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Abstract—Testing smart grid information and com-
munication (ICT) infrastructures is imperative to en-
sure that they meet industry requirements and stan-
dards and do not compromise the grid reliability.
Within the micro-grid, this requires identifying and
testing ICT infrastructures for communication between
distributed energy resources, building, substations, etc.
To evaluate various ICT infrastructures for micro-grid
deployment, this work introduces the Virtual Micro-
Grid Laboratory (VMGL) and provides a preliminary
analysis of Long-Term Evolution (LTE) as a micro-grid
communication infrastructure.

I. Introduction

With the recent technological advancements in com-
munication infrastructures, mobile and cloud computing,
smart devices, and power electronics, a renewed interest in
power systems research has emerged. When these enabling
technologies are jointly utilized to sense and actuate power
generation, distribution, and demand, the resulting smart-
grid has unprecedented capabilities [1]. Some of these
capabilities include remotely detecting the statuses of
electricity generators, transmission lines and substations;
monitoring electricity consumption; adjusting the power
consumption of household applications to match supply,
and reducing energy losses while increasing electricity grid
reliability. As smart-grids begin to emerge, it is imperative
to identify and evaluate critical components within the
physical, computational, and communication architectures
for both commercial product development and societal
acceptance.

Within the smart-grid design hierarchy, micro-grids
represent localized power grids containing both distribu-
tion and generation and arguably have the most to gain
from developing new technologies for power conservation,
distribution, and localized control. As such, micro-grids
present many new challenges from the standpoint of con-
trol and communication infrastructures. In response to
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these challenges, the European Institute of Technology
(EIT) Information and Communication Technology (ICT)
Labs has introduce the action-line Smart Energy Systems
(SES) to develop a Europe-wide coalition of academic and
industrial partners and resources in the ICT sector to ac-
celerate innovation in energy management and green ICT
management. The virtual micro-grid laboratory described
in this work is part of the EIT ICT Labs SES virtual smart
grid laboratory activity, where academic and industrial
partners from six European countries have joined forces
to create a large-scale pan-European smart grid lab.

Within the EIT ICT Labs SES, and motivated by ongo-
ing smart grid pilot research within the Stockholm Royal
Seaport project, partners from industry and academia
have combined resources to develop a virtual laboratory
for testing ICT infrastructures within the micro-grid. Dis-
tributed across multiple academic and industrial research
labs, this virtual lab provides unprecedented capabilities of
evaluating ICT infrastructures for performing energy man-
agement related services, such as distribution automation,
demand response, and micro-grid control. As a preliminary
deployment, the virtual micro-grid lab is designed as a
city-level distribution network for evaluating distribution
automation and demand-response capabilities1 In this
work we describe the virtual micro-grid lab architecture,
present the first results using the virtual lab, and identify
future planned extensions and testing scenarios.

The remainder of this work is organized as follows. The
following section describes the high-level hardware, soft-
ware, and communication architecture of the virtual lab.
Section III presents testing requirements and an evaluation
of Long-Term Evolution (LTE) as a ICT infrastructure for
micro-grids. The concluding section provides a discussion
and identifies future work.

II. Virtual Micro-Grid Lab Architecture

The virtual lab exists as a collaborative project between
academic and industrial partners within the EIT ICT Labs
to investigate ICT infrastructures for micro-grid com-
munication and control. Each participant has employed
their respective expertise to develop specific micro-grid
components and functionality, as illustrated in Fig. 1. The

1While the virtual lab, in its current deployment, does not contain
distributed generation capabilities and would more accurately be
classified as a city-level distribution network, inclusion of distributed
generation and storage into the virtual lab are underway. Thus, for
purposes of naming continuity in future publications, we refer to the
virtual lab as a micro-grid.
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Fig. 1. Virtual Laboratory Architecture.

physical architecture is such that each academic and indus-
trial member participating in the laboratory can exploit
local expertise to develop micro-grid functionalities. Then
as a collaboration, these individual components are evalu-
ated over various communication networks for the purpose
of hardware-in-the-loop evaluation of the communication
infrastructure. As depicted by Fig. 1, the virtual micro-
grid lab architecture consists of three main components,
(a) micro-grid communication infrastructures for micro-
grid applications such as inter-substation communication,
substation-to-building communication, and distributed en-
ergy resources, (b) micro-grid information management
systems for distribution automation, demand-side schedul-
ing, distributed generation/control, and the smart home
energy management system (EMS), (c) communication
technologies and incorporation of smart appliances within
the smart home EMS. The following subsections respec-
tively discuss the Smart House, Information Management,
and Communication Infrastructures utilized within the
virtual lab in detail.

A. Smart House

The smart house represents the lowest-level component
of the virtual lab and consists of all the physical devices
which exist inside a smart home. The devices contain-
ing communication capabilities consist of the residential
gateway, smart appliances, and the home automation sys-
tem. Specifically, the smart home interfaces to the micro-
grid via a smart home EMS which coordinates with the
home automation system and smart appliances through
a residential gateway. The remainder of this subsection
describes each component of the smart house in detail.

The residential gateway serves as a platform for hosting
the smart home EMS and communicates with the home
automation system, smart appliances, and the micro-grid.
Within the virtual lab, the residential gateway is based on
a Java open service gateway initiative (OSGi) framework
and contains the physical WAN (wide area network) and
HAN (home area network) communication enablers. Dif-
ferent communication stacks and protocol stacks for smart
home appliances and home automation profiles using e.g.
ZigBee, ZWave, CoAP, and KNX (via an IP Gateway) to
be used in different virtual lab configurations.

Smart appliances are an integral part of the virtual
laboratory and represent appliances which are either com-
pletely or partially controlled by the smart house Energy
Management Systgem - EMS. In the virtual lab experi-
ments, the smart appliances communicate with the smart

house EMS via a ZigBee home automation profile adaptor
in the OSGi residential gateway.

A micro-grid could consists of a suburb having 10,000
smart houses. While each smart house has local control
and scheduling capabilities for smart appliances and the
home automation system, to ensure micro-grid stability
and functionality requires the global management of per-
tinent information such as current generation and demand
profiles. The coordination of this micro-grid information
is handled by the information management systems as
described in the following subsection.

B. Information Management

In order to meet the constraints on demand and
distributed generation, information must be shared be-
tween the end-user smart-homes. Within the micro-grid,
there are three prominent information management sys-
tems, namely the demand response management system
(DRMS), the smart house energy management system
(EMS), and the end-user home control application. The
remainder of this subsection describes the DRMS, EMS,
and the home control application in detail.

The DRMS is responsible for generating demand re-
sponse messages, at the micro-grid level, based on the cur-
rent electrical load of the power grid and the anticipated
future demand. The purpose of the DRMS in generating
demand response messages is to promote grid stability and
environmental responsibility by offering incentives to end-
users for adjusting their power usage by providing future
electric pricing and CO2 emission figures. Additionally,
the demand response message may contain an explicit
load-reduction request based on contractual agreements
between the electric provider and end-users. The demand
response messages are transmitted via a communication
network to the EMS local to each end-user.

The smart house EMS is responsible for locally schedul-
ing end-user smart appliances at the residential level. The
EMS interprets the messages generated by the micro-
grid demand response management system (DRMS) and
schedules the smart devices based on end-user preferences,
prior contractual agreements, and knowledge of control-
lable smart devices. Within the virtual micro-grid lab, the
EMS is implemented in Java as an OSGi bundle and is
operated on the residential gateway.

The end-user home control application is a mobile web
application that enables the user to remotely change user
preferences on the EMS. While the primary purpose from
an information management point-of-view is to provide
functionality for changing the operating preferences of the
smart house EMS, the control application is also capable of
visualizing energy usage data within the home to provide
real-time feedback of energy usage and carbon dioxide
generation.

All of the information management systems within the
micro-grid must communicate in order to meet constraints
on power usage and carbon dioxide emissions. Identifying
satisfactory and economically feasible communication in-
frastructures for various micro-grid functionalities (such
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as demand response, distribution automation, and dis-
tributed generation and control) is a primary focus of
the virtual lab. The following subsection describes the
potential communication infrastructures to be considered.

C. Communication Infrastructures

The primary purpose of the virtual micro-grid lab is
to study communication infrastructures for various micro-
grid functionalities. Within the virtual lab, multiple com-
munication platforms are anticipated to be utilized for
various applications. These communication infrastructures
include, but are not limited to, fixed broadband, LTE/4G,
and machine-to-machine communication protocols.

Fixed broadband communication consists of hard-wired
networks, such as fiber optics, which represent the fastest
communication medium available within the micro-grid.
While their data rates can be significantly faster and more
reliable than other wireless mediums, the installation and
service costs associated with a micro-grid fixed broad-
band network limits its implementation. In future micro-
grid communication networks, it is anticipated that fixed
broadband networks will be utilized when alternative net-
works can not meet industry standards and requirements.

3GPP Long Term Evolution (LTE), the latest wireless
communication technology, is a promising option for the
smart grid [2], [3]. LTE was developed to fulfil mobile
users’ demands for higher data rates and stabler service
performance. An attractive feature of the LTE network is
that existing telecommunication operator networks could
be utilized, thus reducing the overall cost of implemen-
tation. However, LTE has not been designed specifically
for smart grid applications and therefore its suitability is
currently being studied within the virtual micro-grid lab.
Utilizing the LTE network for micro-grid communication
will be addressed in detail in the following section.

The M2M platform offers the applications a uniform
addressing of resources and a single-point of integration.
It handles secure messaging of demand response messages
from the application to the residential gateway and gives
the end-user home control application access to sensors
and actuators.

In this subsection we have introduced a virtual micro-
grid laboratory for evaluating information and commu-
nication infrastructures. The architecture of the virtual
lab, from both the physical components and the inter-
component communication, is described. The virtual labo-
ratory described in this section is employed in the following
section to provide an initial assessment of Long Term
Evolution (LTE) for micro-grid communication.

III. LTE for Micro-Grid Communication

The 3GPP white paper and LTE service operators
announced that the main advantages with LTE are to
provide high throughput (up to 300 Mbps in downlink,
and 75 Mbps in uplink), low latency (less than 100 ms for
control plane latency, and less than 5 ms for user plane
latency), self-organizing networking capabilities (plug and

play), Frequency (FDD) and Time Division Duplex (TDD)
in the same platform, an improved end-user experience
and a simple all IP architecture resulting in low operat-
ing costs [2]. The measurement requirements for smart
grid are defined or introduced in technical literature.
Standards [4]–[6] introduce the concepts such as message
types and reporting rates for electricity substations, Pha-
sor Measurement Units, and automatic meter readings.
The topologies and communication infrastructures of a
smart grid are discussed in [7]–[12]. Literatures [13]–[15]
introduce several LTE scheduler designs for common user
equipment as mobile phones, which have quite different
requirements compared to smart grids components. A
preliminary assesment of LTE for smart grid applications
has been performed in [16], but this work does not attempt
to quantify a latency distribution. The availability of a
latency distribution is essential to design controllers that
are able to take real-time actions on the smart grids. It is
also essential that such a distribution meets the specific
requirements of smart grids components.

In the remainder of this section, preliminary experi-
ments are described and conducted to evaluate the round-
trip latency of communication via LTE.

A. Latency Requirement for Communication in Smart
Grid

For the smart grid communication network, latency
is one critical technical requirement. Measurements and
commands must be available within specific delays based
on the application area. Other researchers have considered
micro-grid latency requirements [17]–[19]. To summarize
the latency requirements, various smart grid components
require different latencies ranging from less than 3 ms for
protection commands within the substation to between
20 and 100 ms for distribution automation commands in
normal operating modes (non-transient).

In most cases, a smart grid focuses on three main
areas: household devices and automatic meter reading;
remote sensing devices for grid monitoring and control,
and distributed energy resource, such as wind and solar
management. The key components in a smart grid are:
the Advanced Meter Infrastructures (AMI) at houses or
buildings, Phasor Measure Units (PMU) for transmission
lines and power generations such as distributed genera-
tions and substations. In the following, we describe these
components in detail with focus on their latency require-
ments.

PMUs provide phasor measurements of voltages and
currents in an electrical grid for high fidelity sensing. The
phasor measurements are calculated via Discrete Fourier
Transform (DFT) and delivered to devices called Phasor
Data Concentrators (PDC). In PDC, the measurements
are time-synchronised, stored for future reference and for-
warded to application and Super PDCs. Generally speak-
ing, PMU measurements are 100∼200 bytes and reported
at a rate of about 4000 times a second. They are expected
to meet real-time control system requirements with time
delay less than 10 ms [17].
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AMI is an upgrade of Automatic Meter Reading (AMR)
providing two-way communication and specific actuators.
AMI collects information of consumption records, alarms
and status from customers and can impose consumption
control. Based on its two-way communication and con-
sumption metering, AMI enables real time pricing and
peak shaving in a smart grid. Referring to Wide-Area
Measurement System (WAMS), latency less than 1 second
(typically 100∼200 ms) is required to achieve real time
pricing requirements [18], [19].

The communication requirements for functions and de-
vice models in a substation are defined by Standard IEC
61850-5 [4]. The size of message varies from 1 to 1024 bits.
Those messages delivery latencies vary from 3 ms to 1 s.
However, to be viable for distribution automation requires
that the LTE network latency is less than 10 ms for inter-
connecting PMUs and AMIs. In the following subsection,
we investigate the LTE latency for LTE communication.

B. Experimental Setup

In this subsection, we describe the experimental setup
for empirically evaluating the latency offered by LTE.
Experiments were performed using off-the-shelf LTE USB
modems. The experimental results presented in this sub-
section are analyzed in the following subsection. To eval-
uate the round-trip-times (RTT) for transmission and
reception, Internet Control Message Protocol (ICMP) echo
request packets are sent to the target host via the LTE
modem, and the ICMP response time recorded. The round
trip time (RTT) values for transmission and reception were
then analyzed.

We considered two LTE network services in Stockholm,
Sweden, managed by separate Operators. The RTT and
data loss rate of messages traveling between client and
service are measured and recorded. The length of mes-
sages varies from 0 bytes to 1024 bytes. Every message
corresponds to one or a group of readings generated by
the components of the smart grid.

C. Experimental Results

Fig. 2 shows the mean values and standard deviations
of the RTT measured by ping command using for LTE
networks. Fig. 2(a) illustrates the values for small data
packets, less or equal to 100 bytes, while Fig. 2(b) shows
those for larger packets, up to 1000 bytes.

These figures indicate that when the length of data
packets is smaller than 100 bytes, the RTT is shorter than
20 ms under the service provided by Operator 1, while it
is around 20 ms for Operator 2. The RTT values increase
with the length of data packets when the length is larger
than 100 bytes. But the standard deviations of RTT are
approximately the same whatever sizes for the packets for
each Service Operator. The mean values of RTT under
Operator 1 are lower than those under Operator 2. How-
ever, the standard deviation of RTT under Operator 1 is
around 4∼5 times larger than that under Operator 2. In

(a) Small data packets

(b) Large data packets

Fig. 2. Mean values and standard deviations of RTT

addition, the minimum latencies for RTT transmission are
10 ms and 13 ms via Operation 1 and 2 respectively.

By dividing RTT in half to calculate the latency, the
minimum values of the latency for small size packet agrees
with the theoretical latency given by 3GPP white paper,
which is 5 ms. However, note from Fig. 2(a) that this has
a low probability of occurrence.

1) Latency Distribution Model: An accurate latency
distribution model is necessary to predict the communi-
cation latency via LTE network. We propose to model the
probability density function (pdf) for RTT as

f(x) =

H
∑

i=0

H
∑

j=0

(1 − pup)(1 − pdown)pi−1
up p

j−1
down

N(µ − iTup − jTdown,

√

σ2
up + σ2

down) , (1)

where THARQ is the time spent to re-send the data
packet across H maximum times of HARQ retransmis-
sions, pup and pdown are the probabilities of repeating
request, Tup and Tdown are the time spent on resending
in up- and down-link respectively, and N(µ − iTup −

jTdown,
√

σ2
up + σ2

down) is pdf for normal distribution. Us-

ing maximum likelihood (MLE) and least squares estima-
tion (LSE), the parameters that give the “best” fitting dis-
tribution functions can be obtained. The estimated values
for those parameters in the model are listed in Tab. I,
and the fitting results are shown in Fig. 3. According
to the results, one of the estimated time for THARQ is
approximately 8 ms.
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Table I
Summary of fits of RTT values for both Operators in Fig. 3

Operator 1 Operator 1
MLE LSE MLE LSE

SSE r2 0.81 0.82 0.99 1.00
Mean Value [ms] µ 13.92 14.18 26.32 26.37
Standard Deviation σ 1.71 1.79 2.02 1.85

HARQ Time [ms]
Tup 7.85 7.51 8.72 9.27
Tdown 1.00 0.00 1.09 0.50

HARQ Probability
pup 0.19 0.22 0.02 0.02
pdown 0.00 0.01 0.00 0.15

Max. Resend Times H 3 3 3 3

(a) Via Operator 1 LTE network

(b) Via Operator 2 LTE network

Fig. 3. RTT values distribution. The data set is collected via LTE
network with 100 bytes data packets

From the experimental results it follows that the min-
imum latencies for less than 300 bytes data packets are
close to the theoretical latency announced by the 3GPP
white paper (less than 5 ms one-way). However, most of
the packets are transmitted with a latency that is around
15 ms for Operator 1 and 25 ms for Operator 2. These
results indicate that if smart grid components require
latencies of less than 15 ms, then the LTE network must be
optimized. This can be achieved through developing new
scheduler algorithms for the LTE radio base station such
that the latency is reduced.

IV. Conclusions

In this work, a virtual micro-grid laboratory for testing
ICT infrastructures is introduced. The lab architecture
is described and a preliminary practical evaluation of
LTE for smart grid communication is presented. Based on
this successful evaluation, future testing scenarios related

to demand-response, distribution automation, and micro-
grid control are planned, as well as extensions to include
capabilities to both emulate ICT infrastructures within
the micro-grid and to consider distributed generation sce-
narios. Experiments are currently planned for evaluating
demand response within a smart grid as well as micro-
grid control. The virtual micro-grid lab is expected to
be utilized by the Stockholm Royal Seaport project to
identify useful communication infrastructures for micro-
grid operations.
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