked by computing the F1-statistic for each angle and
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comparing it with the 0.05 rejection level.39 The estimated size of this test, 0.0498

(&0.05), confirms that the sampling distribution is indeed consistent with F(1,1),

and hence that there is no over-rejection problem for the independent sampling

case.40

4.2.2 The perfectly correlated sampling case

To develop the perfect-correlation case in the present setting, note first that s = 1 is

not included in the definition of s-models. Indeed, the covariance matrices,

R1 ¼ 12102, for both Ty and Tx under this model add additional singularities that

must be treated separately. To do so, we focus on Tx. For this case, note from Eq. 56

that since Tx ¼ Ttx and since we are only interested in this reduced model, we can

assume without loss of generality that x ¼ tx, and hence that E(x) = 0. But for this

case, we have already seen from Sect. 4.1 that x is perfectly correlated if and only if

x ¼ x1a ð66Þ

for some fixed dependency structure, a ¼ ð1; a2; a3Þ0. Moreover, by rescaling x if

necessary, we may also assume that

varðx1Þ ¼ Eðx2
1Þ ¼ 1: ð67Þ

Within this framework, we can directly construct a dependency structure that will

yield a proper (one-dimensional) representation of the singular normal distribution,

N(0, R1), as follows. Observe that if the dependency structure, a, is chosen to satisfy

Ta ¼ 12 ð68Þ

and for any standard normal variate, x1* N(0,1), we set x = x1a, then it will follow

by construction that x has perfectly correlated components, and moreover that

covðTxÞ ¼ cov½Tðx1aÞ� ¼ cov½x1ðTaÞ� ¼ Ta varðx1Þ ðTaÞ0 ¼ 12ð1Þ 102 ¼ R1: ð69Þ
Hence, it suffices to find a solution, a, of Eq. 68 with a1 = 1. This can be

accomplished by letting e1 ¼ ð1; 0; 0Þ0 (so that a1 ¼ e01a) and then obtaining a as the

unique solution of the augmented linear equation system,

T 01
T 02
e01

2
4

3
5a ¼

1

1

1

0
@

1
A) a ¼

T 01
T 02
e01

2
4

3
5
�1

1

1

1

0
@

1
A ¼

1

1þ 3=
ffiffiffi
6
p� �
� 1=

ffiffiffi
2
p� �

1þ 3=
ffiffiffi
6
p� �
þ 1=

ffiffiffi
2
p� �

0
@

1
A ð70Þ

(where the explicit solution for a on the right-hand side can be verified by simply

multiplying out the first expression). Finally, by letting y = y1a with y1 * N(0, 1)

independent of x1, we will obtain a pair of well-defined independent random vec-

tors, (y, x), with perfectly correlated components that are consistent with the limiting

form of the s-model with s = 1. Note that by construction, the realized values of

39 For this small sample size, the corresponding rejection level is enormous: F(0.05;1,1) = 161.45.
40 As in footnote 37 above, each estimated test size in this section (such as the present value of 0.0498) is

based on a larger simulation of 100,000 draws to overcome sampling variation.
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ðTy; TxÞ ¼ ðy1Ta; x1TaÞ ¼ ðy112; x112Þ ð71Þ

must simply be independent pairs of points on the 45� line, each with distances and

directions from the origin determined by realization of the normal variates, y1 and

x1. Hence, there is no need to simulate this case. In fact, it suffices to consider two

possible realizations of these random variables as shown in Fig. 5 below.

Here, the first realization [(Ty)1, (Tx)1] (depicted by hollow points) shows a case

in which (Ty)1 and (Tx)1 are both in the same direction from the origin, so that

r[(Ty)1, (Tx)1] = 1. Similarly, the second realization [(Ty)2, (Tx)2] (depicted by

solid points) shows a case with (Ty)2 and (Tx)2 in opposite directions from the

origin, so that r[(Ty)2, (Tx)2] = -1. Since these are the only two possibilities

(except for a set of measure zero), it follows that jrðTy; TxÞj ¼ 1 must hold

identically.

This is of course simply an instance of the more general result established in Sect.

4.1 above. But the advantages of this particular extension of s-models to the s = 1

case are twofold. First, the visual representation of this case shows exactly why the

sample correlation between any two independent random vectors with the same

(perfect-correlation) dependency structure must necessarily be maximal. Moreover,

it serves as a natural benchmark for interpreting the range of intermediate s-models,

between s = 0 and s = 1.

4.2.3 The intermediate-correlation sampling case

Finally, we turn to the most important case of intermediate correlations. It suffices

to illustrate this case by a single example, s = 0.8, which is sufficiently close to

s = 1 to be viewed as a ‘‘neighbor’’ of this perfect-correlation case. If we focus on

the correlated random vector, Tx ¼ ðT 01x; T 02xÞ0 �Nð0;RsÞ, then it is clear that for

large correlations, s, the random pair ðT 01 x; T 02 xÞ will tend to be close together, and

hence that realizations of Tx will tend to cluster around the 45� line. This is

confirmed by the elliptical-shaped scatter plot in panel (b1) of Fig. 4 showing 5,000

simulated draws of Tx ¼ ðT 01x; T 02xÞ0 from N(0, R0.8). Even more important however
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Fig. 5 Possible perfect-
correlation pairs (s = 1)
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is that (in contrast to the s = 0 case of panel (a2)), the directional frequencies of

these realizations also concentrate around the 45� line, as is seen in the directional

histogram of panel (b2). Hence, when viewed as vectors from the origin,

realizations of Tx tend to be directionally close to either the unit vector, 12, or its

negative, -12. Similarly, if we independently simulate 5,000 draws of

Ty ¼ ðT 01y; T 02yÞ0, then these realizations will exhibit the same properties as those

of Tx and hence are not shown.

As in the s = 0 case, our main interest focuses on the frequency distribution of

angles between each pair ½ðTxÞs; ðTyÞs�; s ¼ 1; . . .; 5; 000. Here, the results above

suggest the basic form of this distribution. In particular, whenever both Ty and Tx
are directionally close to the 45� line [such as in the biggest four angular sectors of

panel (b2)], they must either be pointing in roughly the same or opposite direction,

so that their angle, h(Ty, Tx), must either be close to h = 0 or h = p. Hence, there is

necessarily a tendency for realized angles to cluster around these two extremes, as is

seen in the histogram of panel (b3).

The continuum of possible cases is now clear. For the independent sampling

case (s = 0), the sampling distribution of angles, h(Ty, Tx), is completely

uniform. But as s increases, and the directional histogram becomes more

concentrated around the 45� line, the sampling distribution of h(Ty, Tx) becomes

more concentrated at the end points, h = 0 and h = p. Finally, in the extreme

perfect-correlation case (s = 1) where Ty and Tx are exactly on the 45� line, the

directional histogram must be completely concentrated on this line, and the

sampling distribution of h(Ty, Tx) collapses to a two-point mass distribution at

these end points. This continuum of possibilities for h(Ty, Tx) in turn implies that

as s increases, the realized values of squared cosines, cos2(Ty, Tx), must

concentrate near unity. Hence, even though Ty and Tx are statistically

independent, we see from Eq. 40 that the spurious correlation reflected by

r2(Ty, Tx) will necessarily increase toward unity. Even more important for

statistical inference is that the associated F1-values in Eq. 20 will increase

without bound. In short, as s increases, the size of OLS tests for b1 = 0 in model

Eq. 48 must increase toward unity, so that over-rejection is virtually guaranteed.

For the case of s = 0.8, the size of the OLS test procedure at the end of Sect.

4.2.1 now increases to 0.0839. Of course, little can be said about the actual rate of

such increases without extensive simulation. But the central purpose of these

s-models is not to quantify such increases, rather it is to illuminate their

underlying cause.

4.2.4 Example of a (s1, s2)-model

While the simplifying assumption of sy = sx = s is useful for illustrative purposes,

it is important to emphasize that such spurious correlation problems go well beyond

the case of identically distributed Ty and Tx. As one example, suppose that sy = 0.8

as above, but that sx = 0.4. In this case, the distribution of Ty will tend to be more

circular than that of Tx. While this can in principle be depicted by overlapping

scatter plots in a manner similar to panels (a1) and (b1) of Fig. 4, it is more difficult
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to see the relative shapes of these two patterns. One alternative approach is to plot

representative probability contours for each distribution. This is done in panel (a) of

Fig. 6, where the density contour containing 90% of all probability mass for

distribution Nð0;Rsy
Þ is shown as a solid ellipse, and that for Nð0;Rsx

Þ is shown as a

dashed ellipse.

The relatively more circular nature of the Nð0;Rsx
Þ distribution is now evident.

From the arguments above, the resulting shape of the sampling distribution for h(Ty,

Tx) in this case is easy to guess. In particular, it is natural to expect (by simple

continuity) that the histogram for the (0.8, 0.4) case should be between that for (0.8,

0.8) and (0.8, 0). But by the (informal) proof of Theorem 1 above, we know that the

distribution (0.8, 0) should be the same as that for (0, 0), since sx = 0 in both cases

implies that the underlying distribution of Tx remains perfectly circular. So the

desired histogram should be roughly an averaging between panels (a3) and (b3) of

Fig. 4. This is indeed the case, as can be seen from the actual simulated histogram in

panel (b) of Fig. 6. As one final check, the size of the OLS test of b1 = 0 in this

(0.8, 0.4) case is 0.06211, which is roughly half way between the sizes, 0.0498 and

0.0839 for the (0.8, 0) and (0.8, 0.8) cases.

4.3 The spatial autocorrelation case

Given the broader results above, we now return to the case of spatial autocorre-

lation. Our objective is to show that the same range of cases produced by s-models

is also exhibited by JSE models with s replaced by q. For q close to zero, the

comparison is obvious. Like s-models, all correlations between components of y and

x (and hence of Ty and Tx) vanish as q approaches zero. Hence, the more interesting

questions relate to the opposite extreme as q approaches one. In Sect. 4.3.1 below, it

is shown that in the multiple regression setting of conditional JSE models, both Ty
and Tx approach perfect-correlation cases in a manner similar to s-models. This is

followed in Sect. 4.3.2 with an illustration based on n = 3 paralleling s-models.
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4.3.1 A limit theorem for spatial error models

Here, we start with the hypothesized regression model in (Eqs. 10, 11) above and

assume that the true model of y is given by

y ¼ X2b2 þ B�1
qy

ey ¼ X2b2 þ ðIn � qyWÞ�1ey; ey�Nð0; r2
yInÞ ð72Þ

which is simply the reduced form of Eq. 32 in the conditional JSE model. Here, our

focus will be on y, since the model for x is simply the special case with X2 = 1n.

Up to this point, we have treated spatial weight matrices, W, in a rather

informal manner. But the following result requires that we be more precise.

Hence, we now define a spatial weight matrix, W = (wij: i, j = 1, …, n) to be any

nonnegative matrix with zero diagonal (wij = 0: i = 1, …, n).41 The only

additional condition we require is that no subregions be ‘‘isolated’’ in terms of

spatial dependencies, i.e., that there be no subset if regions, S � f1; . . .; ng such

that all spatial influences, wij, of regions i 62 S on regions j 2 S are zero. Such

weight matrices, W, are said to be connected in the sense that there must exist

positive chains of spatial influence, ðwik1
;wk1k2

; . . .;wkmjÞ, between each pair of

regions i and j.42 The key feature of connected weight matrices, W, for our present

purposes is that the maximum eigenvalue, k1, of W is always positive and has

unique positive eigenvector, v1, of unit length, which we designate as the maximal
eigenvector for W.43 As above, we assume for convenience that W is scaled to have

k1 = 1. In this setting, our main result is to show that as qy ! 1, the realized values

of y in Eq. 72 must eventually be approximately proportional to v1 (see Appendix 4

in ESM):44

Theorem 3 (Limiting autocorrelation) For any connected spatial weight matrix,

W, with maximal eigenvector, v1, and any random vector y satisfying the
corresponding SEM Eq. 72,

lim
qy!1

y

yk k ¼ �v1 almost surely: ð73Þ

The ‘‘almost surely’’ condition means that this limit will hold for all residual

vectors, ey, in Eq. 72 except for a subset with probability zero. To understand the

41 Interestingly, the result to be developed does not require a zero diagonal. But the spatial error model

itself requires zero diagonals to avoid self-referencing in the spatial autoregressive relation of Eq. 4

above.
42 Such matrices are also said to be irreducible matrices. For further discussion of such weight matrices,

see for example Appendix A in Martellosio (2010).
43 The pairs (k1, v1) are often designated as the Perron eigenvalue and eigenvector for W. See Lemma 1

in Appendix 4 in ESM for more detail.
44 As mentioned in the introduction, this result is largely inspired by the work of Kramer and Donninger (1987)

who developed a parallel result for the covariance matrix, covðyÞ ¼ r2ðIn � qyWÞ�1ðIn � qyW 0Þ�1
. A recent

result closely related to Theorem 3 (in the context of testing for spatial autocorrelation) can be found the

proof of Theorem 1 in Martellosio (2010).
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notation, ±v1, recall that v1 [ 0 by definition. Hence, this notation implies that y
components are either all positive or all negative.45

The key implication of this limiting result for our purposes is that (with the

k1 = 1 normalization) the spatial dependency parameter, qy, acts very much like the

s correlation coefficient in the sense that when qy & 1, the components of y are

almost perfectly correlated. More specifically, if we denote the common sign of all

(nonzero) y components by sgn(y), and write Eq. 73 somewhat more loosely as

qy 	 1) y

yk k 	 sgnðyÞ v1 ð74Þ

then (again ignoring possible zero values) it follows that for any component,

j = 1, …, n,

qy 	 1) y1

yk k 	 sgnðyÞv11

� �
and

yj

yk k 	 sgnðyÞv1j

� �

) yj

y1

	 v1j

v11

� aj ) yj 	 y1aj; j ¼ 1; . . .; n) y 	 y1a

ð75Þ

for this choice of a ¼ ð1; a2; . . .; anÞ0. Hence, we see that when qy & 1, the random

vector, y, is approximately perfectly correlated as in Eq. 42 above with dependency

structure proportional to v1.46

4.3.2 Illustrations of spurious correlation effects

As in Sect. 4.2 above, the consequences of Theorem 3 can be illustrated graphically

for the simple case of n = 3. Here, we start with an n = 3 version of the proximity

matrices used in the Columbus and Philadelphia examples above and, in particular,

consider the ‘‘linear’’ three-region case in Fig. 7 with proximities as shown.

The appropriate scaled proximity weight matrix, W3, is then given by

W3 ¼ k�1
1

0 1 0

1 0 1

0 1 0

0
@

1
A ð76Þ

where the maximum eigenvalue of the unscaled matrix is k1 ¼
ffiffiffi
2
p

. By symmetry,

W in this case has a spectral decomposition given by

W3 ¼ VKV 0 ð77Þ

R1 R2 R3 

Fig. 7 Three region case

45 Note also that y should technically be indexed by qy to indicate that each specified value of qy

implicitly defines a different random vector, y.
46 The limiting properties of test sizes for this perfect-correlation case are studied in Kramer (2003).
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with eigenvalues, K ¼ diagðk1; k2; k3Þ ¼ diagð1; 0;�1Þ, and associated eigenvectors

V ¼ ðv1; v2; v3Þ ¼
1

2

� � 1 �
ffiffiffi
2
p

1ffiffiffi
2
p

0 �
ffiffiffi
2
p

1
ffiffiffi
2
p

1

0
@

1
A ð78Þ

and satisfying V�1 ¼ V 0. Hence, W3 is seen to satisfy our assumptions with unique

maximal eigenvector given by v1 ¼ ð1=2;
ffiffiffi
2
p 

2; 1=2Þ0. If we now consider the

simple JSE model for y in Eqs. 5–7, then since

Bqy
¼ I3 � qyW3 ¼ VV 0 � qyVKV 0 ¼ VðI3 � qyKÞV 0

) B�1
qy
¼ VðI3 � qyKÞ�1V 0

¼ ð1� qyk1Þ�1v1v01 þ ð1� qyk2Þ�1v2v02 þ ð1� qyk3Þ�1v3v03

¼ ð1� qyÞ�1v1v01 þ v2v02 þ ð1þ qyÞ�1v3v03 ð79Þ

we see that

y ¼ ly1n þ ½ð1� qyÞ�1v1v01 þ v2v02 þ ð1þ qyÞ�1v3v03�ey

¼ ly1n þ
v01ey

1� qy

 !
v1 þ ðv02eyÞv2 þ

v03ey

1þ qy

 !
v3

ð80Þ

So in this case, Theorem 3 is transparent: as qy ? 1 the absolute value of the

coefficient on v1 diverges to infinity almost surely,47 while all others stay bounded.

So it is clear that y is eventually close to this dominant component, which is

proportional to v1. In this n = 3 case, we can see this graphically by again using the

transformation T in Eq. 52. Since T13 = 0, we then obtain,

Ty ¼ v01ey

1� qy

 !
Tv1 þ ðv02eyÞTv2 þ

v03ey

1þ qy

 !
Tv3 ð81Þ

and see again that for qy & 1, the 2-dimensional random vector, Ty, will tend to be

approximately proportional to ±Tv1. This is shown in Fig. 8 for a simulated sample

of 1,000 values of Ty with qy = 0.9, where the heavy line denotes the span of the

maximal eigenvector image, Tv1.

Moreover, by the symmetry of this simple JSE model, precisely the same

behavior will be exhibited by Tx for spatial dependency values, qx & 1. Hence, a

comparison of Fig. 8 with panel (b1) of Fig. 4, for example, shows that exactly the

same arguments must again lead to spurious correlation between y and x.48

However, there is one additional feature of this example that should be noted.

While spurious correlation is evident for values of qy and qx very close to one (say

47 Here, the exceptional subset of eyvalues are those with v01ey ¼ 0, which has probability zero.
48 It is also of interest to note that as a spatial pattern, the vector v1 exhibits maximal correlation with its

corresponding ‘‘spatial influence’’ pattern, Wv1. In fact, this correlation is perfect, since by definition,

Wv1 = k1v1 (with v1 [ 0) implies corr(v1, Wv1) = 1 (which is also closely related to the well-known

extremal properties of Moran’s I in terms of eigenvectors, as for example in DeJong et al. 1984 and

Griffith 1996). So this type of spuriousness is again associated with an extreme form of spatial correlation.
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both above 0.9 as in Fig. 8), it disappears rapidly even for moderate levels of spatial

dependence. This is seen for example in panel (a) of Fig. 9, where a simulated

sample of 1,000 values of Tx with qx & 0.5 produces an almost spherical pattern.

So even if y is highly autocorrelated (qy & 1), it follows from the arguments

leading to Theorem 1 that OLS can be expected to do quite well in this case. Hence,

it is of interest to ask why sphericity appears to hold even when x exhibits

substantial spatial autocorrelation.

The key property exhibited by this particular case is that the maximal

eigenvector, v1 ¼ ð1=2;
ffiffiffi
2
p 

2; 1=2Þ0 ¼ ð1=2Þð1;
ffiffiffi
2
p

; 1Þ0, is almost proportional to

the unit vector, 13, which in geometric terms, means that v1 is close to span(13).

Hence, the projection, Tv1, must be close to the origin, which in turn dampens the

directional tendencies of the random vector, Tx, even for large values of qx. In fact,

the situation here is seen even more clearly by examining the original hypothesized

model Eq. 1 in terms of y. For if v1 is proportionally close to 1n, and y is

-10 -5 0 5 10
-10

-8

-6

-4

-2

0

2

4

6

8

10Fig. 8 Tx for W3 with qy = 0.9

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

(a) (b)

Fig. 9 Comparative effect of proximity to the unit vector. a Tx for W3 with qx = 0.5. b Tx for W0 with
qx = 0.5
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proportionally close to v1 (as in Theorem 3), then it can be expected that y is also be

proportionally close to 1n. But by definition, this implies that the term, b01n, in Eq. 1

must already account for most of y, and hence that there is little left for x1 to

‘‘explain’’. Thus, when v1 is proportionally close to 1n, as in the present example,

spurious correlation should be less of problem for simple OLS regression.49

In fact, this observation extends to the multivariate model in (Eqs. 10, 11) as

well. For even if X2 does not include the intercept, 1n, exactly the same argument

shows that when v1 is close to span(X2), the random vector y will tend to be well

approximated by some linear combination of the columns of X2, so that the

regression term X2b2 now accounts for y. Thus, over-rejection of the hypothesis,

b1 = 0, will again be less of a problem for OLS.50

However, if v1 is not proportionally close to X2, then spurious correlation

continues to be a problem for even moderate levels of spatial dependency. This can

be illustrated in the present context by modifying the weight matrix, W3, to produce

a weight matrix with maximal eigenvector not proportionally close to 13. In

particular, if we now let W0 be given by

W0 ¼ k�1
1

0 1:0 0

0:9 0 0:1
0 0:2 0

0
@

1
A ð82Þ

(with unscaled maximum eigenvalue, k1 = 0.95917), then W0 is seen to be a

perturbation of W3 with the same zeros, but with asymmetric positive weights. Here,

the eigenvalues are exactly the same as those of W3, but the maximum eigenvector

is now given by v0 ¼ ð0:71429; 0:68512; 0:14286Þ0. Since the last component is

seen to be much smaller than the first two, it follows that v0 is further from span(13)

than is v1. As a comparison with W3, a simulated sample of 1,000 values of Tx using

W0 with qx = 0.5 is shown in panel (b) of Fig. 9. Hence, for this weight matrix, it is

clear (from the discussion of Fig. 8 above) that even moderate values of both qy and

qx will tend to produce spurious correlation between y and x.

5 Concluding remarks

The main objective of this paper has been to illuminate the nature of spurious

correlation in OLS from a geometric viewpoint. In particular, we have shown that

such effects arise when both the dependent and explanatory variables, y and x,

49 In this context, it is important to note that the ‘‘row normalization’’ convention often used with spatial

weight matrices in fact guarantees that v1 = 1n. But as pointed out by Kelejian and Prucha (2010), the

validity of this normalization procedure is subject to question. Here, it should also be noted that for

matrices close to the ‘‘equal weights’’ matrix with constant off-diagonal components, one must again have

v1 close to span(1n). Such weight matrices are known to exhibit a variety of special properties with

respect to standard testing procedures, as studied for example by Kelejian and Prucha (2002) and

Martellosio (2011).
50 This observation is closely related to the more general result of Krämer and Donninger (1987) showing

that OLS will be as efficient as SEM when v1 2 spanðXÞ and W is symmetric (see also Tilke 1993, and

Krämer and Baltagi 1996). However, this efficiency result holds much more generally, as recently shown

by Martellosio (2011).
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exhibit similar types of spatial autocorrelation. More generally, the same spurious

correlation effects are shown to arise whenever the dispersion ellipsoids of y and

x are both nonspherical and approximately aligned.

Hence, the main question left unaddressed by this paper is how to mitigate such

spurious effects in statistical inference. Of course SEM itself is designed to account

for spatial autocorrelation effects and, as illustrated in the Philadelphia example in

Table 1f above, is quite effective when sample sizes are sufficiently large. However,

the Columbus example in Table 1d shows that for smaller samples, even SEM

exhibits spurious correlation effects when spatial autocorrelation in the explanatory

variable is substantial. The basic reason of course is that SEM is formulated in a

conditional setting where spatial autocorrelation in y is modeled, but not spatial

autocorrelation in x. Hence, there remains the question of how to improve small-

sample inference for SEM in the presence of spatial autocorrelated explanatory

variables.

As mentioned in the introduction, there have been a number of efforts to model

spatial autocorrelation in both y and x and to construct improved inference

procedures on this basis. These efforts have for the most part focused on direct tests

of correlation between spatially autocorrelated processes, y and x, as originally

studied by Bivand (1980) using simulation. From an analytical perspective, perhaps

the best results to date are those of Dutilleul (1993), who proposed a method for

modifying the degrees of freedom (‘‘effective sample size’’) of the standard t test for

correlation between y and x that compensates for such effects. While this method

has also been applied by Dutilleul and Alpargu (2001) to regression with temporal

autocorrelation in both y and x (by appealing to the rough analogy between

correlation and linear regression), this method does not appear to be directly

applicable to SEM. However, by employing the general strategy of modifying t tests

in terms of their degrees of freedom, it does appear that improved inference

procedures can be developed for SEM in the small-sample case. These results will

be reported in a subsequent paper (Smith and Lee 2011b).

Acknowledgments The authors are indebted to Federico Martellosio for valuable comments and

suggestions on an earlier draft of this paper. We are also grateful to the two referees for their constructive

comments.

References

Alpargu G, Dutilleul P (2003a) To be or not to be valid in testing the significance of the slope in simple

quantitative linear models with autocorrelated errors. J Stat Comput Simul 73(3):165–180

Alpargu G, Dutilleul P (2003b) Efficiency and validity analyses of two-stage estimation procedures and

derived testing procedures in quantitative linear models with AR(1) errors. Commun Stat Simul

Comput 32(3):799–833

Alpargu G, Dutilleul P (2006) Stepwise regression in mixed quantitative linear models with

autocorrelated errors. Commun Stat Simul Comput 32:799–833

Anselin L (1988) Spatial econometrics: methods and models. Kluwer, Boston

Berman A, Plemmons RJ (1994) Nonnegative matrices in the mathematical sciences. Siam, Philadelphia

Bivand R (1980) A Monte Carlo study of correlation coefficient estimation with spatially autocorrelated

observations. Quaest Geogr 6:5–10

The effects of spatial autoregressive dependencies on inference in OLS

123

Author's personal copy



Clifford P, Richardson S, Hémon D (1989) Assessing the significance of the correlation between two

spatial processes. Biometrics 45(1):123–134

Davidson R, MacKinnon J (1993) Estimation and inference in econometrics. Oxford University Press,

New York

Davidson R, MacKinnon J (2004) Econometric theory and methods, Oxford University Press, New York

DeJong P, Sprenger C, Van Veen F (1984) On extreme values of Moran’s I and Geary’s C. Geogr Anal

16(1):17–24

Dutilleul P (1993) Modifying the t test for assessing the correlation between two spatial processes.

Biometrics 49(1):305–314

Dutilleul P (2008) A note on sufficient conditions for valid unmodified t testing in correlation analysis

with autocorrelated and heteroscedastic sample data. Commun Stat Theory Method 37:137–145

Dutilleul P, Alpargu G (2001) Efficiency analysis of ten estimation procedures for quantitative linear

models with autocorrelated errors. J Stat Comput Simul 69:257–275

Fingleton B (1999) Spurious spatial regression: some Monte Carlo results with a spatial unit root and

spatial cointegration. J Reg Sci 39(1):1–19

Green WH (2003) Econometric analysis, 5th edn. New Jersey, Prentice Hall

Griffith D (1996) Spatial autocorrelation and eigenfunctions of the geographic weights matrix

accompanying geo-referenced data. Can Geogr 40(4):351–357

Huynh H, Feldt S (1970) Conditions under which mean square ratios in repeated measurements designs

have exact F-distributions. J Am Stat Assoc 65(332):1582–1589

Kelejian HH, Prucha IR (2002) 2SLS and OLS in a spatial autoregressive model with equal spatial

weights. Reg Sci Urban Econ 32(6):691–707

Kelejian HH, Prucha IR (2010) Specification and estimation of spatial autoregressive models with

autoregressive and heteroskedastic disturbances. J Econ 157(1):53–67

Kramer W (2003) The robustness of the F-test to spatial autocorrelation among Regression disturbances.

Statistica 63(3):435–440
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