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Abstract—This paper concerns the use of large-scale wireless
sensor networks to detect and locate leaks of specified gases
in the presence of time-varying advection (air currents) and
diffusion. We show that when leaks are rare but constant for
long periods, Kalman filtering combined with binary hypothesis
testing provides an effective alternative to full-scale hypothesis
testing covering all possible combinations of leaks and leak
intensities. To reduce energy consumption and use of commu-
nication bandwidth, a two-tiered strategy is proposed in which
a reduced number of sensors (Tier 1) provides coarse-grid sens-
ing. When a leak is detected by the Tier 1 strategy, fine-grained
grids of sensors (Tier 2) are activated around the vicinities
of the detected leak areas to provide more precise detection
and localization. Energy consumption is further reduced by
applying an information versus energy-based dynamic sensor
selection technique. Details of a laboratory implementation are
presented and simulation results illustrate the approach and
demonstrate its effectiveness.

I. INTRODUCTION

Recent advances in low-power low-cost wireless sensing
devices are revolutionizing the way we interact with the
physical world. Self organized in networks, such devices
deliver an unprecedented amount of information about the
environments in which they are deployed, with a high degree
of spatial and temporal granularity. Environmental monitor-
ing and control applications, such as plume tracking, fire
detection, and control of built environments, have flourished.

Motivated by ongoing research in carbon sequestra-
tion [11], this paper concerns the real-time energy-aware
detection and localization of sources for a distributed dy-
namical field in an advection-dominated environment using
a wireless sensor network (WSN), where the sources can be
at locations other than the sensors. Since the data sampling
periods are larger than the time it takes to communicate,
a centralized approach to detection and localization is fea-
sible. Since the wireless sensor nodes are incapable of
performing computationally intensive calculations, a cen-
tralized approach is warranted. However, even a centralized
approach to real-time detection and localization is affected
by the stringent power and bandwidth constraints imposed
by using a WSN for data acquisition. Limited network
bandwidth combined with the sufficiently low data sampling

rates needed to guarantee long lasting deployments place a
serious constraint on the number of data samples that can
be collected and communicated within a sampling period.

These real-time and power constraints have led re-
searchers to develop a variety of strategies for source detec-
tion and localization. Fox et al. [6] propose a sensor-level
detection scheme as a trigger for global localization. Huang
[8] presents a localized detection algorithm with localization
through fusion, as an alternative to full-order centralized
detection. Michaelides and Panayiotou [13] and Sung et al.
[17] take advantage of spatial sensor correlations to perform
sensor-level detection and localization. Nofsinger and Cy-
benko [14] describe a detection-based approach to tracking
an airborne plume using sensor networks. Demetriou [3]
performs low-power moving-source estimation and detection
for two-dimensional processes using sensor scheduling and
filtering for a single source.

In all of the above approaches, computational complex-
ity increases with the length of the detection period and
explodes combinatorially with the number of disturbances
to be detected. Such computational growth prohibits real-
time detection and localization. To avoid the growth of the
computations with the detection period, Kerr proposes using
Kalman filtering to generate a two-ellipsoid overlap test for
disturbance detection [9]. Similarly, Brumback and Srinath
[1] and Zolghadri [20] extend the seminal work of Kerr
to develop other state-estimation-based tests. The principal
shortcoming of these state-estimation-based approaches is
that their performance cannot be bounded. Additionally,
none of the above state-estimation-based approaches ad-
dresses the key issue of extending WSN lifetime.

In contrast to several of the papers reviewed above, we
consider the problem of detecting and localizing multiple
sources. We avoid the combinatorial explosion from mul-
tiple hypotheses by separating the issues of detection and
localization. This leads to a simple binary hypothesis test
for detection and a thresholding problem for localization
that is easily implementable in real-time. The initial detec-
tion algorithm (Tier 1) uses the Neyman-Pearson detection
criterion and a Kalman filter to produce a coarse process
estimation using sparse sensor measurements. Upon initial
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detection, a fine process estimation (Tier 2) verifies detection
and accurately localizes the source(s) using another Kalman
filter and Neyman-Pearson detector with full-order sensing
in and around the detection area(s). We also introduce a
method for performing dynamic sensor selection to further
extend the network lifetime. We apply these techniques to
the problem of surface monitoring for leak detection on CO2

sequestration sites [5].
The following section introduces a lumped-parameter

state-space model for the advection-diffusion of atmospheric
gas concentrations as the basis for WSN monitoring of
CO2 sequestration sites and develops a general strategy for
performing source detection. Section 3 discusses the two-
tier localization strategy. Section 4 presents source detection
and localization simulation results for a field of 961 sensors.
Section 5 describes a method to further extend the network
lifetime by applying a relaxation-based approach to dynamic
sensor selection, and presents simulation results. Section 6
describes our real-time implementation of the detection and
localization strategy using the Firefly wireless sensor nodes
[12]. The final section summarizes the work presented in
this paper and identifies directions for future research.

II. SOURCE DETECTION

We consider the problem of monitoring surface concentra-
tions of specified gases to detect and locate sources of leaks
in the presence of time-varying advection (air currents) and
diffusion. In the surface monitoring problem, measurements
are obtained through sensors connected in a WSN and
decisions are based on these noisy measurements and model
parameters. We consider the concentration of a single gas as
a function of space and time, denoted by c(p, t), where p =
[x,y,z] is the location vector and t is time. The concentration
dynamics are governed by the following continuous-time
partial differential equation (PDE) describing an advection-
dispersion process [2]:

δc(p, t)
δ t

+φ(p, t)
∂c(p, t)

∂ p
= α(p, t)

∂ 2c(p, t)
∂ p2 , (1)

where φ(p, t) = [φx(p, t),φy(p, t),φz(p, t)]T and α(p, t) =
[αx(p, t),αy(p, t),αz(p, t)]T are the advection and dispersion
coefficients, respectively. The surface boundary condition is

−αz(p, t)
δc(p, t)

δ z
|p=(x,y,0)= λ (x,y, t),

where λ (x,y, t) is the boundary condition at z = 0 (the
surface).

We assume the sensors are on the surface. Since there
are no observations above the surface, an approximation is
needed for δ 2c(p,t)

δ z2 at z = 0. This is achieved by assuming
symmetric diffusion, that is,

δ 2c(p, t)
δx2 =

δ 2c(p, t)
δy2 =

δ 2c(p, t)
δ z2 .

Applying these assumptions to (1), we use the following
estimate for δ 2c(p,t)

δ z2 at the surface:

δ 2c

δ z2 =
δc
δ t +φx

δc
δx +φy

δc
δy − φz

αz
λ (x,y, t)

αx +αy +αz
, (2)

where, for convenience, we write c to mean c(p, t), and
similarly for α and φ . Substituting (2), into (1) yields:

δc
δ t

=
αx +αy +αz

αx +αy

(
αx

δ 2c

δx2 +αy
δ 2c

δy2

)

−φx
δ c
δx

−φy
δ c
δy

+
φz

αz
λ (x,y, t),

(3)

with boundary and initial concentrations equal to c0.
Equation (3) is a 2-D approximation of the 3-D PDE in

(1). The approximation in (3) is similar to the 2-D PDE
proposed in [3], differing only by scaling. The difference in
scaling accounts for the nonmeasurable effects of vertical
advection and diffusion inherent in atmospheric monitoring
problems where planar sensing is assumed.

For simplicity, we assume the sensors are placed on the
surface in a N ×M grid. These points define the locations
of the concentrations used as state variables in a lumped-
parameter model of the concentration dynamics. We consider
sources (leaks) generated by a discrete-time linear system of
the form:

zk+1 = zk +hk, (4)

where zk = {λ̄1(k), λ̄2(k), . . . , λ̄(n−1)M+m(k), . . . , λ̄NM(k)} is
the set of source inputs corresponding to the values of
λ (p,kΔt) on the surface regions p ∈ {[(n − 1)Δx/2,(n +
1)Δx/2], [(m− 1)Δy/2,(m + 1)Δy/2],0}, hk is the leak pro-
cess noise, and n ∈ {1, . . . ,N} and m ∈ {1, . . . ,M} [3]1.
Similarly, we generate the discrete-time state space model
for (3) by applying an Euler approximation to (3) and
discretizing in time gives

xk+1 = Akxk +ΓkBkzk +wk

yk = xk + vk,
(5)

where xk = [c1(k),c2(k), . . . ,c(n−1)M+m(k), . . . ,cNM(k)]T is
the set of concentration state variables corresponding to
c(nΔx,mΔy,0,kΔt), yk are the noisy measurements, wk and
vk are the process and measurement noise respectively, and
Ak and Bk are both square matrices of dimension NM×NM
representing the lumped parameter state dynamics governing
x(k) according to (3) [7] [15]. Γk is a diagonal matrix with
binary-values that specify which sources are active at time

1In this paper we allow for possible leaks at every grid point. The
dimension of zk can be reduced, with a corresponding reduction in the
computations, if it is known a priori that leaks cannot occur in some
locations.
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k:

Γk =

⎡
⎢⎣

γ1
k 0

. . .
0 γMN

k

⎤
⎥⎦ , (6)

where γmn
k ∈ {0,1}. When γmn

k = 0, a source is considered
inactive, while γmn

k = 1 equates to an active source. We as-
sume that once a source becomes active at some time k = k′
(γmn

k′ = 1), it will remain active indefinitely (γmn
k = 1 for all

k ≥ k′). We also assume there is no a priori information on
the probabilities of the entries of Γk equalling 0 or 1.

The system dynamics in (5) are augmented to include the
leaks dynamics in (4) yielding:[

xk+1

zk+1

]
=
[

Ak ΓkBk

0 I

][
xk

zk

]
+
[

I 0
0 I

][
wk

hk

]

yk =
[

I 0
][ xk

zk

]
+ vk.

(7)

We define the prior distribution on the system state as[
x̃0|−1
z̃0|−1

]
: N

([
x̂0|−1
ẑ0|−1

]
,

[
Px

0|−1 Pxz
0|−1

(Pxz
0|−1)

T Pz
0|−1

])
, (8)

where N (μ ,Σ) denotes the multivariate Gaussian distribu-
tion with mean vector μ and covariance matrix Σ. Further,
we assume the noise variables are distributed as⎡

⎣ w̃k

h̃k

ṽk

⎤
⎦ : N

⎛
⎝
⎡
⎣ 0

0
0

⎤
⎦ ,

⎡
⎣ W 0 0

0 H 0
0 0 V

⎤
⎦
⎞
⎠ . (9)

Applying the observation model in (7) to the prior in (8),
we write the prior distribution on the observations as:

ỹ0|−1 : N
(

x̂0|−1,P
x
0|−1 +V

)
. (10)

Using this formulation, we wish to determine which (if
any) sources are active at time k = K based on the observa-
tions up to time K, YK = {y0, . . . ,yK}. It is standard practice
to formulate a test for every possible source combination.
Assuming a network with 30 sensors and 30 potential source
locations, the standard detection problem has ∼ 2.6× 1032

hypotheses to test [6]. Moreover, if each potential source can
also have K different intensities the number of tests increases
with K factorial. It is obvious that for applications where the
number of potential sources and potential intensities is large,
the standard hypothesis testing problem becomes intractable.

As an approach that is computationally feasible and can
be implemented in real-time, we propose to separate the
problems of source detection and source localization by first
determining whether any source is active (detection), and
then deciding which sources are actually active (localiza-
tion). This reduces the detection problem to a binary hy-
pothesis testing problem where we write the state dynamics
in (5) as:

xk+1 = Akxk + γkBkzk +wk

yk = xk + vk,
(11)

where γk ∈ {0,1} represents whether all sources are inactive
(γk = 0), or some source is active (γk = 1). The reason γk = 1
corresponds to some of the sources are active is because
inactive sources are effectively active sources with a zero-
magnitude. This concept plays a key role in the localizing
sources once it is determined that some sources are active.
We assume that once any source becomes active at time k′
(γk′ = 1), it will remain active indefinitely (γk = 1 for all
k ≥ k′). This new system reduces the detection problem into
a binary hypothesis test, where we test the likelihood of no
active source versus the likelihood of some active source(s).

In systems with many states and extended observation
periods, the optimal Neyman-Pearson detector is not com-
putationally feasible since its dimensionality grows with the
observation period. As a heuristic solution, we propose to
combine state-estimation techniques and the optimal detector
strategy to generate a feasible detector. We begin by design-
ing an optimal detector of dimension M ×N × J, where J
defines the window size for which optimal Neyman-Pearson
detection can be performed. During an initial transient (when
K ≤ J), the optimal Neyman-Pearson detector is used; once
K > J, we switch to the fixed-sized detector to make our
decision based on the latest J observations, YK−J+1,K =
{yK−J+1, . . . ,yK}. To generate an estimate of the probability
distribution for YK−J+1,K under each hypothesis, we use a
Kalman filter to compute the mean and covariance matrix for
yK−J+1 from the observations y0, . . . ,yK−J , and then generate
the statistics for the complete vector YK−J+1,K by applying
the system dynamics. This is a heuristic that allows us to
apply Neyman-Pearson detection over the window of length
J using all the available observations.

The Kalman filter prediction and innovation update equa-
tions for the augmented system are written as[

x̂γ
k+1|k

ẑγ
k+1|k

]
=
[

Ak γkBk

0 I

][
x̂γ

k|k
ẑγ

k|k

]

Pγ
k+1|k =

[
Ak γkBk

0 I

]
Pγ

k|k

[
AT

k 0
γkBT

k I

]
+
[

W 0
0 H

]

Kγ
k = Pγ

k|k−1

[
I
0

](
Px,γ

k|k−1 +V
)−1

[
x̂γ

k|k
ẑγ

k|k

]
=

[
x̂γ

k|k−1

ẑγ
k|k−1

]
+Kk

(
yk − x̂γ

k|k−1

)
Pγ

k|k =
(
I −Kk

[
I 0

])
Pγ

k|k−1,

(12)

where

Pγ
k|k−1 =

[
Px,γ

k|k−1 Pxz,γ
k|k−1

Pzx,γ
k|k−1 Pz,γ

k|k−1

]
.
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By applying our knowledge of the observation equation
in (7), we write the distribution on the observed data at time
k = K − J +1 in terms of γ as:

ỹγ
K−J+1|K−J : N [ŷγ

K−J+1|K−J,P
y,γ
K−J+1|K−J], (13)

where

ŷγ
K−J+1|K−J = x̂γ

K−J+1|K−J

Py,γ
K−J+1|K−J = Px,γ

K−J+1|K−J +V.
(14)

In this approach, the observations are used (via state
estimation) to characterize the distribution of yK−J+1. By
applying the standard whitening techniques [18], a detection
problem can be formulated on the observation set YK−J+1,K .

This binary hypothesis testing problem is written as :

H0 : ỸK−J+1,K : N [Ŷ 0
K|K−1,P

y,0
K|K−1]

H1 : ỸK−J+1,K : N [Ŷ 1
K|K−1,P

y,1
K|K−1].

(15)

The heuristic approach in (15) is a binary hypothesis
testing problem where the decision rule for choosing H0

versus H1 is determined using standard techniques [18].
The optimal binary hypothesis testing problem grows

in dimension with time, therefore it has a complexity of
O((MNK)3), while the heuristic binary hypothesis testing
problem in (15) has a constant dimension and complexity
O((MN)3). Since the size of the heuristic detection problem
does not grow with time, this approach is well-suited for
real-time systems that require long observation periods.

III. SOURCE LOCALIZATION

The previous section presented a method for deciding
whether no source or some source is active. Once the
detector has decided that some source is active at time k = K
(γK = 1), we wish to localize which sources are most likely
to be active (which γmn

K = 1). Additionally, since we are
using a WSN to gather observations, we would like to extend
the lifetime of the network as much as possible. This section
introduces a two-tiered detection strategy and a threshold-
based approach to localization that both extends the WSN
lifetime and finds the locations of the sources.

A. Two-Tiered Detection Strategy

The detection strategy introduced in the previous section
assumes every sensor reports a measurement at each time
step. In WSNs containing hundreds of sensors, this is not
attractive due to bandwidth and energy constraints. Addition-
ally, due to power constraints on WSNs, it is desirable to
perform source detection using as few sensors as possible,
especially if the likelihood of an event occurring is small
relative to the null hypothesis. These constraints motivate the
following two-tier detection and localization strategy where
an initial coarse detection strategy requires only a subset of
the sensors to report measurements at each time step. Then,

when an event occurs, a f ine detection strategy is employed
where all the sensors in the area around the perceived source
(as determined by the coarse detector) report measurements
to verify and localize the source.

We outline the two-tier detection strategy as :

1) Initialize the Kalman filters for coarse detection using
rotating subsets of the sensor nodes.

2) Perform coarse detection test until H1 is decided (when
t(y) > η).

3) Choose suspect sources from source estimates un-
der H1 in coarse detection. Determine which suspect
sources should be investigated together as a group
based on spacial proximity and define test regions to
enclose each source grouping.

4) Perform fine detection on the regions defined by each
test region.

5) If all fine detectors decide H0, go to 1), else, for each
fine detection deciding H1, record the source location
and magnitude, and report an active source.

We assume that all sensors are distributed in a grid format,
where each sensor corresponds to a state in the fine detector.
From this sensor distribution, we assign sensors in the same
spatial proximity to a “sensor group”. The center of each
sensor grouping represents a state in the coarse detector,
and is chosen such that the coarse detector covers the entire
monitoring area. At every time step, the coarse detector takes
measurements from one sensor in each sensor group, cycling
through the sensors in each group to distribute the energy
consumption among the sensors. Errors resulting from the
spatial differences in the sensors are considered part of the
process noise in the dynamic model for the coarse detector.
The energy savings from performing coarse detection comes
at the cost of lower detection accuracy.

B. Threshold Localization

In our recursive detection algorithm, the Kalman filter as-
suming H1,k provides an estimate of the mean and covariance
for the sources. We use these estimates to identify potentially
active sources through thresholding, where the sources with
mean values above the thresholds will be considered active.
To determine which sources should be considered active
we first determine which source has the largest magnitude.
We identify this source as an active source and then define
a threshold (ηS) for determining all other active sources
according to:

ηS = σSerfc−1 (1−PS)+mS, (16)

where erfc−1() is the inverse error function, mS =
max

(
ẑ1

k−J+1|k−J

)
represents the largest source estimate in

ẑ1
k−J+1|k−J , and σS is the corresponding variance of mS, given

in the source covariance matrix, Pz,1
k−J+1|k−J [18]. PS ∈ [0,1]

is an a priori probability defining the probability of a leak
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being greater than ηS. From this value of ηS, inactive and
active sources are defined as:

ẑ1
k−J+1|k−J(i)

active
>
<

inactive
ηS, (17)

where ẑ1
k−J+1|k−J(i) is the i-th element of ẑ1

k−J+1|k−J .
The following section shows simulation results for the

detection strategy of the previous section combined with
the localization and energy management strategies described
above.

IV. SIMULATION RESULTS

We implemented the detection strategy presented in the
previous sections in MATLAB. For each simulation, con-
centration fields are generated using a fine-grained finite-
difference approximation of (1) for a monitoring field of
300m by 300m. For all simulations, we define the detection
problem parameters as :

• N = M = 31, (961 sensors)
• Number of sensor groups = 100
• PFA = .10 (coarse detector)
• PFA = .01 (fine detector)
• J = 5 (observation window)

In the first simulation, we define the normalized PDE
parameters as:

• αx(p, t) = αy(p, t) = αz(p, t) = 1
50

(10m)2

5min
• φx(p, t) = 1

5 cos( πt
10 ) 10m

5min
• φy(p, t) = 1

5
10m
5min

• Δx = Δy = 1
30 (10m)

• Δt = 1(5min)
with three sources:

• λ ( 1
5 , 1

2 , t) = 1 kg
(10m)25min

for t > 20

• λ ( 2
5 , 3

10 , t) = 3
4

kg
(10m)25min

for t > 20

• λ ( 3
5 , 7

10 , t) = 1
2

kg
(10m)25min

for t > 20
• else λ (x,y,z, t) = 0

This simulation contains three sources separated spatially,
but with two of the sources significantly affecting the region
near another source through advection and diffusion as
shown by the concentration profile at k = 100 in Fig. 1.
This figure shows three regions of the monitoring field with
elevated concentration levels.

The coarse detection provides six source estimates as
shown in Fig. 2 by squares, where the dots represent the
sensors and x’s represent the centers of the course sensor
groups. At time k = 54, the coarse detector source estimates
identify four fine detection regions as illustrated in Fig. 2
by the dashed rectangles. A fine detection is performed on
each fine detection region separately and three sources are
predicted (spatially) as the circles in Fig. 2. The circles
in Fig. 2 match the actual spatial position of the sources
listed above. The predicted magnitudes of the sources at time
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Figure 1. Concentration values in field monitoring area at k = 100 for
simulation 1.

k = 74 (from the fine detector) are shown in Fig. 3. From Fig.
3, we can tell that the fine detector accurately predicts the
magnitudes of the leaks as specified in Fig. 2. Additionally,
Fig. 3 also illustrates that in some fine detection regions, no
sources were present.
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Figure 2. Sensor grid vs. detection outputs for simulation 1.

In the above simulation, all the sources were predicted to
the same spatial accuracy as the full-order detection problem
(containing 961 sensors) using only 100 sensors at each
time step during coarse detection and 324 different sensors
during fine detection. Since the probability of source being
active is assumed to be small, using only 100 sensors at each
time step represents a significant savings in both energy and
bandwidth. When a leak occurs, the strategy identifies the
leak locations accurately in an energy efficient manner by
requesting data from only the course sensor groups until
some possible leaks are detected.
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Figure 3. Leak estimates vs. coarse detection regions for simulation 1.

In the second simulation, we define the normalized PDE
parameters the same as the first simulation except:

• φx(p, t) = 0;
• φy(p, t) = 1

5 cos( πt
10 ) 10m

5min

We define the following three sources:
• λ ( 3

10 , 3
10 , t) = 1 kg

(10m)25min
for t > 20

• λ ( 2
5 , 3

10 , t) = 1
2

kg
(10m)25min

for t > 20

• λ ( 7
10 , 3

5 , t) = 1 kg
(10m)25min

for t > 20
• else λ (x,y,z, t) = 0

This is the same number of sources as in the previous
simulation, but two of the sources are so close to each other
that the effects of each source merge in the monitoring field.
Additionally, one source is 50% smaller than the others.
These sources (and the advection-diffusion dynamics) gen-
erate a concentration profile at k = 100 as shown in Fig. 4.
This figure shows only two regions of the monitoring field
with elevated concentration levels, despite the existence of
three sources.

The coarse detection provides five source estimates as
shown in Fig. 5 by squares. The coarse detector source
identifies two fine detection regions at k = 59 as illustrated
in Fig. 5 by the dashed rectangles. A fine detection is
performed on each fine detection region separately and three
sources are identified at time k = 79, as indicated as the
circles in Fig. 5. As in the previous simulation, the circles in
Fig. 5 again match the actual spatial position of the sources
listed above and the predicted magnitudes of the sources
(shown in Fig. 6) match the actual source magnitudes.

This second simulation shows that even sources near
one another can be detected accurately, despite significant
differences in magnitudes. As in the previous simulation,
the coarse detector uses 100 sensors to report at each time
step. However, only 185 sensors were needed to perform
fine detection, resulting in an accurate source prediction.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x axis

y 
ax

is

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Figure 4. Concentration values in field monitoring area at k = 100 for
simulation 2.
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Figure 5. Sensor grid vs. detection outputs for simulation 2.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x axis

y 
ax

is

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 6. Leak estimates vs. coarse detection regions for simulation 2.
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The results in this section show that the proposed strategy
can accurately detect and localize sources. To increase the
WSN lifetime, the following section presents a method of
performing reduced order sensing using dynamic sensor
selection which can significantly increase the WSN lifetime
at a cost in time to detection.

V. DYNAMIC SENSOR SELECTION

As an independent method of prolonging the network
lifetime, dynamic sensor selection (DSS) can be applied
to use fewer sensors, possibly with a reduction in state
estimation accuracy. DSS can be used in addition to the
detection and localization scheme previously introduced by
performing DSS over the tier 1 sensor groups. We proposed
a method of sensor selection in [19]. In this previous work,
we introduced a heuristic relaxation approach for dynamic
sensor selection assuming a constant number of sensors
would be selected at each time step. This section extends
the previous work to consider both channel reliability and
energy consumption in performing DSS.

Following a similar formulation as presented in [19], we
rewrite the observation equation in (7) to incorporate sensor
selection as:

yk =
[

UkZk 0
][ xk

zk

]
+ vk, (18)

where Zk ∈ Z is the DSS matrix at time step k. Z is the
set of all possible DSS matrices defined as:

Z =
{

Z ∈ {0,1}s×l |1T
s Z ∈ {0,1}l ,Z1l = 1s

}
,

and s ∈ {0,1, . . . , l} is the number of sensors selected to
report measurements. Uk is the channel selection matrix. UT

k
is defined as the basis of the column space of ZkΓkZT

k , where
Ωk is the channel reliability matrix defined as the binary
diagonal matrix:

Ωk =

⎡
⎢⎣

ω1(k) 0
. . .

0 ωl(k)

⎤
⎥⎦ ,

where each ωi(k)∈ {ω1(k), . . . ,ωl(k)} is a bernoulli random
variable with P [ωi(k) = 1] = ω̄i. Since the selected measure-
ments are gathered using a lossy WSN, some selected mea-
surements will not be received. In the model, Uk accounts
for packet loss within the network.

Applying the updated observation equation in (18) to
the Kalman filter equations in (12), we write the next step
posteriori inverse error covariance matrix as :

P−1
k+1|k+1 =

([
Ak Bk

0 I

]
Pk|k

[
AT

k 0
BT

k I

]
+
[

W 0
0 H

])−1

+
(
V−1

k+1Qk+1Γk+1
)−1

,
(19)

where Qk+1 = ZT
k+1Zk+1 ∈ Q is the square sensor selection

matrix. Q is the set of all possible square sensor selection
matrices, defined as:

Q =
{

Q ∈ {0,1}l×l |1T Q1 = trace(Q)
}

. (20)

Consequently the number of sensors selected, s, is equal to
the trace(Qk+1) and ZT

k+1 is the basis of the column space
of Qk+1.

In DSS, we assume H1,k (γk = 1) so that we will choose
sensors that will improve the Kalman filter estimation for
both xk and zk. Assuming γk = 1 only applies to dynamic
sensor selection and does not reflect the true value of γk in
the detection and localization strategy.

A. DSS using Information versus Energy

We wish to maximize the sensor network lifetime while
still providing enough observations to perform detection and
localization. Thus, the DSS strategy must trade-off between
the accuracy of the state estimate and the energy required
to obtain the selected measurements. One common means
to improving the state estimate accuracy is to select mea-
surements such that the mean squared error is minimized.
Equivalently, this corresponds to minimizing the trace of
the error covariance matrix. The energy required to obtain
the state estimate is a function of the sensor selection
matrix, routing protocol, medium access channel (MAC),
transmission power, channel reliability, and potentially more
factors, depending on the application. To determine which
sensors will produce the ”best” system state estimate, we
introduce the objective function:

J∞ = (1−C ) trace(P∞|∞)+C E∞, (21)

where trace(P∞|∞) is the steady state mean squared error,
C ∈ [0,1] is the energy cost factor, and E∞ is the energy
cost function at steady state which is assumed to be convex
with respect to the sensor selection matrix. By increasing C ,
the objective function will increase the weight on the cost
of the energy required to obtain the state estimate.

For applications with time-varying dynamics, the
trace(P∞|∞) cannot be calculated since the future dynamics
are unknown. Therefore, as a greedy approximation, we
introduce the one-step objective function as:

Jk+1 = (1−C ) trace(Pk+1|k+1)+C Ek+1, (22)

where Ek+1 is the next state energy cost. Ek+1 can be
determined several ways. Here we assume that the next
state energy cost is proportional to the number of hops
required to transmit the observations to the base station
where centralized computing occurs. The one-step optimal
DSS strategy at time step k is then the collection of sensors
minimizing Jk+1:
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Qk+1 = arg min
Qk+1∈Q

Jk+1. (23)

The minimization problem in (23) is a 0-1 integer pro-
gramming problem with exponential complexity. For large-
scale systems, this optimization problem is not feasible.
Following the relaxation to a convex optimization problem
in [19], the optimization problem is formulated for the
objective function in (22).

B. Simulation Results

To perform the optimization step in the proposed sen-
sor selection strategy, we use the MPT toolbox [10]. The
following simulation results demonstrate the performance
of the proposed DSS strategy in terms of both extending
network lifetime and the effect DSS has on the detection
and localization strategy. For these simulations, we used the
same parameters from the second simulation study in the
previous section.

We apply the DSS strategy to the detection and localiza-
tion strategy and simulated with the parameters:

• Base station located at position [0,0]
• ω̄i = (0.9)π(i)

• C = 0.2
• J = 15

where π(i) is the number of hops required for the ith sensor
to transmit to the base station. Additionally, we assume
the base station has sufficient power to communicate to all
sensors in one hop.

0 50 100
0

10

20

30

40

50

60

70

80

90

100

110

Time step

N
um

be
r 

of
 S

en
so

rs
 S

el
ec

te
d

0 50 100
0

0.2

0.4

0.6

0.8

1

Time step

N
or

m
al

iz
ed

 E
ne

rg
y 

U
se

d

Figure 7. Number of sensors selected and percentage of energy used at
each time time step.

Figure 7 shows the number of sensors selected using
DSS and the energy used to gather the observations ver-
sus the time step. The DSS strategy weights the cost of
energy required to gather data against the improvement in
estimation accuracy. For C = 0.2, Fig. 7 shows that the

average number of sensors selected is 13 sensors (out of
a possible 100 sensors). The energy savings when DSS is
employed as opposed to full-order sensing is significant.
In this simulation, the DSS approach to detection and
localization used approximately 5% of the energy as the
full-order approach (as quantified by the energy function).
In this example, the network lifetime can be extended almost
20 times by using DSS instead of full - order sensing.
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Figure 8. Probability of detection (PD) vs. time step.

Figure 8 shows the probability of detection (PD) versus
the time step. These results show that the probability of
deciding an active source is present when a source is active
is not significantly affected by using DSS. This performance
was achieved by increasing the window size when the DSS
approach is used. In the simulations, when full-order sensing
performed, the window size was 5 observation periods (J=5);
however, when DSS is applied the window size can increase
since each observation period contains fewer observations.
Since the optimal detector scales with both time and the
number of observations, if the number of observations per
period is decreased, the number of periods can increase.
Additionally, due to the stable plant dynamics, the obser-
vations under the DSS strategy are not as correlated as the
observations under full-order sensing, since the observations
under the DSS strategy are gathered over a longer period of
time. This reduced correlation also serves to improve the
detector’s performance.

The test statistics for the full-order sensing and DSS
strategies are shown in Fig. 9. In this figure, when the
statistic is positive, we declare a source is active and
similarly, we declare no active sources when the statistic
is negative. The results show that it is possible for the DSS
strategy to outperform the full-order sensing strategy and
claim a detection earlier. This non-intuitive effect is caused
by the DSS strategy using a larger observation set window
that provides a similar number of observations as the full-
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Figure 9. Normalized test statistic vs. time step.

order sensing. Additionally, since the observations are less
correlated, fewer observations of leaks are needed to claim
a leak. In this simulation, the DSS strategy selected sensor
groups whose observations indicated a leak was present.
This selection of sensors coupled with the lower correlated
observations resulted in the DSS strategy detecting a leak
before the full-order strategy. In general, Fig. 9 indicates
that the full order sensing statistic increases at a faster rate
than the DSS statistic, however there are outlier cases where
the DSS strategy can outperform the full-order strategy.

VI. IMPLEMENTATION

We have developed a testbed of 30 wireless sensors, to
implement and evaluate the proposed detection and local-
ization strategy. To fully analyze the performance of the
detection strategy, a back-channel monitoring system exists
to gather all the sensor measurements. This system allows a
comparison between the WSN detection capabilities versus
a standard wired network. A 3.6 GHz machine running
Windows XP is used as a central processor and the detection
and localization strategy as well as the DSS strategy are
written for MATLAB. The windows machine CPU clock
is used to determine when a request is sent to the WSN
gateway for data acquisition. To send a request for data,
MATLAB communicates via a socket to a Linux machine
attached to the gateway of the WSN. The WSN consists of
Firefly nodes [12] and a stable networking protocol called
SAMPL [16] has been implemented using the Nano-rk real-
time operating system [4]. The process of gathering observa-
tions and performing source detection and localization must
be timed such that the sensors take measurements at the
same instant. This requires time synchronization between
nodes and the information processing algorithms to occur
at specific times, as outlined by the timing diagram in Fig.
10. Time synchronization for sampling is achieved for by

delaying sensor measurement based on the routing tree depth
provided by SAMPL, where the larger the depth, the shorter
the delay. Exact time synchronization is not essential since
the sampling rate is very large when compared to the error in
sampling times. The remaining part of this section uses Fig.
10 to illustrate key points about data gathering and central
processing.

Rx sensor
measurement

k

Tx DSS
request

SLRT
test

DSS
Rx sensor

measurement

k + 1

Tx DSS
request

SLRT
test

DSS

Tx sensor
measurement

k

Rx DSS
request

take sensor
measurement

Tx sensor
measurement

k + 1

Rx DSS
request

take sensor
measurement

all sensors
sleep

only selected
sensors

(others sleep)

all sensors
awake

all sensors
awake

only selected
sensors

(others sleep)

sensors

Gateway (central processor)

Figure 10. Timing diagram.

Before the sampling instant at time k, the central processor
transmits which sensors should be collected. During this
period, all sensors turn on their receivers and listen for the
central processor broadcast. Once the broadcast is received,
the sensor determines whether it will be used for either
taking a measurement or routing of the measurements back
to the central processor. If the sensor is needed, the mea-
surement is taken and information sent back to the central
processor. If the sensor is not needed, the sensor turns off
the radio and goes into a sleep mode until the next time it
needs to listen for a DSS request. After the observations
are gathered at the central processor, the detection and
localization strategy is performed for the system at time k.
Then just before the DSS request is transmitted to the nodes,
the central processor performs DSS. The reason the central
processor waits until the last moment to perform DSS is
because the DSS process requires knowledge of the system
dynamics evolving the states from time k to time k+1. These
dynamics describe real world phenomena which are known
to be time varying. By waiting until the last possible moment
to perform DSS, we are able to monitor the dynamics for
the majority of the time period over which they govern. This
leads directly to better models of the dynamics relating the
system state at time k to the system state at time k +1.
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VII. DISCUSSION AND FUTURE WORK

This paper presents a new approach to the real-time
detection of multiple sources in dynamic fields governed
by partial differential equations. Kalman filters provide the
mean and covariance data for a binary hypothesis test. When
active sources are detected, the Kalman filter estimates of the
source values identify the locations of the active sources. A
two-tiered approach reduces the number of sensors required
to perform fine-grained detection and localization which
serves to extend the network lifetime. To further extend the
network lifetime a previously introduced DSS strategy is
improved to consider both channel reliability and energy
consumption. A real-time implementation of the detection
and localization strategy is presented and timing constraints
outlined. Simulation results demonstrate the effectiveness of
the proposed method for wide-area detection and localization
using wireless sensor networks.

Future research directions on dynamic sensor selection
involve improved modeling of energy consumption and
channel reliability based on routing and MAC protocols, and
dynamically determining the energy cost to achieve a desired
performance. Directions for future research in the realm of
detection and localization include the use of non-uniform
sensor deployment, and systematic procedures for choosing
parameters in the detection scheme to achieve desired levels
of performance.
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