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Abstract: This paper concerns the problem of large-scale source localization arising when many
potential sources must be classified as either active or inactive such that the probability of miss-
ing an active source is bounded. A new iterative heuristic called the Iterative Source Localization
Procedure (ISLoP) is introduced that reduces the complexity of a source localization problem
with J potential sources from 2J to J per iteration, while also providing a local bounds on the
maximum probability of a missed source. The ISLoP separates the source localization problem
into a likelihood maximization problem followed by an active source localization problem. A
diffusion example is used to demonstrate the performance of the ISLoP when compared to an
estimation-based approach, where the heuristic is shown to have increasingly better performance
as the bound on the maximum probability of a missed source is decreased. An experimental
evaluation of the heuristic with respect to common wireless sensor networking errors is provided
using a test bed implementation for a CO2 sequestration site monitoring problem.
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1. INTRODUCTION

In large-scale applications containing many spatially dis-
tributed sources, it is common to first detect whether
any source exists before identifying the locations of the
sources. The process of identifying the source locations is
referred to as source localization and results in a multiple
hypothesis testing problem consisting of only simple (non-
composite) hypotheses. The problem of source localization
has been addressed, in some form, in a variety of fields by
many researchers, including in environmental monitoring
by Bell (1962); Rossi et al. (2004); Saripalli et al. (2006),
in communications by Ziskind and Wax (1988), in acoustic
source localization by Sheng and Hu (2005); Zhang (2007),
in fault detection by Lai (2000); Brumback and Srinath
(1987), and in object tracking by Demetriou (2007); Liu
et al. (2003).

With the recent advances in integrated circuit technology,
miniaturized sensors with onboard wireless communication
capabilities now exist, providing the means to perform
monitoring in many situation for which monitoring was
previously impractical due to hardware costs. Organized
in networks, these wireless sensor-actuator devices provide
unprecedented temporal and spatial sensing capabilities,
which has allowed large-scale monitoring applications to
flourish. When these monitoring applications concern the
localization of many noisy sources, a large-scale source
localization problem results.

? This work was performed in support of ongoing research in
sensor systems and diagnostics at the National Energy Technology
Laboratory under RDS contract DE-AC26-04NT41817, the Swedish
Research Council, and the Knut and Alice Wallenberg Foundation.

The large-scale source localization problem is closely tied
to the classical problem of signal detection, which is well
studied and stems from the classical work of Neyman and
Pearson (1933), Wald (1947), Cox and Anscombe (1952),
and Armitage (1950). These seminal contributions have
paved the way for many different approaches to source
localization (e.g. see Willsky (1976) and Kailath et al.
(1998)). The fundamental shortcoming of these approaches
is that they are computationally infeasible when the num-
ber of sources is large (more than about 50 sources). In this
paper, a new iterative heuristic is introduced that reduces
the complexity of a source localization problem with J po-
tential sources from 2J to J per iteration, while providing
a guaranteed bounds on the maximum probability of a
missed source.

The following section introduces notation and formulates
the source localization problem considered in this paper.
Section 3 introduces the Iterative Source Localization Test
(ISLoT) for large-scale source localization. Simulation re-
sults for large-scale source localization are provided in
Section 4 for a diffusion example with a comparison to
a feasible estimation-based test motivated by the work of
Willsky and Jones (1974). Section 5 provides a robust-
ness analysis of ISLoT with respect to common wireless
sensor networking errors using a CO2 sequestration site
monitoring test bed. The concluding section summarizes
the contributions of this paper and discusses directions for
future work.
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2. PROBLEM FORMULATION

2.1 Preliminaries

In the following we assume that there are J potentially
active sources and N observations, z ∈ RN . The active
sources are indicated by the values of a binary vector
b ∈ {0, 1}J , where a unit entry in the jth component of
b (i.e. bj = 1) indicates that source j is active. We write
1 and 0 to denote the binary vectors of all ones and all
zeros, respectively, and ej to denote the elementary binary
vector with only a single unit entry in the jth component.
The set of all possible source vectors is B = {0, 1}J , and
for two source vectors, b, b′ ∈ B, we write b ≤ b′ to denote
that the unit entries of b are a subset of the unit entries
of b′ (i.e. bT b′ = bT b). Using the above notation we define
the sets for b ∈ B

Bb = {b′|b′ ∈ B ∧ b ≤ b′} \{b}
Tb = {b′|b′ ∈ B ∧ ||b− b′|| = 1}
T +
b = {b′|b′ ∈ Bb ∧ b′ ∈ Tb}

(1)

to describe different subsets source vectors.

2.2 Binary Hypothesis Testing

This subsection provides a brief summary of the classical
test for accepting the null hypothesis in a binary hypoth-
esis testing problem developed by Wald (1947). A binary
hypothesis testing problem between a null hypothesis, H0,
and an event hypothesis, H1, is written as

H0 : z̃ : f0(z) vs. H1 : z̃ : f1(z), (2)

where f0(z) and f1(z) are the distributions of the ob-
servation random variables, z̃, under the null and event
hypotheses, respectively. Given an observation, z, a test,
φ(z) ∈ {H0, H1}, for deciding between the null and event
hypotheses is required to satisfy the constraint

P [φ(z) = H0|H1] ≤ γ. (3)

A test for accepting the null hypothesis, such that the
constraint is satisfied, results from a worst case analysis of
Wald’s approximation (as discussed in Wald (1947)) where

f1(z)
f0(z)

≤ γ −→ φ(z) = H0. (4)

The above test for accepting H0 will be used later in
this section to satisfy the source localization performance
criteria defined later in this section.

2.3 M-ary Hypothesis Testing for Source Localization

This subsection reviews M-ary hypothesis testing (see e.g.
Poor (1994); Trees (1968); Scharf (1991)) and defines use-
ful terminology for discussing source localization problems.
An M-ary hypothesis testing problem for source localiza-
tion is formulated as

H0 : b = 0
...

H1 : b = 1

, (5)

where each hypothesis assumes a unique combination
of active and inactive sources. The distribution of the

observations under hypothesis Hb is denoted as fb(z), and
is gaussian such that

fb(z) : N [µb, Σb] , (6)

where, following the standard assumption that sources are
additive,

µb = m0 +
J∑
j=1

bjmj and Σb = S0 +
J∑
j=1

bjSj . (7)

The mean and covariance of the observations when no
sources are active is denoted by m0 and S0 � 0, respec-
tively, while mj > 0 and Sj � 0 represent the change in
the mean and covariance, respectively, when source j is
assumed active. For an M-ary hypothesis testing problem,
the globally most-likely hypothesis and locally most-likely
hypothesis, and the probability of a missed source are
defined as follows.
Definition 1. A hypothesis, Hb′ , is the globally most-likely
(GML) hypothesis for source localization if ∀b ∈ B,

fb′(z) ≥ fb(z) (8)

Definition 2. A hypothesis, Hb′ , is a locally most-likely
(LML) hypothesis for source localization if ∀b ∈ Tb′ ,

fb′(z) ≥ fb(z) (9)

Definition 3. The probability of a missed source (PMS) of
an M-ary hypothesis test, φ(z), for source localization is
defined as

PMS(b′, b̂) = max
b∈Bb′

P
[
φ(z) = Hb̂|Hb

]
. (10)

In words, the probability of a missed source is the max-
imum, over the hypotheses assuming additional active
sources when compared to b′, of the integral over the
observation space of the corresponding distribution where
Hb̂ is accepted.

The classical approach to solving an M-ary hypothesis
testing problem is to select the GML hypothesis (e.g.
see Poor (1994)). To identify the GML hypothesis in
(5) requires, in general, calculating the log-likelihood for
each hypothesis Hb, lb(z), which can be written assuming
gaussian distributions as

lb(z) = −1
2

(z − µb)TΣ−1
b (z − µb)T + ln detΣb. (11)

For large J , calculating the 2J different likelihoods is
impractical; moreover, simply selecting the GML hypoth-
esis does not ensure the probability of a missed source is
bounded.

2.4 Problem Statement

Given that γ ∈ [0, 1] denotes the maximum probability of
a missed source, 1 we consider the problem of identifying
a prominent source vector, bP ∈ B, and an active source
vector, bA ∈ B, such that

1 The error occurring when too many sources are decided to be
active will be evaluated as a performance measure for different source
localization strategies in Section 4.

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

4279



1. HbP is GML ; and
2. bA = arg min

b∈AbP

||b||,

(12)
where

AbP =
{
b|b, bP ∈ B ∧ b ≤ bP ∧ PMS(b, bP ) ≤ γ

}
. (13)

The set Ab′ denotes active source vectors which ensure
that both the probability of a missed source is bounded
and that the active sources in the prominent source vector
are active. While part one in (12) seeks to find the sources
that best describe the observation, part two tries to select
the minimum number of active sources such that the
sources that best describe the observations are active
and the probability of a missed source is bounded. The
following section, introduces a new source localization
procedure that is feasible for large J and bounds the
probability of a missed source.

3. ITERATIVE SOURCE LOCALIZATION
PROCEDURE

This section introduces the Iterative Source Localization
Procedure (ISLoP) as a two-part heuristic for identifying
active sources consisting of iterative likelihood maximiza-
tion (ILM) followed by active source localization (ASL),
where ILM is concerned with identifying the prominent
source vector, while ASL identifies the active source vector.
The following subsections describe ILM and ASL, respec-
tively.

3.1 Iterative Likelihood Maximization (ILM)

ILM is concerned with identifying the prominent source
vector corresponding to the GML hypothesis. As discussed
in Section 2, finding the GML hypothesis requires cal-
culating the likelihood of each hypothesis. For a source
localization problem containing 100 sources, calculating
the GML requires 2100 ∼ 1.26 × 1030 different likelihood
ratio calculations corresponding to each hypothesis, which
is infeasible. 2 In this subsection, an iterative heuristic
requiring J likelihood calculations at each iteration is
introduced to identify a LML hypothesis as an approxima-
tion for the GML hypothesis to be used as the prominent
source vector, bP .

ILM identifies a LML hypothesis HbP by iteratively max-
imizing the likelihood over an evolving subset of the pos-
sible hypotheses according to
bP := 0
while (1)

b′ := arg max
b∈TbP

lb(z)

if: lbP (z) ≥ lb′(z)
then: return
else: bP := b′

end

. (14)

In words, ILM is initialized by assuming no active sources
in the prominent source vector, bP = 0. After initializa-
tion, ILM identifies the most likely source vector differing
2 Assuming N = 10, a 3.6 GHz machine with 2.9 GB of RAM
requires ∼ 4× 1018 years to calculate the 2100 likelihoods.

from the guessed prominent source vector by exactly one
active source (either one more or one less active source),
denoted by b′ in (14). The resulting likelihood, lb′(z),
is compared to the likelihood of the guessed prominent
source vector, lbP (z). If the prominent source vector is
more likely, lbP (z) ≥ lb′(z), ILM terminates and HbP is
LML by Definition 2. Otherwise, ILM updates the guess
of the prominent source vector with the maximum likeli-
hood source vector, bP := b′, and the process continues.
Since ILM only calculates J likelihoods at each iteration,
it is feasible for source localization problems with many
sources. Once HbP is identified as LML, the ISLoP pro-
ceeds to active source localization.

3.2 Active Source Localization (ASL)

While ILM identifies the prominent source vector that best
describes the observations, it does not identify the active
source vector, bA. Before introducing our approach for
ASL, we observe that by applying the results for accepting
the null hypothesis in a binary hypothesis testing problem
from Section 2, which is based on the constraint

PMS(b, bP ) ≤ γ, (15)

then
max
b∈BbA

lb(z) ≤ η −→ φ(x) = bP (16)

where η = ln γ+lbP (z). Since the active source vector norm
is minimized in (12), ASL iteratively searches the source
vectors in order from those with the smallest norms to
largest according to

bA := bP

while (1)
b′ := arg max

b∈T +
bA

lb(z)

if: η ≥ lb′(z)
then: return
else: bA := b′

end

(17)

In words, initially ASL assumes the active source vector,
bA, to be exactly the prominent source vector, bP . For each
hypothesis assuming an additional active source, the log-
likelihood is calculated and compared to the guessed active
source vector. For each hypothesis assuming an additional
active source that prevents the decision to accept HbP

from satisfying the constraint, the corresponding source
is added to the ASL guess as an active source. This
process continues until no additional source hypothesis
(when compared to the current ASL assumption) violates
the constraint on the probability of missed source. Once
the ASL terminates, the unit entries of the active source
vector denote which sources are assumed active by the
ISLoP. The ISLoP developed in this section is evaluated
through simulation and experimentation in the follow two
sections.

4. SIMULATION RESULTS

The MSL strategy introduced in this work was simulated
using a diffusion example motivated by a large area CO2

sequestration site monitoring Weimer et al. (2010). In this
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example, 100 sensors and 100 sources are co-located in a
grid formation. We assume a linear model of the form[

xk+1

zk+1

]
=
[
A BΓ
0 I

] [
xk
zk

]
+
[
I 0
0 I

] [
wk
hk

]
yk = [ I 0 ]

[
xk
zk

]
+ vk.

(18)

where
A = e300Ac

B = 10−6

∫ 300

0

eAcτ∂τ
(19)

Ac ∈ R100×100 represents the continuous time dynamics of
ẋt = Acxt where the dynamics of all the interior locations
evolve according to
ẋt(i, j) =0.1xt(i− 1, j) + 0.1xt(i, j − 1)− 0.4x(i, j)

+ 0.1x(i+ 1, j) + 0.1x(i, j + 1)
(20)

where xt(i, j) denotes the value at position i, j. The
exterior dynamics evolve assuming the far-field condition
that xt(i, j) = 0 for any i and j outside the field. The noise
is distributed as w̃kṽk

h̃k

 : N

[ 0
0
0

]
,

 10−4 × I 0 0
0 2(10−3)× I 0
0 0 102 × I

 .

(21)
The initial distribution on the process state and the source
state is written as

x̃0 : N
(
0, 10−3 × I

)
z̃0 : N (100× 1, 2500× I)

. (22)

Using the system described above, the observation set for
source localization is defined as

z =

 y0
...
yK

 , (23)

where the value of K is determined using aggregate source
detection according to Weimer (2010). Aggregate source
detection is a test, φ′(z) ∈ {H0,¬H0, H−1}, which sequen-
tially decides whether no sources are active (φ′(z) = H0),
some source is active (φ′(z) = ¬H0), or more observations
are needed to make a decision (φ′(z) = H−1). Aggregate
source detection uses the SPRT introduced by Wald (1947)
to implement a threshold test according to

φ′(z) =


H0 if max

b∈T0
lb(z)− l0(z) ≤ ηβ

¬H0 if max
b∈T0

lb(z)− l0(z) ≥ ηα
H−1 otherwise

, (24)

where ηβ and ηα are functions of thresholds the maximum
probability of false alarm, α, and maximum probability of
missed alarm, β, as

ηβ =
1− β
α

and ηα =
β

1− α
. (25)

In the following simulations, aggregate source detection is
performed until it is decided that some source is active
(φ′(z) = ¬H0), then ISLoP is performed using the same
observations used to decide some source is active.

The ISLoP introduced in the previous section is compared
to an estimation-based test motivated by the work of

Fig. 1. Percentage of identified sources that are active vs.
probability of type III error vs. probability of miss.

Willsky and Jones (1974) where by observing that inactive
sources are equivalently active sources of zero magnitude,
the source magnitudes are estimated assuming all the
sources are active. Based on the source magnitude esti-
mates, a threshold test is applied such that a source is
considered active if the corresponding estimate exceeds
the threshold and inactive if it does not. For compari-
son, we evaluate the performance of both the ISLoP and
estimation-based tests in terms of the probability of a
missed source and the percentage of correctly localized
sources, where the percentage of correctly localized sources
is the number of active sources correctly localized divided
by the total number of sources decided to be active. In the
following discussion, the strategy that correctly localizes a
larger percentage of active sources for the same probability
of missed source is considered to have better performance.

In Fig 1, the percentage of correctly localized sources is
plotted against the probability of a missed source for tests
assuming constant probability of false alarm, α = 0.01,
and varying probability of missed alarm, β, from 0.01 to
0.10 in aggregate source detection. These results suggest
that there is not a significant difference between the
percentage of correctly localized sources for the ISLoP and
estimation-based approaches, with the ISLoP performing
only marginally better. These results also indicate that the
performance of both strategies is not significantly affected
by changes in the probability of a missed alarm. This
is a direct result of the threshold used for rejecting the
hypothesis, ηα, in (25), not being significantly affected by
small changes in the probability of a missed alarm.

In Fig. 2 the percentage of correctly localized sources
is plotted against the probability of a missed source for
tests assuming varying probability of false alarm from
0.01 to 0.10 and constant probability of a missed alarm,
β = 0.01, in aggregate source detection. The results in
Fig. 2 suggest that the percentage of correctly localized
sources can be increased by reducing the probability of
a missed alarm, where for larger probabilities of missed
alarm, the ISLoP strategy increasingly outperforms the
estimation-based strategy. Comparing the results in Figs.
1 and 2, we observe that a change in the probability of a
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Fig. 2. Percentage of identified sources that are active vs.
probability of type III error vs. probability of false
alarm.

false alarm has a more significant effect on the percentage
of correctly localized sources as compared to the same
change in the probability of a missed alarm. This is due
to the fact that when the probability of a false alarm is
high, the number of observations required to reject the
null hypothesis decreases (in general), and results in less
information available to perform source localization.

Using a 3.6 GHz machine with 2.9 GB of RAM, the ISLoP
was completed in 50 seconds, where approximately equal
time (about 25 seconds) is consumed performing both ILM
and ASL. These results illustrate that the ISLoP is a
suitable test for source localization problems containing
a large number of sources.

5. EXPERIMENTAL RESULTS

Aggregate source detection and the ISLoP have been
applied to a CO2 sequestration monitoring problem de-
scribed in Weimer et al. (2010). In this problem, obser-
vations are gathered sequentially and sources can become
active at any time (not just initially). To address these
emergent sources, detection and localization is performed
by iteratively applying the aggregate source detection and
the ISLoP described in the previous section as illustrated
in Fig. 3. In Fig. 3, the x-axis denotes the actual time and

Fig. 3. Sequential aggregate source detection

the y-axis represents the source time, which is the time

when sources are assumed to potentially become active.
In the figure, a “?” means that more observations are
needed to make a decision, a “0” equates to deciding no
sources are active, and “1” denotes the decision that some
sources are active. In the xcase illustrated in Fig. 3, it is
assumed that sources can only become active at time zero
(source time equals zero) and it was decided that more
observations were needed. This continues until time step
three when it is decided that no sources became active at
time zero. Once a decision is made about whether sources
became active at time zero, aggregate source detection
immediately begins testing whether sources became active
at time one. This process continues until a decision is
made at time four that some sources became active at time
two. After deciding some sources are active, the ISLoP is
performed to localize the active sources. After localizing
the active sources, aggregate source detection continues,
but assumes that the localized sources are active. This
process continues indefinitely.

To evaluate the performance of ISLoP strategy for the
CO2 sequestration monitoring application when a wireless
sensor network (WSN) is used to gather the observations,
a test bed consisting of 22 sensor nodes was developed. In
the test bed setup, overhead light intensities are projected
onto the test bed, where dark and light corresponds to
areas of high and low CO2 concentrations, respectively.
The sensors measure the light intensity and transmit their
measurements over the wireless network. Aggregate source
detection and ISLoP use the observations to determine
which (if any) sources are active. Figure 4 illustrates
the how the CO2 concentration evolves over time for 3
emergent sources. Experiments were performed using the

Fig. 4. Test bed experiment for 3 emergent sources at times
0, 85, 155, and 200 minutes

test bed to evaluate the ISLoP strategy in the presence
of different errors common to WSNs: sensor localization
error (sensor in the wrong position), model parameter
error, and sensor death (sensor falls off the network).
One thousand (1, 000) simulations were performed for
different combinations of active source consisting of: syn-
chronous distributed sources (S-D), synchronous clustered
sources (S-C), asynchronous distributed sources (A-D),
and asynchronous clustered sources (A-C). Sources are
synchronous/asynchronous if they become active at the
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Table 1. Percentage of correctly localized
sources

Sensor Model Sensor
None Location Parameter Death

S-D 89 80 71 69
S-C 93 85 78 75
A-D 88 80 72 69
A-C 75 71 58 49

same/different time(s). Sources are clustered/distributed
if they are spatially near/far from one another. Table 1
illustrates the percentage of correctly localized sources
for different source configurations and WSN error com-
binations assuming the maximum probability of a missed
source is 0.10.

The results indicate that for all source scenarios, sensor
failures and model parameter errors have the largest effects
on the localization accuracy. In general asynchronous
clustered sources result in the worst performance. This is a
result of there not being enough information to distinguish
which source, located near an already active source, has
become active. The effects of the newly activated source
are dampened by the already active source.

6. DISCUSSION AND FUTURE WORK

In this paper, the problem of large-scale source localization
constrained by a maximum probability of a missed source
is addressed. Using a new iterative heuristic, the source
localization problem with J potential sources is reduced
from 2J to J per iteration while maintaining the desired
bounds on the probability of a missed source. It is shown
through simulation results that the iterative heuristic
performs increasingly better than a feasible estimation-
based approach as the probability of a missed source is
decreased. An experimental evaluation of the heuristic
with respect to common wireless sensor networking errors
is provided using a test bed implementation for a CO2

sequestration site monitoring problem illustrating that
modeling errors and sensor failures significantly affect
source localization performance.

Future work on this problem includes an evaluation of the
performance on the localization heuristic when incorpo-
rated with a fault detection strategy. Based on the findings
herein, further investigation is warranted as to the effect of
the fault detector’s performance on source localization and
vice versa when observations are gathered sequentially.
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