
  1

 

 

LOCATION-DOMINANT HOUSING MARKETS: 

EVIDENCE FROM BEIJING 

 

 

 

 

                                                              October 18, 2013 

 

 

Abstract 

This paper analyzes price tradeoffs between residential quality and location factors in the Beijing housing 
market. Unlike most housing markets, location factors completely dominate housing prices in this market. The 
main reason for this appears to be the physical size of central Beijing, where travel times between different 
urban activity centers are comparable to typical suburban-urban commuting times in large Western cities. To 
highlight these location-dominance effects, we present a comparative analysis of housing prices in central 
Beijing with those of the relatively smaller monocentric city of Qingdao in Eastern China. The main results of 
this regression analysis are to show that location accessibility factors are far more dominant in Beijing, and 
conversely that residential quality factors are more important in Qingdao. To further illuminate these differences, 
we develop a simple two-city model in which the “Big” city has multiple activity centers with travel costs 
comparable to typical commuting costs in the “Small” city. Here it is shown that the resulting bid-price relations 
between these cities are quite consistent with our empirical findings. 
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1. Introduction 

      One often hears that the three most important things in real estate are “location, location, 

location”. But when it comes to housing prices, there is generally some degree of tradeoff 

between residential quality and location. For example, the influence of location is clearly 

seen in New York City, where the central borough of Manhattan exhibits higher average 

housing prices that Brooklyn, Queens or the Bronx. But even within Manhattan, one sees 

significant prices variations due mainly to quality differences. Recent real estate reports show 

that the mean rental prices in some neighborhoods, such as SoHo and the Upper East Side, 

are two or three times higher than those in Harlem for the same types of housing. These 

differences are much more attributable to differences in housing and neighborhood quality 

than accessibility. 

      However, there is one city where “location, location, location” does ring true, namely 

Beijing. In contrast to New York, housing prices in central Beijing are almost invariably the 

highest. The main reason for this difference appears to be size. Indeed, central Beijing is 

about ten times larger than Manhattan, so that relative accessibility becomes more of an issue. 

This is perhaps seen most dramatically in suburban Beijing where prices of even the most 

luxurious houses are undervalued by lack of accessibility.    

      These differences can also be seen numerically by comparing neighborhood housing 

prices for Manhattan and central Beijing. In central Beijing1, the mean of these neighborhood 

housing prices per square foot (in US dollars) is $419 with a standard deviation of $99; while 

in Manhattan2, the corresponding mean is $2038 with a standard deviation of $1745! So even 

though the island of Manhattan is much smaller than central Beijing, it exhibits far greater 

variation in housing prices.3  

      Thus the main purpose of the present paper is to study this unique urban housing market, 

where city size appears to play a qualitatively different role than in typical megacities of the 

West, including Paris and London as well as New York. In contrast to these cities, central 

                                                            

1 Data was collected for current mean prices in the 51 neighborhoods of central Beijing on the website, 
http://beijing.anjuke.com/, that reports housing price data for China. 

2 These figures are base on a sample of 854 individual housing sales prices in Manhattan obtained from the New 
York City government’s website, http://www.nyc.gov/html/dof/html/property/property_val_sales.shtml. See 
footnote 20 below for further discussion of this data. 

3 In relative terms, the coefficient of variation for Manhattan housing prices (0.856) is more than three times that 
of Beijing (0.236). 
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Beijing consists of multiple activity centers separated by considerable distances. In fact, 

commuting times typically experienced between suburbs and city centers in the West are 

comparable to those between alternative activity centers in central Beijing.4  

      In addition to these size differences, there is a second feature of Beijing that makes it 

particularly amenable for studying price tradeoffs between residential quality and location. 

Unlike Western cities where the measurement of residential quality (other than house size) is 

a challenging problem, in China there are a number of measurable attributes that are widely 

recognized to be reliable indicators of residential quality. With respect to housing quality 

itself, older houses in China are almost invariably considered to be of lower quality. In 

addition, since houses in China are typically grouped into walled “communities” (comparable 

in size to Western city blocks), those communities with higher population densities are 

generally considered to be of lower quality. Conversely, the presence of neighborhood green 

spaces (parks, gardens, etc.) generally enhances community quality. Since data on all of these 

attributes is widely available for cities in China, this allows price tradeoffs between location 

and residential quality to be more readily quantified.  

      But to do so, it is necessary to compare Beijing with other cities in China, rather than 

Western cities. Here we have chosen the city of Qingdao, which is a typical monocentric city 

in Eastern China. Moreover, while Qingdao is not “small” by Western standards, being 

roughly the same size as Paris, it is nonetheless only a quarter the size of central Beijing 

(Figure 2 below).  

      In our empirical analysis below, housing price data from these two cities is regressed on 

both residential quality and location variables, while treating “city” as a categorical variable. 

Our residential quality variables include house size and age (year of construction), as well as 

community population density and area of neighborhood green space. Our location variables 

are of two types. The primary variable for our purposes is a summary measure of accessibility 

to major city activity centers (in terms of travel times), designated as the activity-accessibility 

index. However, given the importance of education in Chinese culture, it is also appropriate 

to consider access to good high schools, designated as the education-accessibility index. In 

view of the strong collinearity between these two indices, it was necessary to run separate 

regressions for each. Finally, addition to these main explanatory variables, it was necessary to 

                                                            

4 For example, the rapid-transit commuting times between Newark to downtown Manhattan, and between Luton 
and central London, are both about 40 minutes. However, travel times on the Beijing subway between its five 
major city centers (discussed in section 3.1 below) are as much as one hour.  
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include neighborhood fixed effects in both cities to control for residual spatial autocorrelation 

(as discussed in Section 4.2 below) 

      The results for the regressions for both accessibility indices were qualitatively very 

similar. As expected, both location and residential quality factors were significant predictors 

of housing prices in all cases. But the key results of these regressions (expressed as 

interaction effects between “city” and the other explanatory variables) show that location is 

far more important in Beijing than Qingdao. Conversely, residential quality factors tend to be 

much less important in Beijing than Qingdao. Only the age of housing is of equal (negative) 

importance in both cities. These results thus provide strong support for the major hypothesis 

of this paper, namely that for cities with centers as large and complex as Beijing, location 

factors are the dominant influence on housing prices.   

      In the final section of the paper we attempt to illuminate this dominance effect by means 

of a simple one-dimensional “equilibrium bid-price” model that compares housing prices in a 

large city with multiple activity centers versus a smaller monocentric city. A typical example 

of the resulting price structures is shown in Figure 8 below. Here the larger city is assumed to 

have only two activity centers, at locations corresponding to each edge of the flat portion of 

the higher price curve shown. Since accessibility to both centers is the same for all locations 

between them, utility maximizing behavior leads to a constant level of equilibrium price in 

this central city area. This can be viewed as an extreme version of central Beijing, where the 

low variation in housing prices (relative to Manhattan) has reduced to no variation at all. Note 

also that while prices are of course higher in this central area than at the single center of the 

smaller city, they also fall off more quickly outside this central area. This reflects the fact that 

such locations are more distant from both activity centers, thus yielding a greater utility loss 

than for the monocentric city.  

      Before proceeding, it is of interest to relate our work to previous studies of the Beijing 

housing market. Most work has focused on housing policy issues in Beijing, and in particular, 

on those issues related to the current transition from a planned to a market economy in China 

(Tolley, 1991; D. Wang and Li, 2004). Somewhat closer to our own work is the study of 

Wang (2001), who considers the effects of this economic reform on specific housing quality 

variables, such as the age and layout of individual houses.   

      But the studies of most interest for our present purposes are those that have explicitly 

compared Beijing housing with other cities in China. One such study by Li (2000) compares 
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the influence of commercialization and privatization on the housing markets in Beijing and 

Guangzhou (which, unlike Qingdao, is one of the largest cities in China).5 But while this 

study does examine the influence of housing quality on prices in these two markets, it does 

not consider the influence of location. One study that does do so is by Hu and Kaplan (2001), 

who point out that the housing choices of wealthier residents in Beijing tend to concentrate in 

central Beijing and are strongly influenced by locational considerations. In this respect, our 

results add further support to their findings.  

      The remainder of the paper is structured as follows. Section 2 gives a brief overview of 

Beijing and Qingdao. This is followed in Section 3 with a description of the data used, 

together with a description of our specific residential quality and location variables.  The 

regression analysis itself is developed in Section 4, together with a discussion of the main 

results. Our theoretical model is then developed in Section 5, and illustrated in terms of a 

numerical example. Finally, the paper concludes in Section 6 with a brief discussion of 

possible directions for further research. 

 

2. Beijing and Qingdao 

      We begin with a brief overview of Beijing, together with the smaller city of Qingdao. 

Here we focus on those aspects of these two cities that are most important for the analysis to 

follow. 

 

2.1 Beijing 

      Beijing is the capital of the People's Republic of China and one of the most populous 

cities in the world. In 2010, the total population within the municipal boundary of Beijing 

(Figure 1a) was close to 20 million. Of more interest for out present purposes is central 

Beijing (Figure 1a), with a 2010 population of close to 10 million. (By comparison, the 2010 

population of Manhattan was about 1.5 million.) The area of central Beijing is about 230 

square miles (roughly ten times the size of Manhattan). As in all major cities of China, central 

Beijing is composed of many traditional neighborhoods. For purposes of analysis we have 

combined these into 51 distinct neighborhoods, as shown in Figure 1b. Individual housing 

communities are much smaller than neighborhoods, and in particular, these 51 neighborhoods 

contain a total of about 3000 housing communities.  
                                                            

5 Guangzhou is one of the “national central cities” of China and is the fourth largest city in terms of urban 
population. 
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2.2 Qingdao 

      Qingdao is a major seaport on the east coast of China in the Shandong Province, which is 

nonetheless much smaller than Beijing.  central Qingdao is only a quarter the size of central 

Beijing (Figure 2 below) with a population of about 3 million. 6  But as mentioned in the 

introduction, it is still larger than most urban centers in the West, such as central Paris.7  As 

with Beijing, central Qingdao consists many traditional neighborhoods, which we have again 

combined into 22 distinct neighborhoods, as shown in Figure 2b. These neighborhoods 

contain a total of approximately 500 individual housing communities.  

 

 

 

3. Data and Variables for Analysis 

      Housing price data is readily available at the community level for both Beijing and 

Qingdao.8  While individual communities differ in size (roughly from around 50 to more than 

1000 housing units), the housing units within each community are generally very 

homogeneous with respect to the attributes of interest here, namely price per square foot 

together with house size and age.9 So the averages of these values can be taken to be good 

representatives of individual houses within these communities. The present analysis is based 

on averages from 2988 communities in central Beijing, and 530 communities in central 

Qingdao.  

                                                            

6 The politically defined municipal region of Qingdao (not shown) is almost as large as that of Beijing, and for 
our purposes has little practical relation to the actual urban area of Qingdao.  

7 The area of Central Qingdao is about 48 square miles, in comparison with urban Paris (including the 20 
arrondissements) which is about 41 square miles.  

8 The price data for these two cities was collected at anjuke.com, a Chinese website that accumulates residential 
community information, including average housing prices and attributes of housing quality.  
  
9 Each community is built either by single development firms (designated as “commercial residence” 
communities) or by employer for workers (designated as “welfare residence” communities). In both cases, each 
community has a single residential committee. All these factors contribute to the homogeneity of housing units 
with each community. 
 

   Figure 1 

   Figure 2 
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      As mentioned in the introduction, our main interest focuses on the housing-price tradeoffs 

between locational and residential quality variables in Beijing versus Qingdao. We now 

consider each of these classes of variables in more detail. 

  

3.1 Location Variables 

      Recall that the major locational attributes for our purpose are in terms of access to urban 

activity centers and educational centers. We first consider central Beijing, where there are 

five major activity centers, as shown in Figure 3(a) below.  

 

 

 

      Among the five centers, the single biggest in terms of passenger flows (discussed below) 

is the central business district, “CBD”10, located in neighborhood 23 on the map. The next 

two largest centers are the financial center, “Financial Street”, in neighborhood 18 and the 

technological center, “Zhongguancun”11, in neighborhood 5.   The two smallest centers are 

the commercial centers, “Xidan” and “Wangfujing” in neighborhoods in 19 and 22, 

respectively.  

      To measure the accessibility of each Beijing community to these five centers, we focus on 

commuting times. In central Beijing the major commuting mode is public transit.12 Since 

transit times are essentially constant within each neighborhood, we measure such times at the 

neighborhood level.13  

 

3.1.1 Activity-Accessibility Index 

      To formalize the desired accessibility measures for both Beijing (B) and Qingdao (Q), we 

now let c
ijt  denote the relevant travel time from community i  to activity center j  in city, 

                                                            

10 This district is indeed referred to as the “CBD” by Beijing residents.  

11 This center is often referred to as the “Silicon Valley” of China, and is also the primary center of advanced 
education and research in all of China. 

12 Because of the high population density and congested street traffic, car ownership is currently restricted in 
Beijing. In addition, public transit is heavily subsidized to encourage ridership.  

13 To account for within-neighborhood travel times, we measure average travel time to the center of each 
neighborhood, based on the most appropriate mode of travel (walking, etc.) for each size of neighborhood.  

   Figure 3 
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( , )c B Q .14 For Beijing, B
ijt , is thus the public transit time from the neighborhood containing 

i  to the main subway station in j .15 To gauge the relative attractiveness of each center, we 

also rely on passenger flows to these centers. In particular, data is available on the number 

commuters exiting subways at each activity center during morning rush hour. These 

passenger totals are taken to represent the attractiveness, B
ja , of each activity center j in 

Beijing, as measured relative to the largest total for the CBD.16 To construct a summary index, 

let cn and cN  denote, respectively, the number of activity centers and communities in city, 

c .17  In these terms, our activity-accessibility index, c
iAI , for each community i  in city c  is 

defined to be: 

 

(1) 
1

, 1,.., , ,
c

cn
jc

i c cc
j ij

a
AI k i N c B Q

t

     

 

where the proportionality constant, ck , is taken to be the reciprocal of the least accessible 

community,  

 

(2)  
1

1/ min
cn

c c
c i j ij

j

k a t


   

 

so that by definition, 1c
iAI  , with 1c

iAI   for the least accessible community. 

                                                            

14 By “city” we shall always mean “Central Beijing” and “Central Qingdao”, as depicted in Figure 2 above. 

15 Here it should be noted that public transit in Beijing includes both subways and buses. There are 15 subway 
lines with 218 stations, and in addition, there is a good bus system that covers the entire city. Commuters 
generally use subways whenever possible, and use buses primarily to connect with the nearest subway. So the 
estimated travel times used here are based roughly on shortest-time combinations of bus and subway travel from 
each neighborhood. 

16 The ratios of passenger totals for Zhongguancun, Financial Street, Xidan, and Wangfujing relative to the CBD 
are given respectively by 0.92, 0.92, 0.67, and 0.58. The relative values are also represented by the shades of 
gray in Figure 3(a). 

17 So for c B  we have ( 5, 2988)
B B

n N  , and for c Q we have ( 1, 530)
Q Q

n N  , where the single 

activity center for Qingdao is shown in Figure 4(a) above. 
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Turning next to Qingdao ( )c Q , as mentioned in the introduction, this is essentially a 

monocentric city with single urban activity center, “Hong Kong Middle Road”, located in 

neighborhood 1 of Figure 4(a) below.  

 

 

 

 

Moreover, since Qingdao is a smaller city, with a less well developed public transit system 

(no subway) and less congested street traffic, the major mode of travel is by private car 

(including personal cars and taxis). Hence commuting times are more appropriately measured 

here in terms of driving time, 1
Q
it , from (the neighborhood of ) each community i  to the 

center of neighborhood 1. Thus, by setting the attractiveness of this single center to 1 1Qa  , 

the appropriate activity-accessibility index, Q
iAI , for each community, 1,.., ( 530)Qi N   in 

Qingdao is again given by (1) and (2) with 1Qn  . 

 

3.1.2 Education-Accessibility Index 

      Our second measure of locational accessibility focuses on the major centers of high 

school education in each city. The quality of high schools in each neighborhood, j , if city c  

is measured in terms of the number, c
je , of outstanding students graduating from these 

schools. This measure differs somewhat between Beijing and Qingdao. In Beijing, B
je  is 

measured in terms of the (publically available) number of students passing the pre-

matriculation test for the two top universities in China, namely Peking University and 

Tsinghua University. But since these numbers are very small in a city the size of Qingdao, it 

is appropriate to broaden the class of “outstanding students”. This is accomplished with a 

weighting scheme in which (i) each student passing the above pre-matriculation test is given 

3 points, (ii) each passing the similar test for any of the other top (C9 League) universities in 

China is given 2 points, and (iii) each student passing the similar test for the local Shandong 

University closest to Qingdao is given 1 point. The relevant education quality values, Q
je , for 

each neighborhood, j , in Qingdao in then given by the weighted number of students 

graduating from high schools in that neighborhood. The relative weights for each 

neighborhood in Beijing and Qingdao are represented by the shades of gray in Figures 3(b) 

   Figure 4 
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and 4(b), respectively. Finally, by again using the same measures of travel times, c
ijt , for each 

city, and letting cm denote the number of neighborhoods with nonzero weights, c
je , we can 

define an education-accessibility index, c
iEI , for each community, i , in city c  as: 

 

(3) 
1

, 1,.., , ,
c

cm
jc

i c cc
j ij

e
EI h i N c B Q

t

     

 

where the proportionality constant, ch , is given in a manner similar to (2) by 

 

(4)  
1

1/ min
cm

c c
c i j ij

j

h e t


   

 

again ensuring that 1c
jEI   with 1c

jEI   for the least accessible neighborhood. 

 

3.2 Residential Quality Variables 

      Our residential quality variables are essentially of two types, namely the quality of 

individual houses in each community, and the local environmental quality of the community 

itself. We consider each of these subclasses of variables in turn. 

 

3.2.1 Housing Quality 

      As mentioned in the introduction, individual houses within each community are fairly 

homogeneous in quality (much like individual units within condominiums in the West). As 

with housing prices themselves, we thus focus on representative levels of housing-quality 

attributes in each community. The most basic housing quality attribute is of course house size. 

While sizes in terms exact floor space are often not available, rough distinctions between 

sizes can generally be obtained from property descriptions in each community. Hence we 

treat house size as a dichotomous variable, S, with 1S  for Beijing houses larger than 100 

square meters, and similarly, 1S   for Qingdao houses larger than 120 square meters. The 

second housing quality variable is the age, A, of each house, measured in terms of the number 

of years since the construction of the community (so that a community built 20 years ago 
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yields an age, 20A  , for each of its housing units). Here it should again be emphasized that 

houses in older communities are almost invariably regarded to be of lower quality.18 

 

3.2.2 Community and Neighborhood Quality 

      Another important attribute of each community is its density in terms of the number of 

housing units it contains.19 While exact numbers are often not available, it again possible to 

discern from property descriptions whether or not there are more than 1000 housing units in 

the community. We adopt this figure as a threshold value to distinguish “high density” versus 

“low density” communities, and define community density, D, to be a binary variable with 

1D   for communities with more than 1000 units. One additional environmental attribute 

which influences residential quality is the presence public green spaces (parks, gardens, etc.) 

in the neighborhood of each community. Data is available on total green space area, G, in 

each neighborhood, and constitutes our final residential quality variable. 

 

4. Regression Analysis 

      The basic regression models in terms of the above explanatory variables are presented in 

section 4.1 below. However, initial investigations of these models revealed serious spatial 

autocorrelation among residuals. This prompted a second phase of analysis, as detailed in 

Section 4.2. The final regression results are presented and discussed in Section 4.3. 

 

4.1  Basic Regression Model 

      We begin by observing that there are clear differences in the distributions of housing 

prices between the Beijing market and US markets, such as Manhattan. As mentioned in the 

introduction, the most dramatic differences are in terms of the range and relative variation of 

these prices. This can be seen by a comparison of the histograms in Figures 5a and 5b below, 

where both Beijing and Manhattan housing prices have been transformed into “dollars per 

square foot” to allow direct comparison. 

  
                                                            

18 As an additional housing quality variable, we also considered the type of house, “commercial” versus 
“welfare” residence (as mentioned in footnote 9 above). But since “welfare” communities are almost invariably 
older then than “commercial” communities, this variable proved to be too correlated with age to yield any 
additional explanatory power. 

19 Typically communities with larger numbers of housing units allocate less public space per unit, so that the 
number of units indirectly reflects “density”. 
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      Figure 5a shows the average housing prices for the 2988 communities in central Beijing. 

This is compared with a smaller sample of Manhattan housing prices in Figure 5b.20 Notice 

first that the price range in Manhattan is ten times that in Beijing. But even after accounting 

for this difference, it is clear that, unlike the typical right skewed price data shown for 

Manhattan, the Beijing data is much more “bell shaped”, with relatively few high outliers. 

This in part accounts for the smaller variation in this distribution. But it also shows that, 

unlike almost all housing-price regression models in the US, there is no need for a log 

transformation of this price data.  

      With these observations, our basic regression model can be formulated as follows. If in 

each community i  of city c  we let  

c
iP   average price (Yuan/sqm) of housing units in i  

c
iA   average age (years) of housing units in i  

c
iS   average size of housing units in i  ( c

iS  1 for “larger” houses) 

c
iD   density of housing units in i  ( 1c

iD  for more than 1000 units) 

c
iG   area of green space (sqm) in the neighborhood of community i  

c
iAI   activity-accessibility index for i  

c
iEI   education-accessibility index for i  

and let   denote a city dummy with  1   if c Q  and 0   if c B , then our first 

regression model takes the form: 

 

(5) 0 1 0 1 0 1( ) ( )c c c
i i iP A S               

          0 1 0 1 0 1( ) ( ) ( )c c c c
i i i iD G AI                

 

      In this form, the key variable coefficients for Beijing are given respectively by, 

0 0 0 0 0( , , , , )     . So the expected signs in terms of the variables above are ( , , , , )     .The 

                                                            

20 Figure 5b shows a sample of 854 individual housing prices that is actually part of a much larger sample of 
house prices. These 854 samples were the only ones containing floor-space information allowing a per-sqft 
comparison with Beijing prices. 

   Figure 5 
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“interaction” coefficients, 1 1 1 1 1( , , , , )     , indicate differences in the effects of these 

variables between Beijing and Qingdao. As one key example, note that for Beijing ( 0)  , 

the coefficient on c
iAI is in (5) is 0 , and that for Qingdao ( 1)   this coefficient is now 

0 1  . So 1  represents the difference between the effects of activity accessibility on 

housing prices in Qingdao and Beijing.  Hence, if such accessibility is more important in 

Beijing than Qingdao (as we hypothesize), then one would expect 1  to be significantly 

negative.  

      Finally, the same model using education accessibility can be constructed by simply 

substituting c
iEI for c

iAI  in Model (5). 

 

4.2  Controlling for Spatial Autocorrelation 

      As with all regression data for spatially contiguous units, it is imperative to check for 

residual spatial autocorrelation. To do so, we first constructed spatial contiguity weight 

matrices, BW  and QW , for Beijing and Qingdao neighborhoods respectively,21 and then 

constructed the corresponding block-diagonal matrix, ( , )B QW diag W W . This matrix was in 

turn used to construct a Moran’s I test for spatial autocorrelation (based on the usual normal 

approximation). This test showed extremely significant autocorrelation for both models, 

indicating the need for modifications of Model (5) above. Here we first tried the standard 

Spatial Lag Model (SLM) and Spatial Error Model (SEM) formulations to control for spatial 

autocorrelation effects. While there was some reduction, Moran’s I was still extremely 

significant (p-values < .0001) for both the SLM and SEM models.  

      After considerable experimentation, we found that spatial autocorrelation could be 

effectively controlled for by simply introducing neighborhood fixed effects. Then reason for 

this can be seen by plotting the original set of residuals for the activity-accessibility 

regression by neighborhoods as in Figure 6a below (where the first 51 neighborhoods on the 

horizontal axis are for Beijing, and the final 22 neighborhoods are for Qingdao). Here it is 

clear that the residual groupings in many neighborhoods are vertically shifted relative to one 

another, indicating that residuals are more similar within neighborhoods than between 

                                                            

21 In particular, for any pair of communities, i  and j , in city ( , )c B Q  we set ( , ) 1
c

W i j  if i  and j  are in 

the same neighborhood, ( , ) 1 / 2
c

W i j   if i  and j  are in adjacent neighborhoods, and ( , ) 0
c

W i j   otherwise. 
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neighborhoods.22 What this suggests is that there are important neighborhood attributes 

missing from our regression. Moreover, the figure also shows that these neighborhood effects 

are most extreme among Beijing neighborhoods, suggesting again that the importance of 

“location, location, location” is more evident in Beijing than Qingdao. 

 

 

 

      To minimize these neighborhood residual effects, our final regression models extend 

Model (5) by including neighborhood fixed effects for both Beijing and Qingdao. For the 

activity-accessibility case, this regression model takes the following form: 

 

(6) 0 1 0 1 0 1 0 1 0 1( ) ( ) ( ) ( )c c c c c
i i i i iP A S D G                        

          
51 22

0 1 1 1
( ) c B c Q c c

i k k k k ik k
AI B Q     

 
       

 

where ( , )c c
k kB Q  are indicator variables with 1c

kB   if and only if ( ) & ( )c B k i  , and 

similarly, 1c
kQ   if and only if ( ) & ( )c Q k i  . 

      Given the large number of neighborhood fixed effects, we employed stepwise regression 

to identify relevant neighborhoods, but kept all explanatory variables and interaction effects 

to allow full comparisons between cities. Moran tests of the new residuals produced p-values 

greater than 0.20 in all cases, thus confirming that spatial autocorrelation had been effectively 

eliminated by these fixed effects. This can be seen graphically in Figure 6b, where the fixed 

effects have now removed these “vertical shift” effects, yielding residuals that tend to be 

centered around zero within each neighborhood. [Given the large number of significant 

neighborhood fixed effects (more than 50 out of 73), we omit these from the regression 

results reported below.] 

 

 

 

 
                                                            

22 This empirical finding is quite consistent with the recent theoretical result of Anselin and Arribas‐Bel (2013) 

that spatial fixed‐effect approaches are more effective that traditional spatial regression models when spatial 

dependencies are essentially “block diagonal” in nature.  

   Figure 6 
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4.3  Regression Results 

      Turning first to the results for Model (6) using activity accessibility ( )AI  for the key 

location variable, all estimates and significance levels for both explanatory variables and 

interaction effects are shown in Table 1 below.  

 

 

      Before discussing these specific results, we start by noting that the adjusted R-square for 

this regression was 0.811, which is surprisingly high for any housing-price regression model. 

However, further investigation showed that by running the regression using only the 

neighborhood fixed effects, the adjusted R-square was already 0.523. So more than 50% of 

this housing-price variation is attributable to unobserved neighborhood effects. This of course 

suggests that predictive power of this model could be considerably improved by identifying 

and explaining these unobserved effects. But for our present purposes, the limited set of 

explanatory variables used here suffices to capture the major differences between housing 

prices in Beijing and Qingdao.  

      Turning now to the results in Table 1, we note first that for Beijing, all explanatory 

variables ( , , , , )A S D G AI  are very significant, and all have the hypothesized signs except for 

green space, G. Further investigation showed that in Beijing, green space is strongly 

negatively correlated with activity accessibility (-0.53). [By way of contrast, this correlation 

is practically zero (-0.03) in Qingdao.]  So even here the tradeoff between location 

accessibility and residential quality is visible. In Beijing, relatively little space is devoted to 

parks in those neighborhoods close to (or containing) urban activity centers.   

      As for the important interaction effects, we see that the key interaction effect  ( AI  ) for 

activity accessibility is significantly negative (as hypothesized above). So even though 

accessibility to the single activity center in Qingdao is a positively significant predictor of 

housing prices, it has far less impact than in Beijing. With respect to residential quality 

variables, community density has a significantly stronger negative effect in Qingdao, and the 

presence of green space has a significantly stronger positive effect. With respect to housing 

quality itself, size has a somewhat stronger (weakly significant) positive effect in Qingdao. 

Only the age of housing has a similar effect in both cities. So on the whole it can be 

concluded that relative to these residential quality factors, accessibility to urban activity 

centers has a far more dominant price effect in Beijing than Qingdao. 

   Table 1 
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      Turning finally to education accessibility ( )EI , the regression results for this case are 

reported in Table 2 below. Here we see that these results are generally quite similar to those 

for activity accessibility. The only real difference is with respect to green space, G, where the 

effect is again negative for Beijing, but no longer significant. The key difference here seems 

to be that there is more green space around key educational institutions in Beijing than 

around urban activity centers. For example, there is substantial green space in and around 

neighbor 5 in Figure 2. Moreover, while neighborhood 5 is both an activity center (Figure 5a) 

and an education center (Figure 5b) for Beijing, it is far more important as an education 

center and contains many of the very best high schools in Beijing (as indicated by the darker 

shade of this area in Figure 5b).  

  

 

      So in summary, we see that in both these regressions, the relative influence on housing 

prices of locational accessibility versus residential quality is far more dominant in Beijing 

than Qingdao. 

 

5. Theoretical Model 

      In this final section we attempt to illuminate some of these tradeoff effects from a more 

theoretical perspective. To do so, we develop standard bid-price models23 for two linear cities, 

a “Big City” and a “Small City”, that differ in terms of the number of urban activity centers 

that residents frequent each day. The presence of many centers allows more activity variety, 

and is assumed to add to the attractiveness of city life.  In the present model, the Small City is 

assumed to be monocentric (like Qingdao) with a single center at location, 0x  , as shown in 

Figure 7b below.  

 

      

      The Big City is assumed (for simplicity) to have only two centers, shown at locations 1x  

and 2x  in Figure 7(a). Total travel costs to these centers are smaller for locations between 1x  

and 2x , so that this center city region, 1 2[ , ]x x , plays a role roughly similar to the high-

accessibility area around the five activity centers in Beijing (Figure 3a). Movement away 
                                                            

23 While prices in these models are formally “bid-rents” for land owned by an absentee landlord [as for example 
in Fujita (1989)], we choose to interpret these loosely “bid-prices” for housing. 

   Table 2 

   Figure 7 
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from this center city in either direction increases the travel cost to both centers.  It is these 

travel-cost relations that constitute the major spatial differences between the two cities.  In 

this setting, our objective is to compare typical “equilibrium” bid prices for representative 

households living at locations such as x  in Figures 7a and 7b.  

 

5.1 The Utility Maximization Problem for Households 

      To do so, we start by assuming that household preferences in each city, c{Big City, 

Small City}, are representable by a (log linear) utility function, 

 

(7) ( , ) ln (1 ) lnc cu z s a z a s      
 

where s is the size of the household’s residence (in square feet of floor space),24 and z  is a 

composite good (that can be taken to include other “housing quality” attributes in this model). 

The “elasticity” parameter, a , is assumed to satisfy 0 1a  . Finally, 0c   is taken to 

represent the level of activity variety in each city, c , where for simplicity we assume that 

0c   for the Small City and 0c   for the Big City.  

      To define the relevant budget constraint for a household locating at x  in city c, we 

assume that household expenditures involves daily travel costs to activity centers plus the 

purchase costs of commodity bundles ( , )z s . Following standard conventions, we treat z as a 

“numeraire” good with unit price, and let ( )cp x  denote the prevailing housing price (per 

square foot) at location x  in city c.25 To quantify commuting costs, we assume that 

coordinate positions are the same for both cities (as in Figure 7), and that locations 1x  and 2x  

are symmetric about 0x , so that 1
0 1 22 ( )x x x  . For the Big City, if a household chooses to 

live at x , then the relevant commuting distances to activity centers are 1| |x x  and 2| |x x , 

respectively. At the same location in the Small City, the corresponding commuting distance 

to the single activity center is 0 1 2
1
2| | | ( ) |x x x x x    .  

                                                            

24 While the term “floor space” facilitates comparison with the empirical results above, s corresponds formally 
to “lot size” so that population densities can in principle be calculated with respect to s (as in footnote 27 below). 

25 Again, while ( )cp x  usually denotes “rent per unit of land” at x (Fujita, 1989), we treat this variable as “price 

per square foot” of housing at x. 
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      Hence if the prevailing travel cost per unit of distance is denoted by t, then the relevant 

daily (round trip) travel costs for households living at location x in city c are given by:26 

 

(8) 1 2

0

2 (| | | |) , Big City
( )

2 | | , Small Cityc

t x x x x c
T x

t x x c

   
   

 

 

      If the prevailing wages in city c are denoted by cw , then the relevant budget constraint for 

a household at x in city c is given by:27 

 

(9) ( ) ( )c c cw T x p x s z    

 

      In these terms, households at each location x in city c are assumed to choose bundles 

( , )z s  that maximize their utility (7) subject to budget constraint (9).  

 

5.2 Bid-Price Comparisons between Cities 

      In equilibrium, these maximum utilities for each (identical) household must be the same 

at all city locations occupied. Such equilibria are identified by first determining for each 

possible constant utility level, u, the bid prices, ( ; )cp x u , at which this utility level is exactly 

achieved by households at all occupied locations.  Then, for a given total population, P, of 

households to be located, and a given minimum reservation price, rp , for alternative land 

uses (typically agriculture), one can in principle identify specific equilibrium configurations 

in both cities [as for example in Fujita (1989)]. But since our present objective is not to 

analyze specific equilibrium configurations, we simply determine typical shapes for such 

constant-utility bid-price functions and compare them between cities. More formally, if for 

any given constant-utility value, u, we let the relevant bid-price function for city c be denoted 

by  

 

                                                            

26 Note that a more realistic version of this model should include travel time as well, and should also allow 
household utility to depend on leisure time. But our purpose here is illustrating the basic tradeoff relations 
between these two cities in the simplest way.  

27 Note that commuting costs to work are implicitly included in these daily travel costs, so that for households in 
the Big City we do not distinguish between employment locations and other activity locations.   
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(10) ( ; ) [ ; , , ( ), , ]c c c c cp x u p x a T x w u   

 

then the exact forms of these functions can be derived, as is done in the Appendix. For our 

present purposes, it is enough to evaluate these functions for selected parameter values and 

compare them graphically. In particular, we set the relevant location values in Figure 7 to 

be 1 0 21, 0, 1x x x    , and set the unit travel cost in (8) to be 0.05t  . Next we 

parameterize the utility function in (7) using 0.8a   and .005c   for c  Big City (recalling 

that 0c   for c  Small City). Finally, given that wages tend to be somewhat higher in large 

cities, we set 10cw   for c  Big City and 9cw   for c  Small City. For these parameter 

choices, the bid-price functions for 2u   are shown in Figure 8 below. 

 

 

 

      Note that these functions are actually defined over much larger domains, restricted only 

by budget constraints. Hence we have simply chosen a reservation price ( 0.17rp  ) that 

yields reasonable “city boundaries” for the Big City and Small City.28 The key properties of 

this figure for our purposes are the relative magnitudes and shapes of these functions, which 

are determined by the model structure above. Notice in particular that the maximum housing 

prices in the Big City are constant in the center city, 1 2[ 1, 1] ( [ , ])x x  . This arises from the 

constancy of travel costs, cT , for c = Big City in (8) within this central region. While this 

constancy property is of course more extreme than in central Beijing, it is nonetheless 

consistent with the relatively low price variation observed in the high accessibility area 

around the major activity centers. Notice also that within this central region of the Big City, 

the total commuting cost to the two activity centers  ( 2cT  ) is seen to be approximately 

equal to the average commuting cost to the center of the Small City. This gives some idea of 

the relative scales of these two cities. Moreover, as shown in the Appendix, housing sizes are 

smallest in this center city region, and population density is highest. So, as in our regression 

results, location accessibility dominates residential quality considerations in this region.                           

                                                            

28 This model can in principle be “closed” by choosing the appropriate total population, P, to be the sum of the 
integrals of the lot-size densities in each city generated by these parameter values. 

   Figure 8 
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      Notice also that outside this center city, housing prices in the Big City fall more sharply 

than those in the Small City. This again reflects the fact that movement away from the center 

city increases the travel costs to both activity centers. Notice finally that since commuting 

costs are relatively less important in the Small City, households achieve the same level of 

utility ( 2)u  by devoting more income to housing quality and house size. Thus, while this 

simple two-city model is highly stylized, it nonetheless serves to illustrate some of the 

location-dominant properties of the Beijing housing market relative to smaller cities like 

Qingdao. 

 

6. Concluding Remarks and Directions for Further Research 

      In this paper we have analyzed price tradeoffs between residential quality and location 

factors in the housing markets of Beijing and Qingdao. The main purpose of this comparison 

has been to highlight the dominance of location factors in Beijing relative to most other cities. 

Our main hypothesis has been that this dominance results from the unusually large size of 

central Beijing, where travel between urban activity centers is comparable to typical 

suburban-urban commuting in other cities.  

      This raises the question of whether Beijing is unique in this regard, or whether there are 

other examples of such location-dominant housing markets.  In China, our initial 

investigations suggest that Shanghai may be another possibility. Outside China, one possible 

candidate is central Moscow, which is even bigger in size than central Beijing. This is one 

direction to be explored in subsequent work. 

      Another avenue of exploration arises from our regression results themselves. In particular, 

these results show that in Beijing and Qingdao, more than half the total explained variation 

was accounted for by neighborhood fixed-effects. As was pointed out, this raises a next set of 

questions, namely how to account for these unobserved neighborhood effects. One approach 

would be to analyze the spatial pattern of these neighborhood coefficients (much like spatial 

residual analysis) to determine whether this pattern suggests more meaningful explanatory 

variables that might capture some of this variation. Such possibilities will be explored in 

subsequent work. 
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Appendix: Derivation of Bid‐Price Functions 

 

To derive the relevant bid‐price functions, we start by recalling the utility functions, 

 

(A.1)  ( , ) ln (1 ) lnc cu z s a z a s      

 

for households at locations x in each city,  c{Big City, Small City}, together with corresponding 

(equality) budget constraints, 

 

(A.2)  ( ) ( )c c cw T x p x s z    

  

where travel costs,  ( )cT x , are defined for each city, c, by 

 

(A.3) 
1 2

0

2 (| | | |) , Big City
( )

2 | | , Small Cityc

t x x x x c
T x

t x x c

   
   

 

 

Then for any given level of utility, u, the relevant bid‐price function,  ( ; )cp x u , for each city, c, is 

obtained by solving (A.2) for ( )cp x as 

 

(A.4) 
( )

( ) c c
c

w T x z
p x

s

 
  

 

and finding the commodity bundle,  ( , )z s , that maximizes this price subject to the condition that 

utility, u, be exactly achieved, i.e. 

 

(A.5)  ( , )

( )
( ; ) max : ln (1 ) lnc c

c z s c

w T x z
p x u u a z a s

s
       

 
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This can be equivalently formulated as a Lagrangian maximization problem: 

 

(A.6)   ( , , )

( )
max ( , , ) ln (1 ) lnc c

z s c

w T x z
L z s a z a s u

s    
       

 

The first‐order conditions for a maximum yield the follows results: 

 

(A.7) 
1

0
L a

z s a
z s z

 
     


 

 

(A.8) 
2

( ) (1 )
0 c cL w T x z a

s s s

   
   


 

 

                        (1 ) ( )c cs a w T x z      

 

             
( )

(1 )
c cw T x z

s
a

 
 


 

 

(A.9)  0 ln (1 ) ln c

L
u a z a s 




     


 

 

 

By (A.7) and (A.8)  we see that 

 

(A.10) 
( )

[ ( ) ]
(1 ) 1

c c
c c

z w T x z a
s z w T x z

a a a 
 

     
 

 

 

 

so that by exponentiating (A.9) and using (A.10) we obtain 
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(A.11)     1 1( )
1

c c

a
auu a a a

c c

a
e z s e e w T x z s

a
         

 

 

                                    1 ( )
1

c

a
aua

c c

a
s e w T x z

a
        

 

 

By solving for s, and setting  /( 1)( ) [(1 ) / ]a aA a a a   , we then obtain the bid‐size function,  

 

 (A.11)       /(1 )( )/(1 )1( , ) ( ) ( )c
a au a

c c cs x u A a e w T x z       

 

for housing choices at each utility level, u.  Note in particular (from the negativity of the last 

exponent) that this bid‐size function is always increasing in travel costs,  ( )cT x , so that equilibrium 

house sizes are smallest in the center of the city where travel costs are lowest. Thus we see that 

there is a natural tradeoff between house size and accessibility.  

 

Finally, by substituting this into (A.4) we obtain the corresponding bid‐price function,  

 

(A.12)     
  /(1 )( )/(1 )1

( ) ( )
( ; )

( ; ) ( ) ( )c

c c c c
c a au a

c c c

w T x z w T x z
p x u

s x u A a e w T x z   

   
 

 
 

 

                               1/(1 )( )/(1 )( ) ( )c
au a

c cA a e w T x z      

 

In a manner paralleling to the bid‐size function above, these bid‐prices are seen to be decreasing in 

travel costs,  ( )cT x , so that equilibrium housing prices are always highest in the center of the city. 

 

 



Term Parameter Coefficient t Ratio p Value 

0  - 16964.44 31.70 <0.0001* 

0  A -98.70 -10.42 <0.0001* 

0  S 3158.10 21.77 <0.0001* 

0  D -702.00 -5.09 <0.0001* 

0  G -2.40 -4.30 <0.0001* 

0  AI 3459.42 31.30 <0.0001* 

1    -11449.28 -15.06 <0.0001* 

1  A   -2.96 -0.08 0.9331 

1  S   629.97 1.75 0.0799 

1  D   -1312.57 -3.52 0.0004* 

1  G   4.58 6.82 <0.0001* 

1  AI   -458.03 -2.55 0.0107* 
 
 
 
 
 
 
Term Parameter Coefficient t Ratio p Value 

0  - 16822.79 42.14 <0.0001* 

0  A -98.98 -10.86 <0.0001* 

0  S 3157.19 21.72 <0.0001* 

0  D -706.22 -5.12 <0.0001* 

0  G -0.53 -1.05 0.2917 

0  EI 3554.56 35.92 <0.0001* 

1    -7356.14 -7.38 <0.0001* 

1  A   -14.62 -0.40 0.6865 

1  S   662.49 1.84 0.0653 

1  D   -1293.04 -3.46 0.0006* 

1  G   35.36 15.55 <0.0001* 

1  EI   -4472.63 -9.71 <0.0001* 
 

Table 1. Regression Results for the Activity-Accessibility Case 

Table 2. Regression Results for the Education-Accessibility Case 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) The Municipal Boundary of Beijing (b) The area of Central Beijing 
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Figure 1. Map of Beijing and Central Beijing 

 
0  10 miles

(a) The 51 Neighborhoods of Beijing (b) The 22 Neighborhoods of Qingdao 

Figure 2. Comparison of Central Beijing and Qingdao 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

Figure 3. Activity and Education Centers in Central Beijing 

(a) Activity Centers in Central Beijing (b) Education Centers in Central Beijing 

Figure 4. Activity and Education Centers in Qingdao 

(a) Activity Centers in Qingdao (b) Education Centers in Qingdao 
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(a) Beijing Housing Prices (b) Manhattan Housing Prices 

Figure 5.  Comparison of Beijing and Manhattan Housing Prices 
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(a) Initial Residual Plot by Neighborhoods in Beijing and Qingdao 

(b) Final Residual Plot in the Presence of Neighborhood Fixed Effects 

Figure 6. Comparison of Initial and Final Plots of Neighborhood Effects 



 

Figure 7. Comparison of Big and Small Cities 
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Figure 8. Comparison of Bid Price Functions, ( )cp x  
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