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Abstract 
 
Identifying options and making decisions to reduce natural hazard losses from large earthquakes 
rely on vulnerability and hazard assessments for a parcel of land, neighborhood, community, or 
region.  These assessments are based on probabilistic estimates of damages; however, the damage 
probabilities and projections of economic losses contain uncertainties large enough to complicate 
mitigation policy decisions. The modeling framework developed here extends the use of scientific 
information for damage estimation by incorporating spatial uncertainties about the earthquake 
source and local geologic conditions. A well established methodology exists for evaluating 
probabilistic damage and loss estimates at a site. But what is less understood is how to aggregate 
site information into a risk analysis for a portfolio of sites (study area). The most straightforward 
approach is to assume spatially independent damages and losses. However, empirical scientific 
evidence indicates that levels of shaking and liquefaction at sites close to one another tend to 
exhibit some degree of positive correlation. While such correlations do not affect the expected 
losses in a given study area, they do increase the variance (uncertainty) of these losses.  We 
demonstrate these effects in a neighborhood of more than 1,200 land parcels in Memphis, TN, by 
comparing simulated spatially independent and dependent losses resulting from a 7.7 magnitude 
earthquake.  Repeated simulations on a regional scale yield a sampling distribution of total 
realized losses provide maximum-likelihood estimates for exceedance probability (EP) functions 
of loss. A value at risk (VaR) assessment based on these exceedance probabilities is then used to 
illustrate the effect of spatial uncertainty on a hypothetical mitigation plan decision in a Memphis 
neighborhood.  A comparison of these assessment results for both spatially dependent and 
independent scenarios shows how a failure to account for unobserved spatial dependencies can 
lead to an underestimate of potential extreme damage and loss conditions.  
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1. Introduction 
 
Strategies, policies, and regulations intended to improve human safety and reduce losses 
from natural hazards affect us individually and collectively.  Hazards such as 
earthquakes, volcanoes, and floods pose widespread and significant risks to many aspects 
of society.  Risk assessment entails the evaluation of information about the historical 
frequency and severity of previous disasters, anthropogenic and natural environmental 
vulnerability, and characterization of the indicated risks.  Although catastrophes recur 
over long periods of time, in the short run, there is considerable uncertainty regarding the 
location and recurrence of severe hazards. In this paper, we focus on the uncertainty 
about the physical damage from an earthquake of a given magnitude and illustrate the 
potential effect of spatial autocorrelation on the uncertainties embodied in an earthquake 
mitigation plan. 
 
While it can be accepted that spatial dependencies increase the variability of the 
economic losses from natural hazards, this has not been explicitly incorporated into 
probabilistic models for insured losses (Grossi et al, 2005) or analyses of community 
damages for actual properties (HAZUS, 1997; Goodno et al., 2006; Elnashai et al., 2008).  
In this paper, a spatially dependent loss model is developed for a single large earthquake 
with random earthquake source locations. Models of spatially correlated ground motions 
in earthquake events have been proposed by many authors, including Boore (1997), 
Wesson and Perkins (2001), Boore et al. (2003), Wang and Takada (2005) and Goda and 
Hong (2008), among others. The present model focuses on spatially dependent losses to 
property, and is most closely related to the work of Wesson and Perkins (2001) together 
with the more recent extensions in Wesson, Perkins and Luco (2009) and Karaca and 
Luco (2009). In the original (2001) paper a probabilistic model is developed to analyze 
the annual losses to a portfolio of properties exposed to earthquakes. In particular, they 
formulate their analysis in terms of exceedance probabilities, which also form the basis 
for the present approach. In addition, they focus on the increase in loss variance due to 
inter-event correlations among sites arising from their common exposure to a random 
series of earthquake events over time. In the more recent 2009 papers there is a more 
explicit consideration of intra-event effects arising from the common exposure of sites to 
a given earthquake. But all correlations between sites are again assumed to be generated 
by inter-event effects. In particular, the ground motion effects at individual sites are 
assumed to depend only on their distance to the earthquake source, and not their distances 
to each other. In contrast to this approach, the present paper focuses on correlation effects 
arising from the continuity properties of seismic waves themselves. More specifically, the 
spatial dependencies arising from such continuities are here modeled probabilistically in 
terms of a semivariogram that is similar in spirit to the original spatial correlation model 
proposed by Boore (1997).1  
 
 
 

                                                 
1 The possibility of such local correlation effects (“directivity” and “basin” effects) is also mentioned in 
Wesson et al. (2006). But their model focuses on long-run temporal correlations.  
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In the development of the present model, two sources of uncertainty are identified. First, 
there is uncertainty about the actual likelihood of damage (i.e., about the underlying 
science of earthquake physics). There is also uncertainty about the costs of damage (i.e., 
about the proper valuations of assets at risk, such as building value and property value).  
We consider loss outcomes under two alternative assumptions: (1) spatial independence: 
damages to distinct land parcels that are statistically independent and, (2) spatial 
dependence: damages to adjacent parcels are more highly correlated than damages to 
spatially separated parcels.  Our main finding is that the spatially dependent model 
produces damage distributions with fatter right tails (i.e., higher damage-exceedance 
probabilities) than the spatially independent model.2 
 
The paper is organized into four sections. Section 2 outlines the basic elements of a 
probabilistic model that includes spatial dependencies for analyzing the potential damage 
costs from shaking and liquefaction during large earthquakes. The model is then applied 
in section 3 to an earthquake hazard scenario involving a magnitude 7.7 earthquake in the 
New Madrid zone. In particular, the expected damage cost (loss) and dispersion of 
damage costs (risk) are analyzed for a small portfolio of spatially contiguous properties in 
Memphis, TN.  This example provides a range of damage costs that can be used in a 
conditional risk-return decision framework. (In the Appendix we outline possible 
extensions of this cost framework to include the loss of public amenities and other 
damage costs external to individual parcels.)  In section 4, we demonstrate the potential 
use of this model for policy analysis and industry decision making that involve the 
assessment of simultaneous multiple risks (Sinn, 1983).  In particular, we develop a 
policy example that illustrates how existence and recognition of spatially correlated 
losses can change a mitigation choice.  In the example, probabilistic damage costs are 
estimated under alternative model assumptions to assess whether these costs exceed 
tolerable risks.   
 
2. The Spatially Dependent Model 
 
The following model is based on the premise that a Magnitude (M) 7.7 earthquake occurs 
with source somewhere in the New Madrid seismic zone, as shown roughly by the three 
lines north of Memphis, TN in Figure 2.1.3 
 
 
 

 
Conditional on this event, the model is designed to estimate total losses,C , for building 
sites in Memphis, TN.  The model decomposes the loss probabilities for a given 
magnitude earthquake into a probability tree as follows.  Denoting the set of possible 
earthquake sources by{ : 1,.., }ix i n ,4 the conditional distribution of C  given M  can be 

decomposed as follows: 

                                                 
2  Essentially the same result was obtained by Wesson and Perkins (2001) for the case of inter-event 
correlations. 
3  This figure is adapted from Figure 7 in Frankel et al. (1996). 
4  This set of earthquake sources is made precise in Section 2.1 below. 

   Figure 2.1 here 
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We refer to the terms, ( | )iP x M  as earthquake-source probabilities, and the 

terms, ( | , )iP C c x M  as conditional-cost probabilities.  We now consider the 

specification of these two probabilities in more detail. 
 
2.1 Earthquake Source Probabilities  
 
The relevant portion of the New Madrid seismic zone is represented by the three “pseudo 
fault” lines in Figure 2.1 (Frankel et al., 1996).  The center line consists of a fault trace 
matching recent microearthquake activity, and the two outer lines roughly approximate 
the edges of the Realfoot Rift (Stover and Coffman, 1993).  For a large magnitude 
earthquake event, it is reasonable to postulate that the source is most likely to be located 
in the vicinity of these three “pseudo fault” lines.  Each earthquake event is assumed to 
be characterized by a rupture along one of these lines.  Following Wells and Coppersmith 
(1994), the Magnitude 7.7 earthquake will yield an expected rupture length of 140 km.  
Since each “pseudo fault” line in Figure 2.1 is approximately 240 km, we assume that the 
southern end, x , of the rupture is randomly located in the southern-most 100 km segment 
of each “pseudo fault” line.5  This earthquake source, x , completely defines an 
associated rupture event as the 140 km segment extending north from x  along the given 
“pseudo fault” line.  It is convenient to represent fault ruptures by their earthquake 
source. Following Frankel (2005), the analysis is restricted to a discrete set of possible 
earthquake sources uniformly spaced along the southern end of each “pseudo fault” line 
as shown schematically by the dots on the center line in Figure 2.1.  With the set of 
earthquake sources on the center line denoted by 

00 01 0{ ,.., }nX x x  and those on the edge 

lines denoted by 1{ ,.., }, 1,2
ii i inX x x i   [again following Frankel (2005)], it is assumed 

that each center-line earthquake source in 0X  is twice as likely as each source 

in 1 2X X . With these assumptions, the resulting earthquake-source probabilities, 

Pr( | )x C , are given by6 
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2.2 Conditional-loss Probabilities 
 

                                                 
5 Essentially the same procedure was employed by Wesson and Perkins (2001), who used a Magnitude 7.5 
earthquake with an expected rupture length of 100 km along a single representative fault line. 
6 While (2) is the specific model is used for the simulations in section 4 below, many refinements of this 
simple model are of course possible. 
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The conditional-loss probabilities are decomposed in the following manner.  For each 
building (parcel) site, , 1,..,j j m , let the indicator variable, j , denote the destruction 

event at site j , with 1j   if the structure at site j is destroyed and 0j  otherwise.7  In 

these terms, the random lossC , is taken to be a sum of the form 
 

(3) 
1

m

j jj
C c


   

 
where jc  is the expected building loss  when 1j  .  We consider the specification of 

jc and j in turn. 

 
2.2.1 Expected Damage Costs 
 
First it should be noted that building loss uncertainty is typically represented in terms of 
structural-fragility curves  (as detailed, for example in HAZUS, 1997).8  However, given 
the levels of uncertainty already implicit in this earthquake model, it seems reasonable 
(for our present purposes) to focus only on expected losses, jc , for individual buildings. 

These costs will generally depend on the type of failure as well as the particular building 
type at site j. Here it is assumed that a failure is due to either shaking or shaking-induced 
liquefaction.  (A simplified version focusing only on shaking-induced liquefaction is 
developed in the example of Section 4.2 below.) The possibility of liquefaction failure at 
sites j is taken to be summarized by a set of liquefaction probabilities jp .9  Hence, if the 

expected losses from shaking and liquefaction at site j are denoted respectively by 
S
jc and L

jc , then the overall expected damage cost at site j  is given by: 

 
(4) ( | , ) (1 )L S

j j i j j j jc E C x M p c p c     

 
Note finally from the additive specification of (3) that each jc is implicitly assumed to 

include only those costs directly attributable to damage at site j  (i.e., the replacement 
value or replacement cost of a building at j).  
 
 
2.2.2 Destruction Probabilities 
 
The calculation of the probabilities of destruction events, j ,  assumes that complete loss 

depends only on the peak ground acceleration (PGA), jA , generated at site j by the given 

the earthquake.  In particular, it is assumed that destruction at site j occurs when some 

                                                 
7 This simplification ignores degrees of destruction, and simply considers full destruction versus no 
destruction.  
8 This approach is also incorporated into the earthquake loss model of Wesson and Perkins (2001). 
9 The liquefaction probability data for Memphis is from Rix, G.J. and S. Romero-Hudock (2006). 
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(appropriately chosen) threshold level, ja , of ground acceleration is exceeded.  Formally 

it is postulated that 
 
(5) 1j j jA a     

 
All destruction probabilities are determined by the joint distribution of PGA levels.  The 
joint realization of PGA levels is denoted by the random vector ( : 1,.., )jA A j m  .  

Following standard practice in seismological modeling,  A is assumed to be conditionally 
distributed as a probabilistic mixture (“logic tree”) of K log normal distributions,10  
 

(6)  2

1
ln ( , ),

K

k k i mk
A w N x M I

   

 
with individual mean vectors, ( , )k ix M , 1,..,k K , and common diagonal covariance 

matrix, 2
mI .  Each component distribution is characterized by its mean vector, usually 

designated as its attenuation function, 
 
(7)  ( , ) [ ( , ) : 1,.., ]k i k ijx M r M j m   

 
where ijr  is the closest distance from site j to the “pseudo fault” line rupture represented 

by earthquake source ix .11  The attenuation functions are each based on physical theories 

of earthquake propagation, and are typically formulated as separable additive functions of 
r  and M :12 
 
(8) 0 1 2 3( , ) lnk k k k kr M M r r         

 
Other attenuation relationships are constructed in tabular form, where PGA values are 
listed for the appropriate range of distances r , and magnitudes M .  The use of model 
mixtures in expression (6) provides a convenient way to incorporate the high degree of 
uncertainty that exists regarding the actual PGA levels at a location. 
 
 
2.3 Spatial Autocorrelation of PGA Levels 
 

                                                 
10  In practice, the mixture weights, 

k
w , are often chosen to be uniform ( 1/

k
w K ), reflecting the current 

lack of consensus among experts as to which models are better in any given situation An explicit example 
of a logic tree for the New Madrid zone is given in Cramer (2001). See also Frankel et al. (1996, 2002).  
11  It should be noted that distance is usually measured to the hypocenter of the quake (reflecting depth as 
well as surface distance). But following Frankel et al. (1996, 2002) the depth of the quake is here taken to 
be constant, so that surface distance is the only relevant variable. 
12 A more elaborate example (involving “depth” as well as distance) is given in expression (16) below. 
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The diagonal covariance matrix 2
mI , in expression (6) implies that the realized PGA 

levels jA at sites j are conditionally independent of one another.  But, it is clear (from the 

continuity properties of wave propagation) that PGA levels at sites close to one another 
would tend to exhibit some degree of positive correlation (John Evans, personal 
communication, 2006).  As an extension of the current spatially-independent model, we 
propose replacing (6) with: 
 

(9)  
1

ln ( , ),
K

k k ik
A w N x M

   

 
where 
 

(10) 
11 1

1

m

m mm

 

 


 
   
  


  


 

 
is a general covariance matrix in which each covariance component,

1 2j j , is a 

nonincreasing function of the distance 
1 2j jd , between sites 1j and 2j . Following standard 

conventions, we model these covariances in terms of a spatially stationary band-limited 
covariogram [see for example Schabenberger and Gotway (2005, Chap.4)]. The simplest 
(and most commonly used) form is the spherical covariogram, ( )s d , defined by: 
 

(11) 1 2 1 2 1 2

1 2 1 2

1 2

2 3[1 (3 / 2)( / ) (1/ 2)( / ) ] ,
( )

0 ,

j j j j j j

j j j j

j j

d d d d d d
s d

d d




      


 

 
where 2 ( )j j    denotes the common variance at all locations, and where d  denotes 

the positive range (or bandwidth) for the function s .13 A plot of an illustrative spherical 
covariogram is shown in Figure 2.2: 
 
 

 
The positive range parameter d, provides a simple way of gauging the range of spatial 
dependency between sites. Under log normality, the PGA levels at all sites separated by a 
distance of more than d are taken to be statistically independent. 
 
The main rationale for introducing the added degree of complexity in (9) through (11) is 
that such positive correlation effects tend to increase the variance of realized aggregated 
losses in any earthquake.  This can be seen by observing from (3) that 
 

                                                 
13 An alternative specification here would be the exponential covariogram, as used implicitly by Boore 
(1997), Boore et al. (2003), Wang and Takada (2005) and Goda and Hong (2008). 

   Figure 2.2 here 
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(12)  1
var( | ) var

m

j jj
C M c M


   

 

                               2

1 1
var( | ) cov( , | )

m m

j j j h j hj j h j
c M c c M  

  
     

 

The assumption of a diagonal covariance matrix, 2
mI  , in (6) implicitly assumes that 

all covariance terms on the right hand side of (12) are zero. But in the presence of locally 
positive spatial dependencies (such as in Figure 2.2 above), many of the covariance terms 
will be positive, which may dramatically increase the overall magnitude of var( | )C M .14 
These spatial dependencies thus constitute an important component of the overall 
uncertainty of losses resulting from a large earthquake. This will be illustrated in the 
example of section 4 below. 
 
Finally it should be emphasized that the present model of spatial dependencies focuses 
only on those correlations arising from similar PGA levels at neighboring sites. In 
particular the losses resulting from a destruction event at site j are not influenced by 
destruction events at nearby sites. For example, there are assumed to be no secondary 
hazards such as earthquake induced fires at one site that also affect nearby sites. (The 
possible inclusion of such dependencies is considered more explicitly in the Appendix.) 
 
 
3. Model Implementation and Analysis 
 

Direct calculation of the damage cost distribution in (1) is not practically feasible. 
However, this distribution is easily simulated by standard Monte Carlo methods. 
Moreover, it should be emphasized that many of the parameters in the damage cost model 
are themselves either estimates [such as the expected costs ( , )S L

j jc c in (4), the attenuation 

parameters in (8), and the covariance parameters in (11)] or subjective weights [such as 
the model weights kw , in (9), and the liquefaction probabilities in (4)].  Hence all of these 

values are subject to uncertainties that also can be incorporated into Monte Carlo 
simulations.15  A simple approach is to establish meaningful ranges for all estimated 
values, and to calibrate simulation runs based on selected values within these ranges.16 
 
3.1 Exceedance Probability Curves 
 
The vector of all model parameter values (including M ) is denoted by .  Repeated 
simulation runs for any choice of   yields a sampling distribution (histogram) of realized 
                                                 
14  A parallel argument is made by Wesson and Perkins (2001, p.1510) for the case of inter-event 
correlations. 
15 In addition there are uncertainties about the correctness of the model form itself. This is in fact the reason 
for the “logic tree” approach to attenuation modeling in (6) and (9) above. Similar approaches are possible 
for other model components as well (such as the distribution of quake epicenters and damage costs due to 
shaking and liquefaction). Such possibilities may be considered in future extensions of the present model. 
16 It should be noted that more elaborate Bayesian approaches are also possible in which parameter values 
are sampled from more elaborate “prior” distributions. Such approaches may be considered in subsequent 
phases of this work. 
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costs c .  If the fraction of all values above each cost level, c , for the given set of n  
simulation runs is denoted by ˆ ( | )np c  , then these values represent maximum-likelihood 

estimates of the exceedance probability (EP) function, Pr( | )C c  , for costs given  . 
By definition these values will be lower for higher cost values, so that the EP function 
must start at unity for 0c   and fall monotonically to zero as c  becomes large (as 
illustrated in Figure 3.1).  But as mentioned above, there remains a great deal of 
uncertainty about the true values of many model parameters in  . Simulations for each of 
a selected set of parameter vectors 1{ ,.., }q  , say by choosing a representative “low” and 

“high” values for each uncertain parameter can be used to represent the degree of 
uncertainty in the individual EP values.  This is illustrated in Figure 3.1, where the heavy 
solid line represents the mean EP values estimated from these N  sets of simulations.17 
 
 
 
 
Typically such estimates are calculated for a coarse grid of cost values, 
[ ( ) : 1,.., ]c i i i N   .  If the set of sample EP values at cost level, ( )c i , is denoted by 

ˆ{ [ ( ) | ] : 1,.., }n jp c i j q  , then the sample mean EP at ( )c i  is given by: 

 

(13)  
1

1 ˆ [ ( ) | ]
q

i n jjqP p c i 


   

 
This set of values{ : 1,.., }iP i N , can then be interpolated to obtain the solid curve in 

Figure 3.1.  Similarly, if the empirical distribution function for this sample is defined for 

all [0,1]p  by 1ˆ ˆ( ) |{ : [ ( ) | ] } |i n jqF p j p c i p  , then the maximum-likelihood 

estimate ˆ ( )iP  , of the  -percentile for this sampling distribution is given by: 

 

(14)   ˆ ˆ( ) arg min{ : ( ) }i iP p F p    

 
Hence at each cost point ( )c i , one could estimate, say, the 5th percentile and 95th 

percentile values in (14). These two sets of values, ˆ{ (5) : 1,.., }iP i N  

and ˆ{ (95) : 1,.., }iP i N , could then be interpolated to obtain the dotted curves shown in 

Figure 3.1.  Together, these two curves define an estimated 90% confidence band on 
exceedance probabilities that help quantify the degree of uncertainty in such probabilities.  
For the illustration in Figure 3.1, the probability of exceeding a cost of 5c   is seen to 
have a 90% confidence interval of approximately 0.34 .06 .  This vertical interval gives 
an estimate of the uncertainty about the probability that costs will exceed 5c  , while the 
horizontal interval of 5.0 .5  yields an uncertainty estimate about the cost level that 
could be exceeded with a probability 0.34.  
 

                                                 
17 This figure is adapted from a very similar figure presented in Grossi, Kunreuther, and Windeler (2005).  

   Figure 3.1 here 
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3.2 Application to the Evaluation of Alternative Earthquake Mitigation Policies 
 
Exceedance probability curves provide a useful way to compare loss reduction strategies. 
In particular, if the cost of a mitigation strategy for Policy denoted by 0C  and the 

resulting damage costs of shaking and liquefaction are denoted by S
jc and L

jc , 

respectively, then by (3) and (4) above, the net damage costs for Policy can be 
expressed as: 
 

(15) 01
[ (1 ) ]

m L S
j j j j jj

C p c p c C   


     
 

These comparative costs can readily be estimated within the present probabilistic 
framework.  In Figure 3.2 the estimated curves (plus confidence bands) are plotted for 
two hypothetical mitigation policies, 1,2  .  In this example it turns out that both the 
mean and variance of damage costs for the distribution corresponding to the mean EP-
curve for Policy 2 are lower than those for Policy 1.18  From the viewpoint of standard 
portfolio analysis, it is tempting to conclude that Policy 2 dominates Policy 1.  But it is 
clear from Figure 3.2 that Policy 2 has a much greater chance of leading to high damage 
costs than does Policy 1. For example at probability .05 (shown by the dashed horizontal 
line in the figure) even when uncertainties are taken into account, the chance of damage 
costs exceeding 8c   are less than .05 for Policy 1.  However, when taking the 
uncertainties into account for Policy 2 there is still at least a probability of .05 that 
damage costs could exceed, 9c  .  While the above procedure for simulating and 
estimating both exceedance probabilities and their confidence bands is admittedly very 
demanding computationally, this methodology appears to yield sharper and more 
meaningful comparisons of alternative earthquake mitigation policies than those provided 
by standard portfolio methods. 
 
 
 
 
4. Model Simulation for the Case of Memphis   
 
For the present analysis, a contiguous set of 1274n   residential parcel sites in Memphis 
was selected that exhibit a range of liquefaction hazard.  The darker red areas in Figure 
4.1 show parcel sites with higher levels of liquefaction hazard. 
 
 
 
 
 
For modeling purposes, 7 possible (140 km) rupture events were spaced at about 15 km 
intervals along each fault line in Figure 2.1.  These 21n   rupture events are represented 

                                                 
18 These distributions for Policies 1 and 2 are each log normal with respective means and variances given 

by 2

1 1
( 3.404, .572)    and 2

2 1
( 3.336, .529)   . 

   Figure 3.2 here 

   Figure 4.1 here 
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formally by their corresponding earthquake sources (lower ends), as described in Section 
2.1. Since the distances between parcel sites are very small compared to distances from 
these ruptures (as shown in Figure 4.2 below), the closest distance to each rupture event 
is taken to be the same for all parcels (as represented by the distance to the centroid of 
these parcel sites).  Moreover, most ruptures lie well to the north of the land parcels. The 
closest point to all parcels for each of these ruptures is simply its corresponding 
earthquake source, as shown by the 15 earthquake sources in Figure 4.2 (ranging in 
distance to parcels from about 48 to 120 km).  The closest points for the remaining 2 
rupture events on each “pseudo fault” line coincide with the lowest earthquake source 
shown on that fault (which was chosen to be the closest point on the entire fault line).  
Thus each of these earthquake sources is the closest point for three separate rupture 
events. In terms of the probability model in expression (2), this implies that the relevant 
event probability for each of these sites is three times that of its northern neighbors (6/21 
versus 2/21 on the central line, and 3/21 versus 1/21 on the outer lines). These probability 
values are represented by the relative sizes of the dots at each event site in Figure 4.2. 
   
 
 
 
 
For purposes of illustration, we simplify the “logic tree” model in expressions (6) and (9) 
to a single attenuation function. The earthquake attenuation model of Somerville et al. 
(2001) was chosen for this analysis.19 Given the above mean distance of 130 km from 
earthquake sources, this attenuation model predicts sufficiently large mean PGA levels to 
ensure significant damage within the given set of Memphis parcel sites for a magnitude 
7.7 earthquake scenario. The specific parameterization of this model is as follows: for 
any building site, j, let jr denote the distance from j to the realized earthquake source (as 

represented by one of the m sites in Figure 4.1) and set the depth of the rupture event 
to 0 6h   km (following Somerville et al., 2001). The effective distance to the earthquake 

source is then given by 2 2
0( )j jR d r h  .  For an earthquake of magnitude, M , the mean 

log PGA level, j , occurring at site j  is taken to be a function of jr and M : 

 
(16)   ( , )j j jr M    

                  1 2 0 3 0 4 0( ) ln( ) ( ) ln[ ( )]jM M R M M R r              

                      5 6 0(ln[ ( )] ln[ ( )])j jr R r R r       

 
where (again following Somerville et al., 2001) 1 2 3.239, .805, .679,       

4 5 6 0.0861, .00498, .477, 6.4M        , and 2 2
0 0 0 0( )R R d r h    with 0 50r  .  

In all simulations, M  is set to 7.7. 
 
 
                                                 
19 According to these authors, the basic model form follows that of Abrahamson and Silva (1997). 

   Figure 4.2 here 
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4.1 Spatial Covariance Model 
 
If the vector of mean log PGA values for any given earthquake event is denoted 
by ( : 1,.., )j j n   , then the log PGA levels  ( : 1,., )jy y j n    generated by this 

event are assumed to be multivariate normally distributed as: 
 
(17) ( , )y N   
 
where the covariance matrix, ( : , 1,.., )ij i j n   , allows for possible spatial 

dependencies among realized values iy and jy .  In the present case, it is postulated that the 

covariance, cov( , )ij i jy y  , between parcels i  and j  that are separated by a distance, 

ijd , is given by the spherical covariogram in (11).  Following Somerville et al. (2001), we 

choose the variance 2 .25  , and following Evans (2006), we set the range at 2sr  km. A 

plot of this covariogram is shown in Figure 2.2. 
  
4.2 Earthquake Destruction 
 
Given any realized vector y , of log PGA values, the corresponding vector of PGA values 
is given by 
 
(18) [ exp( ) : 1,.., ]j jA A y j n    

 
To model the damage done by these PGA levels, it is assumed that there is a single 
threshold level, a , at which structural failure occurs.  For purposes of the present 
analysis, this level was set to 25a   (which is by definition 25% of the acceleration of 
gravity, i.e., / 4g ).   
 
Given a lack of data for this Memphis example as to specific damage costs from shaking 
( S

jc ) and liquefaction ( L
jc ) at each building site, j , an alternative strategy was adopted. 

Here the available data on liquefaction risks at each site is used to modify the likelihood 
of destruction events. In particular, it is assumed that higher liquefaction risk at site j  

translates into a higher effective PGA level, *
jA , at j .  Specifically, if the liquefaction risk 

level at parcel site j  (given by “Major Liquefaction Risk” in the Memphis data of Rix 

and Romero-Hudock, 2006) is denoted by jLR , then it is assumed that:  

 
(19) * exp( )j j jA A LR   

 
So for example, if a given site j  has a liquefaction risk level .12jLR   and experiences a 

PGA of 23jA  , then even though 23 a , this liquefaction risk yields an effective PGA 

level, 
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(20) * (23)exp(.12) 25.93 25jA a     

 
A structure at this site is thus more likely to fail than at sites with comparable distances to 
the rupture event, but with less risk of liquefaction. Finally, given a destruction event at 
site j , the expected damage cost, jc , is taken to be the building replacement cost from 

destruction, as represented by available data on the building value at site j .20  
 
The earthquake simulation was conducted in two stages. In the first stage an earthquake 
source is simulated using the probability distribution over the 15 earthquake sources in 
Figure 4.2 (with the specific values mentioned in the discussion of Figure 4.2).  Given a 
simulated draw from this distribution, the distances from the resulting rupture event to 
each parcel j  are calculated and used as the jr values in (16).21  The corresponding mean 

vector,  , is then calculated, and in the second stage of the simulation, a sample vector 
of log PGA values, y , is drawn from the multivariate normal distribution in (17) [with 
mean vector,  , and covariance matrix,  , given by (10) and (11)].  Hence the 

destruction event, j , at parcel site j  can then be determined as follows: 
 

(21) 
*

*

1 ,

0 ,
j

j
j

A a

A a


   
 

Finally, the individual damage costs, jc , based on building values at sites j  are used to 

determine the total damage cost for the study area due to the earthquake, i.e., 
 

(22) 
1

n

j jj
C c 


  

 
In summary, each simulation run, s , of this two-stage process yields a realized value, 

sC , of this random cost variable. By running many simulations, 1,..,s S , a sample 

estimate can be obtained for the probability distribution of C .  We presume that 1000S   
is a sufficient number of realizations to obtain a reasonable estimate of this distribution. 
 
4.3 Comparison of Results for Dependent and Independent Destruction Patterns 
 
The potential impact of a given natural disaster on a community is most easily studied by 
plotting the probabilities of exceeding each level of possible damage costs to the 
community, i.e., the exceedance probability (EP) function.  For 1000 simulations, the 
resulting sample estimate of the EP function for building damage cost under spatial 
dependence is shown by the (black) curve labeled BlgSD in Figure 4.3.  To gauge the 
effects of spatial dependencies on these probabilities, we compare the spatial dependence 

                                                 
20 All tax roll data and other parcel data for these Memphis sites were obtained from the Shelby County 
Assessor of Property GIS Department and were dated 2005.  
21 Recall that by construction, these 15 earthquake sources turn out to be the closest points from 
corresponding rupture events to all building sites.   
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BlgSD case with the case of spatial independence BlgSI.  For the multivariate normal 
model in (17), the latter is equivalent to assuming that 0ij   for all distinct building 

sites, i  and j , so that the covariance matrix takes the simple form: 
  
(23) 2

mI    

 
where mI is the m-square identity matrix.  The simulated spatially independent EP 

function is shown by the (red) curve labeled BlgSI in Figure 4.3.  
 

Theory predicts that the additional (positive) covariation contributed by spatial 
dependencies will lead to higher variation in total damage costs than under independence. 
This prediction is born out quite dramatically by the clear differences between the two 
curves in Figure 4.3. 22 Notice first that the highest damage level achieved by any of the 
1000 simulation runs under independence is less than $80 million. However, the presence 
of spatial dependence suggests there could be a number of realizations higher than $160 
million – indicating that even for this small subset of parcels in Memphis, the “worst case 
scenario” damage costs are more than twice the damage cost when spatial independence 
is assumed.  Another way of comparing these two cases is to consider the individual 
exceedance probabilities for a given level of building damage costs (from a 7.7 
earthquake in the New Madrid zone). Under spatial independence we see from Figure 4.3 
that there is virtually no chance of damage costs exceeding $100 million.  However, in 
the presence of spatial dependence, the chance of incurring this level of damages is 
actually quite substantial (almost one in four). 
 
 
 
 
It is important to note on the positive side that there are also many more instances of 
“minimal damage” outcomes under spatial dependence (again consistent with wider 
variation in outcomes). But as mentioned above, the major concern with natural disasters 
is the possibility of catastrophic events – as depicted by the upper tail of the EP function.  
 
4.4 Comparisons of Destruction Patterns 
 
Another way of gaining insight into the results above is to compare some typical patterns 
of destruction under both dependent and independent regimes. In Figure 4.4, three 
simulated realizations are depicted for each regime. Here destroyed parcels are shown in 
red. On the left are three representative destruction patterns under the independent 
regime, increasing in severity of damage from top to bottom (where severity of damage is 
determined by, among other things, the local levels of peak ground accelerations 
generated by the earthquake) The three destruction patterns on the right are typical 

                                                 
22 Here it should be noted that simulated variances are also increased by our simplifying assumption of “all 
or nothing” destruction events (Section 2.2 above). However, since this simplification influences both the 
spatially independent and dependent scenarios, it is still possible to attribute differences in variation to the 
presence of spatial dependencies.   

   Figure 4.3 here 
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realizations under the regime of spatial dependence, again increasing in severity from top 
to bottom.  
 
 
 
 
The key difference between these patterns is the more clustered nature of damaged areas 
in the spatially dependent patterns. [Such clustering consistent, for example, with the 
liquefaction failure patterns observed for the North Ridge earthquake in southern 
California (Craven, 1997)]. So if the realized PGA level at a given parcel site is strong 
enough to cause destruction, then one may infer that the immediate neighbors of this site 
are quite likely to experience similar outcomes. The exact nature of these destruction 
patterns will of course depend on many factors, including local geologic conditions and 
types of building structures. But even without knowledge of all these factors, the simple 
model of spatial dependencies postulated here is seen to yield simulated patterns of 
damage that are intuitively more plausible than those under spatial independence. 
  
Finally, it is of interest to relate the specific destruction scenarios in Figure 4.4 to the 
more general EP curves in Figure 4.3. For purposes of illustration, the total building 
damage costs (Blg) were calculated for high-destruction cases under spatial independence 
and dependence, as illustrated respectively by scenarios (c) and (f) of Figure 4.4.  The 
total building damage cost for the spatially independent scenario (c) is approximately $63 
million (the arrow intersecting the BlgSI curve in Figure 4.3), and the total building 
damage cost for the spatially dependent scenario (f) is approximately $143 million (the 
arrow intersecting the BlgSD curve).  While these costs involve scenarios that are not 
directly comparable, it is instructive to observe that the exceedance probabilities for these 
two scenarios are both about .07.  So if independence is assumed, then the BlgSI  curve 
shows that there is about a 7% chance of destruction as extensive as scenario (c). But by 
allowing for spatial dependence, the BlgSD curve shows that there is about a 7% chance of 
destruction as extensive as scenario (f), which is more than twice as costly. While these 
cost comparisons involve only a single level of spatial dependence, and do not account 
for any additional model uncertainties, they serve to illustrate the potentially dramatic 
difference in risk assessments between the two cases.   
 
4.5 A Policy Example 
 
Hazards policies, regulations, and standards are implemented as a collective or societal 
choice.  The following example illustrates a hypothetical decision for a community that is 
considering the adoption of a mitigation plan for a future earthquake hazard. The 
objective of this example is to show that failure to account for unobserved spatial 
dependencies can lead to an underestimation of potential damages, causing decision 
makers to believe they are better off than they actually are.  Underestimation of future 
damage costs could lead to an under-investment in mitigation resulting in even greater 
damages and slower recovery (such as the recovery following Hurricane Katrina; Vigdor, 
2008, Masozura, 2008). 
 

   Figure 4.4 here 
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Here we assume that for the Memphis neighborhood in Figure 4.2, the relevant 
exceedance probability curves are those shown as red in Figure 4.5. However, it should 
be noted that a 7.7 earthquake scenario is not sufficiently comprehensive for analysis of 
loss reduction strategies.  Thus we view the following analysis as representative of a 
range of earthquake scenarios that would need to be considered.  Furthermore, we also 
have ignored the bands of model-added uncertainty in Figures 3.1 and 3.2.   
 
 
 
 
 
To apply these EP curves in the present example, we assume that risk assessment for this 
earthquake mitigation decision is carried out in terms of Value-at-Risk estimation.23 This 
approach begins by identifying a relevant investment time frame, T , together with a 
relevant risk level,  , and then seeks to estimate the minimum loss level, ( , )L L T  , 
that will be exceeded with probability   in time period T . This loss, L , is then referred 
to as the value at risk (VaR) for the investment relative to  andT . It is appropriate to 
adopt a time frame of 50T   years, as a “building lifetime” benchmark used by standard 
building codes.24   For ease of illustration, it is convenient to choose a risk level 
of .005  , i.e., of “five-in-a-thousand”. Hence the relevant VaR from earthquakes is 
taken to be the minimum level L , for which there is only a five-in-a-thousand chance of 
incurring losses as large as L within the next 50 years.   
 
Our example supposes that the given mitigation plan involves both private and public 
investments for Memphis. Although the mitigation plan would cover the entire Memphis 
area, we apply the plan to the neighborhood in Figure 4.2 and assume that the total 
investment cost for this neighborhood would be $15 million.  Further we assume that this 
plan will only be worthwhile if the value at risk (VaR) is a least ten times this amount, 
i.e., at least $150 million. 
 
To calculate VaR we combine the conditional exceedance probabilities (Figure 4.5) 
based on the occurrence of a 7.7 earthquake with the occurrence probability of a 7.7 
earthquake to determine the unconditional exceedance probabilities. While there is a 
great deal of uncertainty in the estimation of such probabilities, Frankel (2004) has 
estimated that based on an observed average recurrence time of 500 years, the chance of a 
7.7 earthquake occurring in the New Madrid zone within the next 50 years is 10%.  The 
unconditional exceedance probability corresponding to a risk level of .005   is thus 
obtained by dividing by .10 to yield:  
 
(24) / .10 .005/.10 .05EP       
 

                                                 
23 Value-at-Risk estimation is a common tool for analysis of financial risk. This methodology is detailed for 
example in Duffy, Manfredo and Leuthold (1999), Duffie and Pan (1997), and Ridder (1998). 
24 Of course this ignores the fact that many existing building may have shorter lifetimes. 

   Figure 4.5 here 
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The horizontal dashed line at .05EP   in Figure 4.5 identifies the relevant VaR on each 
curve.  Here it is seen that under spatial independence, the relevant value at risk is 
somewhere in the interval of values between points a and b in Figure 4.5, which range 
from about $65 million to $85 million. It can be argued by opponents of this policy that 
the relevant VaR is most likely less than $150 million, and that in view of the costs of 
these investments, such a mitigation plan would not be worthwhile.  However, in the 
presence of spatial dependencies, the relevant interval of values at risk is given by point c 
and point d in Figure 4.5, which range from about $150 million to $200 million.  
Therefore when spatial dependencies are taken into account, the relevant value at risk is 
seen to be much larger, and is indeed quite likely to exceed $150 million.  Thus in the 
present case this factor alone might convince decision makers that the proposed 
mitigation plan is well worth the cost. 
 
There is an important additional dimension of uncertainty that is shown in Figure 4.5. 
While building values reflect the costs of replacing structures destroyed by the 
earthquake, there are in fact many additional costs resulting from amenity damage 
external to individual building sites (as discussed in the Appendix).  Replacement costs 
may in fact represent a lower bound of total costs. Though it is difficult to estimate the 
full extent of costs due to loss of amenities (discussed further in the Appendix), it can be 
argued that their ultimate effect will be to depress local land values as represented by a 
long term decline in property values (e g., Hurricane Katrina).  Depending on the scale of 
damage, planning time horizon, and existing regulations, the total value (Tot) of site 
(Building value + Land value25) may be taken as a reasonable upper bound on total 
economic losses at each site. These values also have been obtained for Memphis (see 
footnote 13) and have been used to construct the augmented EP curves, TotSI and TotSD, 
shown in Figure 4.5. For example, the horizontal displacement between the two curves 
BlgSI and TotSI represent the total land value of all sites destroyed at each level of 
exceedance probability under the spatial independence scenario. These horizontal 
intervals can be interpreted as bounding the potential damage costs at each level of 
exceedance probability. 
 
Of course it is rarely the case that any single consideration will be decisive in such a 
complex policy question. The main point of this example is to show that the possibility of 
spatial dependencies in earthquake outcomes constitutes one important factor that must 
be considered in the proper assessment of earthquake risks.  
 
5. Concluding Remarks 
 
While the proposed procedure for simulating and estimating both exceedance 
probabilities and their confidence bands is admittedly very demanding computationally, 
this methodology yields a flexible and effective approach for the comparison of 
alternative hazard mitigation plans. Our simulation results suggest that this model does 
indeed provide a framework within which the risk of catastrophic earthquake events can 
be analyzed. In particular, it highlights the potential importance of incorporating spatial 
dependencies into such models. 
                                                 
25 Here Land value is taken to reflect both site and community amenities.  
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However, there are a number of caveats that should be mentioned. First, we have made a 
number of simplifying assumptions in the above model, such as the assumption of all-or-
nothing damage outcomes, rather than more realistic (but elaborate) fragility curves. 
Also, in the empirical example analyzed, we have considered only a small portion of the 
Memphis area (again for computational simplicity). Moreover, we have chosen to 
consider only a set of contiguous parcels. While parcel contiguity allows a more 
meaningful visual representation of destruction patterns (such as those in Figure 4.4), it is 
important to emphasize that such contiguity also tends to dramatize the effects of spatial 
dependencies.  In particular, since all between-parcel distances in the present study area 
are within the dependency range of 2 km, each parcel pair exhibits some degree of spatial 
dependency. Hence it should be clear that local dependency effects are more dramatic 
than they would be if the entire Memphis area were included (where many parcel pairs 
are independent). But regardless of how large the study area may be, it is also clear that if 
spatial dependencies are ignored then the true likelihood of catastrophic outcomes will 
surely be underestimated.   
 
Finally it should be emphasized that while our simple policy example in section 4.5 
illustrates a possible application of this modeling framework to policy analysis, more 
realistic policy analyses typically involve the comparison of many alternatives. 
Moreover, as discussed in section 3.2, a more meaningful comparison of such policies 
must involve not only the cost uncertainties illustrated in section 4.5, it also should 
include a range of model-added uncertainties, as illustrated in Figure 3.2. Hence one 
important direction for extending the present modeling and simulation framework is to 
incorporate the full range of such uncertainties in a systematic way.  Thus the work 
reported here is best viewed as an initial effort to integrate scientific information, hazard 
event uncertainty, and model uncertainty to inform decision making about natural 
disasters at the regional scale. 
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APPENDIX: Model Extensions to Include Losses External to Individual Sites NOT 
READ 

 
The model developed in this paper focuses only on damage costs, jc , that are directly 

attributable to individual sites, jb . But it is clear that such sites do not exist in isolation. 

Here we briefly consider two possible extensions of the present model to incorporate 
losses incurred at sites jb resulting from destruction occurring elsewhere in space. First 

we consider losses due to destruction of other sites in the area, and then consider losses 
due to the destruction of more global types of amenities or infrastructure. 
 
Recall that some degree of spatial interdependency between sites was introduced by 
allowing spatial autocorrelation among realized PGA levels. More importantly, by 
focusing on the joint realization ( : 1,.., )jA A j m  , of PGA levels at all sites, it is 

possible to use this joint framework to incorporate losses due to the simultaneous 
destruction of whole neighborhoods. For example, if site jb is located within an historic 

neighborhood that adds value to this site, then destruction of this entire neighborhood 
creates additional loss of value at jb beyond that resulting from on-site structural damage. 

As a second example, suppose that site jb is located in a school district with an 

elementary school at site s . Then the destruction of buildings at site s must result in some 
loss of value at jb .26 These values can be estimated as part of a hedonic regression (an 

econometric model for property valuation) that includes such neighborhood amenities. In 
particular, if jN denotes the family of relevant amenity neighborhoods (site ensembles), 

jN , for site jb with respect to specific amenities, and if the hedonic value of amenity 

neighborhood jN , to site jb is denoted by ( )j jc N , then this value constitutes the loss 

incurred at jb from the joint destruction of all sites in jN .  

 
Here the definition of an “amenity neighborhood” is meant to be broad in scope. In the 
historic-area example above, if destruction occurs only in part of this area (possibly not 
including site jb ) then there is still some loss incurred at jb . Hence in this case, the 

definition of jN should include a sufficient number of representative site ensembles, jN , 

in this area to reflect an appropriate range of “degrees of destruction” to the area as a 
whole. Note also in the school example above that the relevant site ensemble { }jN s , 

need not include site jb as a member. With this broad definition, if we now let the 

destruction event for each amenity neighborhood jN , be denoted by the joint event,  
 

                                                 
26 While schools (unlike historic sites) can be rebuilt, such reconstruction takes time as well as money. 

Hence destruction of schools should reduce the present resale value of sites 
j

b  as family residences. 
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(A.1) 
j j

N hh N
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
  

 

(so that 1 1
jN h     for all jh N ), then the total damage cost in expression (3) of 

the text can now be extended to a function of the form 
 

(A.3) 
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j j N j jj N
C c c N 

 
      N

 

 

The key point here is that if all relevant neighborhood sites are already included 
in{1,.., }m , then exactly the same probability framework above can be applied to this 
more general cost model. On the other hand, if some sites are not included in{1,.., }m , 
then the relevant PGA vector A , must now be extended to include these sites, say   

( : ) ,Q jA A j Q   where 
 

(A.4)  1
{ }

Nj j

m

j jj N
Q b N  

    
 

 

and relation (5) in the text must be extended to include the additional conditions that  
 

(A.5) ( ) 1 ,j h h jN A a h N       
 

for all , 1,..,j jN j mN  . The total damage costsC , are determined by the joint 

distribution of PGA levels, and hence can be analyzed within our present framework. 
 

In addition to site-based amenities, there are many important types of urban amenities 
and infrastructure that are not considered sites themselves, but nonetheless influence the 
overall value of sites jb .  For example, a well known urban hazard arising from 

earthquakes is the possibility of widespread fires. Fires can potentially destroy public 
amenities, such as park areas and tree-lined streets that may not be directly affected by 
ground motion. Another possibility is the destruction of transportation networks or water 
supply networks that are spread over space and hence not site specific.27 While there is a 
high degree of uncertainty as to the both the location and extent of such events, it seems 
reasonable to hypothesize that all earthquake-related information needed for the 
prediction and evaluation of each such event is contained in the joint spatial realization of 
PGA levels. More formally, if we now let H denote the relevant set of public hazard 
events h , (such as destruction of a given park or bridge) and let h  denote the indicator 

variable for event, h H ,  then by extending sitesQ , in (A.4) to a larger set HQ , 

including those sites where ground motion might contribute to the occurrence of some 
hazard event h H , it is here postulated that all earthquake information for the event 
occurrence, 1h  , is contained in the joint PGA realization ( : )H j HA j QA   , i.e., that 

for all h H , 
 

(A.6) Pr( 1| , , ) Pr( 1| )h H i h Hx MA A     

                                                 
27 For disaster analyses of this type, see for example Chang et al. (2002) and Gordon et al. (2004). 
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If ( )jc h  denoted the value contributed to site jb  by the presence of the hth amenity, and if 

we again take this value to constitute the loss at jb  resulting from destruction 

event, 1h  , then the total cost model in (A.3) can be further extended to 
 

(A.7) 
1

( ) ( )
N jj j

m

j j N j j h jj N h H
C c c N c h  

  
         

 
In this context, expression (9) in the text together with (A.6) provides a well-defined 
distribution theory for the analysis of total cost realizations in (A.7).   
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                Figure 2.1: New Madrid Zone Relative to Memphis 
(Legend:      line of recent microearthquake activity,     outside boundary for  
Realfoot Rift, circles denote earthquakes of magnitude at least 3.0 since 1976) 
EXPLAIN BLACK DOTS? 
 

0 0.5 1 1.5 2 2.5
0

0.05

0.1

0.15

0.2

0.25

Figure 2.2: A Spherical Covariogram: 2 .25  , and 2sr  km.  

sr  

cov 
( )s d  

d  



 26

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

 

 

c

( )P c  

Cost Uncertainty 

Probability Uncertainty 

95-percentile 

5-percentile 

Mean Exceedance Probabilities 

Figure 3.1: Exceedance Probability Curves 
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Figure 3.2. Comparison of Two Mitigation Policies 
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Figure 4.2: Earthquake Sources 
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Figure 4.1: Parcel Sites in Memphis 
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Figure 4.3: Comparison of EP Functions for Building 
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Figure 4.4: Comparison of Typical Destruction Patterns 
                    (red = destroyed; yellow = not destroyed) 
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Figure 4.5:   Comparison of EP curves for Building and Total  
Damage Costs ($Millions) for both the Spatially Independent  
and Dependent Models 


