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Abstract. This work address the general problem of resilient control of
unknown stochastic linear time-invariant (LTI) systems in the presence
of sensor attacks. Motivated by a vehicle cruise control application, this
work considers a first order system with multiple measurements, of which
a bounded subset may be corrupted. A frequency-domain-designed re-
silient adaptive controller is introduced that simultaneously minimizes
the effect of corrupted sensors, while maintaining a desired closed-loop
performance, invariant to unknown model parameters. Simulated results
illustrate that the resilient parameter-invariant controller is capable of
stabilizing unknown state disturbances and can perform state trajectory
tracking with a lag.
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1 Introduction

Modern large-scale control systems are becoming more and more integrating into
our daily lives. As the integration of smart devices in modern control systems
increases, so does the need for potential for attacks. Today, our dependence
on integrated controllers automates everything from inter-home appliances to
nation-wide power distribution, where the effect of unpredicted behaviors can
range from a minor inconvenience of resetting a smart device to a regional black-
out. Our dependence on these closed-loop automated systems requires that their
performance be robust to both malicious behavior and non-malicious behavior.

With respect to the vehicle cruise control system, non-malicious agents in-
clude environmental variables (gravity, wind speed, parts fatigue and failure,
etc.) while malicious behavior can be introduces through sensor spoofing. Em-
ploying redundant measurements is a well established method of providing better
estimates of control variables and model parameters; however, when attacked, a
redundant measurement can be used as a means to destabilize a control system.
Thus, to ensure safe performance of the vehicle cruise control requires securing
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the sensory data, while simultaneously designing controllers robust to unknown
environmental parameters.

Literature review: The design of algorithms which are resilient against faults or
unknown parameters has been addressed from many points of view, including
fault detection [1], robust control [2], adaptive control [3], and more generally
from estimation and hypothesis testing [4]. In general, these approaches address
the issue of maximizing some performance measure with respect to a known
or bounded disturbances. In the context of security against malicious attacks,
many of these approaches are not applicable because of their assumption that
the attack is either known or bounded, with notable exceptions being approaches
which ask for invariance to the unknown parameters [5]. The remainder of this
literature review focuses on secure estimation/control and control of unknown
systems, respectively.

Secure estimation and control system design in the presence of disturbances
or attacks has received increasing research interest [6,7,8,9,10,11]. Most closely
related to the work presented herein is [12], which addresses the secure estimation
and control of linear deterministic systems under malicious sensor attacks. While
the approach in [12] is shown to stabilize the systems under consideration, their
approach requires full knowledge of the underlying system dynamics in order
to secure the closed-loop system. When the underlying dynamics are unknown
(and potentially stochastic) more robust detection and control algorithms are
needed.

Control of unknown linear continuous-time systems can be approached through
adaptive control techniques [3], typically based on a Lyapunov stability require-
ment. Adaptive control is generally classified as either indirect (estimation of
model parameters) or direct (estimation of the control sequence), where direct
adaptive control is more robust than indirect adaptive control, since the pa-
rameter estimation may not be accurate over all frequencies. In general, how-
ever, these continuous-time techniques do not extend to discrete-time systems
[13,14], in large part, due to the difficulty in identifying a candidate Lyapunov
function. Although the design of discrete-time adaptive controllers have been
studied [15], their stochastic formulations and specification-based design with
respect to closed-loop security requirements are, to the best of our knowledge,
open research problems.

Statement of contributions: Beyond the previous work, this work focuses on the
specification-based design of resilient adaptive controllers for stochastic linear
time-invariant systems, with specific interest in vehicle cruise control systems.
The primary technical contributions of this work are: (a) a resilient sensor fu-
sion strategy for unknown attacks on noisy measurements; (b) a finite-horizon
mean-stabilizing adaptive controller; (c) a sensor fusion and controller co-design
requirement that satisfies a stochastic Lyapunov criteria.

Structure of the paper: Section 2 identifies notation and preliminary definitions
that will be utilized repeatedly throughout the paper. Section 3 formulates pre-
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cisely the problem considered in this work. We introduce the resilient sensor
fusion strategy and adaptive controller in Section 4. A co-design requirement
for satisfying the performance specification is provided in Section 5. Section 6
presents numerical evaluations of the resilient adaptive controller in the pres-
ence of sensor attacks for vehicle cruise control. The concluding section provides
discussion and proposes future extensions.

2 Notation and Preliminaries

This section introduces notation and preliminary definitions that prove useful in
the remainder of this work.

2.1 Notation

In this subsection, we illustrate the various variable notations using varying fonts
and capitalization of the letter z:

– plain upper case italic fonts → constant, Z;
– plain lower case italic fonts → scalar (or function with scalar range), z;
– bold lower case italic fonts → vector (or function with vectoral range), z;
– bold lower case plain fonts → vector of concatenated vectors, z;
– bold upper case italic fonts → matrix, Z;

For vectors we write zi to denote the i-th position of z and zi:j to be the sub-
vector of z consisting of the i-th through j-th elements, inclusively. Similarly,
For vectors of vectors we write zi to denote the i-th sub-vector and zi:j to be
the sub-vector of z consisting of the i-th through j-th sub-vectors, inclusively.
Lastly, for matrices we write Zi to be the i-th column of Z and Zi:j to be the
sub-matrix consisting of the i-th through j-th columns, inclusively.

We use the notation Pr [x|y] and E [x|y] to denote the probability of x given
y and the expected value of x given y, respectively,

2.2 Preliminaries

This subsection defines matrices and constants which appear in the remainder of
this work. Consistent with the previous subsection’s use of the letter z to illus-
trate various properties, we write PZ to be the projection matrix corresponding
the general matrix Z and P⊥

Z to be the projection matrix corresponding to the
null-space of Z,

PZ = Z
(

Z̄
⊤
Z
)−1

Z̄
⊤

and P⊥
Z = I − PZ ,

where Z̄
⊤
is notation denoting the transpose of the complex conjugate of Z and

I the identity matrix.
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For an arbitrary positive integer N ∈ N
+, ω = 2π

√
−1

N
, λ(n) = eωn, we

define the matrices V ,Λ ∈ C
N×N as

Λ = diag[λ(0), . . . , λ(N − 1)]

V n =
1√
N

[

1, (λ(n))
1
, . . . , (λ(n))

N−1
,

]⊤

and note that V is the normalized N -point Discrete Fourier Transform (DFT)
matrix [], such that

V̄
⊤
V = V V̄

⊤
= I

The notation and preliminaries introduced in this section will be employed
throughout the remainder of this work to formulate a resilient parameter-invariant
controller.

3 Problem Formulation

This section introduces a resilient control problem for a system with unknown
LTI-Gaussian dynamics and (potentially) corrupted measurements.

Specifically, we consider an LTI system with a single state that evolves ac-
cording to

x(k + 1) = ax(k) + bu(k) + w(k)

y(k) = cx(k) + v(k) + d(k)
(1)

where:

– x, u ∈ R, are the state and control input, respectively;
– a, b ∈ R are the state dynamic and control input gains;
– y, c,d ∈ R

N, are the measurements, state measurement gain, and corruption,
respectively;

– w ∈ R and v ∈ R
N are uncorrelated i.i.d. Gaussian process noise and mea-

surement noise with central moments1:

E [w] = µ E [v] = 0

E

[

(

w − µ
)2
]

= σ E

[

(

vv⊤)2
]

= I

At time k, the model information available in this work is summarized in the
following assumption:

1 Without loss of generality, we assume the measurement noise is white and normal-
ized to unit variance, where colored noise and non-unit variance white noise can be
whitened by applying a normalizing pre-whitening filter.
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Assumption 1 - Available Information:

– the time-series measurements, y =
[

y⊤(0), . . . ,y⊤(k)
]⊤

;

– the time-series control inputs, u = [u(0), . . . , u(k)]
⊤
;

– the variance of the process noise, σ;
– the state measurement gain, c;
– the state dynamics, control gain, and process noise mean are constant.

In words, we assume that the measurements, measurement state gain, inputs, and
noise covariances are known; however, the dynamics and process bias governing
the evolution of the state are unknown, but constant. For completeness, we
summarize the unavailable information in the following assumption:

Assumption 2 - Unavailable Information:

– the state dynamics, a
– the control gain, b;
– the process noise mean, µ;

– the time-series measurement corruption, d =
[

d⊤(0), . . . ,d⊤(k)
]⊤

.

Although we assume the measurement corruption is unknown, we assume a max-
imum of M measurements are corrupted, as defined in the following assumption:

Assumption 3 - Measurement Corruption Structure: At each time step,
at most M measurements are corrupted, ‖d(k)‖0 ≤ M , where

M =







N
2 − 1 , N even

N−1
2 , N odd

such that for
{

P⊥
d

}

:=
{

Q⊤Q
∣

∣ Q ∈ {0, 1}T×N , QQ⊤ = I, T > N −M
}

the following is true:

Fd(k) = 0, ∃F ∈
{

P⊥
d

}

Assumption 3 is consistent with the assumption in [12] and implies a maximum
of M corrupted measurements since elements of d(k) which equal zero, imply no
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corruption is applied to the corresponding measurement. Under the assumptions
introduced in this section, we wish to solve the following problem:

Problem 4 - Stochastic Boundedness: Given (1) and assumptions 1-3,
show that

E
[

‖x(k + 1)‖2
]

≤ α⋆‖x(k)‖2, ∀ ‖x(k)‖2 ≥ η (2)

where η ∈ R is a desired state convergence threshold and α⋆ ∈ [0, 1] denotes a
desired state convergence rate.

The problem introduced in this section is addressed in the following section by
introducing criteria for resilient sensor fusion and parameter-invariant control.

4 Main Contributions

The main contributions of this work are summarized in the following proposi-
tions:

Proposition 5 Resilient Sensor Fusion: Given (1), then

P̂
⊥
d = arg min

Q∈{P⊥

d
}

(

‖P⊥
Qcy(k)‖2 − ‖Q‖0 + 1

)2

2 (‖Q‖0 − 1)
=⇒ E

[

P̂
⊥
d d(k)

]

= 0

Proposition 6 Parameter Invariant Control: Given (1), α ∈ [0, 1], posi-
tive integers k, κ ∈ N satisfying

k ≤ κ ≤ 2k − 4,

a (κ+ 1)-point DFT matrix, V , and

sn =

{

E [x(n)|y(n)] , n ∈ {0, . . . , k − 1}
αn−k

E [x(k)|y(k)] , n ∈ {k, . . . , κ}

H = [ΛV s, V s,
∑κ

n=0 V n, V 0]

then, assuming u0:k−1 6= 0,

P⊥
HV u0:κ−1 = 0 =⇒ E [x(t)|y0:k] = αt−k

E [x(k)|y(k)] ∀k ≤ t ≤ κ
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The following subsections discuss proposition 5 and proposition 6, respec-
tively. The propositions discussed in this section are utilized in the following
section to design a resilient model-invariant controller that satisfies the stochas-
tic boundedness constraint in problem 4.

4.1 Resilient Sensor Fusion

Designing a stabilizing controller for problem 4 requires information feedback
through sensor measurements. When corrupted by an unmodelled attacker, the
sensor contains no information with respect to the system state. Moreover, in-
clusion of corrupted measurements in state estimation infects the information
provided by the uncorrupted sensors. The purpose of resilient sensor fusion is to
identify a set of sensors that are expected to be unaffected by the measurement
corruption vector, d(k), (i.e. reside in the null space of d(k)) and to generate
a minimum mean squared estimate of the state, x(k). From assumption 3, and
consistent with the standard assumptions in the related work [12], we assume
that there are at least M + 1 sensors which are uncorrupted. However, unlike
the previous work, this problem considers uncorrupted measurements that are
inherently noisy and that corrupted sensors can change at each time-step. Cou-
pled with the fact that the underlying dynamics are unknown (by assumption
2), the resilient sensor fusion strategy at time k is limited to using only sensor
measurements provided at time k, and no prior information on the state (as
prior information on the state will propagate previously corrupted information).
In this subsection, we develop a resilient sensor fusion strategy that estimates

the null space of the corruption, denoted as P̂
⊥
d ∈ {P⊥

d }, invariant to the value
of the state and corruption, which is employed to generate a MMSE state esti-
mate. Specifically, the design of the resilient sensor fusion strategy is organized
into three steps

1. formulate a maximally invariant statistic;

2. estimate the measurement corruption null space;

3. generate a MMSE state estimate.

These steps are respectively addressed in the remainder of this subsection.

Maximally Invariant Statistic: Assuming a candidate null space, Q ∈∈
{P⊥

d }, and consistent with optimal signal detection theory [5], we write a max-
imally invariant statistic for d(k), invariant to the unknown state, x(k), as

P⊥
Qcy(k) = P⊥

Qc (d(k) + v(k)) .

The maximally invariant statistic is a statistic of the measurements which con-
tains all the information with respect to d(k) that is invariant to the unknown
state, x(k).
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Corruption Null Space: It is known that there exists no uniformly most
powerful (UMP) test for detecting an unknown vectored signal [5], where the
UMP test is considered optimal in hypothesis testing. Following well established
practices employed in bad-data detection, we estimate the corruption null space
according to proposition 5, the implication of which is described in the following
proof:

Proof. Given the maximally invariant statistic, P⊥
Qcy(k), the norm-squared of

the measurement statistic, ‖P⊥
Qcy(k)‖2, has a non-central chi-squared distribu-

tion of ‖Q‖0 − 1 degrees of freedom and non-centrality parameter ‖P⊥
Qcd(k)‖2.

Observing that when P⊥
Qcd(k) = 0, the following central moments of the norm-

squared measurement statistic are known:

E

[

P⊥
Qcy(k)|P⊥

Qcd(k) = 0
]

= ‖Q‖0 − 1

Cov
[

P⊥
Qcy(k)|P⊥

Qcd(k) = 0
]

= 2(‖Q‖0 − 1)

From assumption 3, we recall PQcd(k) = 0, ∃Q ∈ {P⊥
d }. Thus, it is expected

P⊥
Qc is in the null space of d(k) when the normalized mean-squared error of the

norm-squared measurement is minimized, conditioned on P⊥
Qcd(k) = 0. None

State Estimation: Given the expected null space of the corruption, the mini-
mum mean-squared error estimate of the state is

E

[

x(k)|P⊥
Qc,y(k)

]

=
(

c⊤P⊥
Qcc

)−1

c⊤P⊥
Qcy(k).

4.2 Parameter Invariant Control

The parameter invariant controller utilizes a time-history of the state estimates
and control inputs to design a finite-horizon controller that stabilizes the mean
and is invariant to the unknown system dynamics.
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Proof. Defining x̂(k) = E [x(k)|y(k)], we consider the following time-series gen-
erated by (1),
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⇐⇒s = V̄
⊤
(I + aΛ)

−1
V

[

x̂(0)− aακ−kx̂(k)
bu0:κ−1 + µ1

]

⇐⇒V s = (I + aΛ)
−1

V

[

x̂(0)− aακ−kx̂(k)
bu0:κ−1 + µ1

]

⇐⇒0 = Hθ + V 1:κu0:κ−1

⇐⇒P⊥
HV 1:κu0:κ−1 = 0 (by Nyquist-Shannon Theorem)

where

θ =
[

−a
b
, − 1

b
, µ

b
,
x(0)−ax(κ)−µ

b

]⊤
.

The first implication transforms the time-series signal into an equivalent κ-step
periodic signal by augmenting the initial condition. By the Nyquist-Shannon
Theorem, the future control inputs, uk:κ−1, can be reconstructed from the previ-
ous measurements, a desired state trajectory, and the past control inputs, u0:k−1

if κ < 2k−‖Θ‖0. Since this criteria is satisfied in the worst-case by assuming all
parameters are non-zero, the control sequence that generates the desired future
state trajectory is reconstructed by solving

P⊥
HV 1:κu0:κ−1 = 0

assuming κ < 2k − 4. None

Recalling that the controller is design to stabilize the mean through an addi-
tive control input, the predicted covariance of the state is given in the following
corollary:
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Corollary 7 - Covariance of Predicted State:

Cov
[

x(t)|P⊥
Qc,y(k)

]

= Cov
[

x(k)|P⊥
Qc,y(k)

]

+ at−k−1σ, ∀t ≥ k

Satisfying the equality constraint in proposition 6 restricts the horizon for
which the controller can be designed. As a best estimate of the control sequence
which satisfies proposition 6, we employ a maximum likelihood estimate of the
future control sequence as

uk:κ−1 = −Gu0:k−1 (3)

where

G =
(

V̄
⊤
k+1:κP

⊥
HV k+1:κ

)−1

V̄
⊤
k+1:κP

⊥
HV 0:k−1 (4)

The resilient sensor fusion strategy presented in this section identifies a max-
imum likelihood estimate of the corruption null space, consistent with commonly
adopted goodness-of-fit approaches. The resulting estimator is employed to de-
sign a parameter-invariant control sequence which stabilizes the mean of the
estimate at a convergence rate of α.

5 Resilient Parameter-Invariant Controller Design

From the previous section, it is clear that the performance of the resilient state
estimator affects the parameter-invariant controller. Since it is a primary concern
to secure the measurements against malicious attacks, and a secondary concern
to maximize the performance with respect to the environmental unknowns, we
propose the following lemma to design the parameter-invariant controller con-
vergence rate, α:

Lemma 8 - Controller Design : Given problem 4, P̂
⊥
d from proposition 5,

then a control sequence u in proposition 6 designed assuming α will satisfy (2)
if and only if

0 ≤ α ≤

√

√

√

√

√

α⋆ − σ+c⊤P̂
⊥

d
c

η

1

ηc⊤P̂
⊥

d
c
+ 1
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Proof. We define l = P̂
⊥
d c(c

⊤P̂
⊥
d c)

−1, and write

α ≤

√

√

√

√

α⋆ − σ+l⊤l
η

1
η
l⊤l+ 1

⇐⇒ α2

(

l⊤l

η
+ 1

)

+
σ + l⊤l

η
≤ α⋆

⇐⇒α2
(

l⊤l+ ‖x(k)‖2
)

+
(

l⊤l+ σ
)

≤ α⋆‖x(k)‖, ∀ ‖x‖2 ≥ η

⇐⇒E
[

‖αE [x(k)|y(k)] ‖2 +Cov [x(k + 1)|y(k)]
]

≤ α⋆‖x(k)‖, ∀ ‖x‖2 ≥ η

⇐⇒E
[

‖E [x(k + 1)|y(k)] ‖2 +Cov [x(k + 1)|y(k)]
]

≤ α⋆‖x(k)‖, ∀ ‖x‖2 ≥ η

⇐⇒E
[

‖x(k + 1)‖2
]

≤ α⋆‖x(k)‖, ∀ ‖x‖2 ≥ η

(5)

None

A direct consequence of lemma (8) is the following corollary identifying when
a resilient parameter-invariant controller exists that satisfies the performance
criteria in (2).

Corollary 9 - Controller Existence : A resilient parameter-invariant con-
troller satisfying (2) exists if and only if

c⊤P̂
⊥
d c ≤ α⋆η − σ

By applying Markov’s inequality to lemma 8, a probabilistic bound on the
likelihood the state diverges is provided in the following corollary:

Corollary 10 - Probability of Divergence: Assuming lemma 8,

Pr [‖x(k + 1)‖ ≥ ‖x(k)‖] ≤ α⋆, ∀ ‖x‖2 ≥ η (Markov’s inequality)

The parameter invariant controller formulated in this section is evaluated
through simulation in the following section.

6 Simulation Results

This section provides a qualitative evaluation of the resilient parameter-invariant
controller. This evaluation is presented in two subsections. The following subsec-
tion presents disturbance rejection results considering first order systems, both
unstable and stable, when sensor corruption is both present and absent. The final
subsection presents a simulated cruise control scenario for a Landshark robotic
platform.
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Fig. 1. Stable system (a = 0.8) with no sensor attacks.

6.1 Disturbance Rejection

In this subsection, we evaluate the resilient parameter-invariant controller with
respect to disturbance rejection. We consider the following global variables for
all simulations in this subsection

– b = 0 (input gain);
– C = [2, 3, 4, 5, 10]⊤ (measurement gain);
– x(0) = 5 (initial condition);
– µ = −1 (process noise mean);
– σ = .01 (process noise covariance);
– α⋆ = .1, η = 1 (stochastic boundedness parameters);

Additionally, we use a windowed approach for the controller design, where we
use the last 20 measurements (19 previous inputs), to design a 10-step finite
horizon control sequence at each time step. Assuming this system and controller
design strategy, we evaluate the resilient controller when the system is stable
(a = 0.8) and unstable (a = 1.8) under the attack conditions when all the
sensors are uncorrupted, and when the first and last sensors are corrupted by
a random attacker using a zero-mean Gaussian attack with variance 10. The
remainder of this subsection addresses these four scenarios: (a) stable, no cor-
ruption; (b) stable, with corruption; (c) unstable, no corruption; (d) unstable,
with corruption.

Fig. 1 presents the results for a stable system with no sensor attacks. In Fig.
1, we simulate a state disturbance injection (beyond the process noise) occurring
every 30 time steps. It is clear that the controller is capable of stabilizing the
system, and achieves the performance bound on the norm of the state; however,
we note that despite no attacks being present in this simulation it is assumed
that some of the sensor measurements are corrupted at most time steps. This
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Fig. 2. Stable system (a = 0.8) with sensor 1 and 5 under attack.

results from the fact that unlike classical state-estimators, which minimize the
mean-squared error of the state estimate, the resilient sensor fusion minimizes
a normalized deviation of the measured sensor noise from a weighted average of
the sensor measurements. This results in the rejection of measurements which
are significantly different from the mean of the sensor measurements. As a conse-
quence, depending on the specific subset of measurements accepted as secure, the
controller convergence rate changes to maintain the performance specification.

Simulated results for a stable system in the presence of sensor attacks is pre-
sented in Fig. 2. We consider the same state disturbance injection as in Fig. 1,
and observe a very similar performance in terms of disturbance rejection. How-
ever, this comes at the cost of an increased variance in the controller sequence
(as compared to Fig. 1). The increased variance is undesirable in most physical
actuators since this results in increased strain and fatigue on mechanical parts.
The increased variance is a direct result of designing the controller sequence to
match the performance specification, and can be reduced by upper bounding
the desired state convergence rate, α, employed by the parameter-invariant con-
troller. Through a comparison between Fig. 1 and Fig. 2 that in the presence of
sensor attacks on sensor one and sensor five, sensor one is selected significantly
less when under attack and sensor five is selected only marginally less, despite
being corrupted by the same attack. This is expected since given the same attack,
signal-to-corruption ratio is greater in sensor five than in sensor one. Recalling
that the measurement model in (1) is normalized such that all the sensors have
the same noise profile, sensor five having a higher signal-to-corruption ratio (as-
sume the same attack) than sensor one is equivalent to stating that since sensor
five is less noisy than sensor one, sensor five is more likely to be trusted.

A unstable system with no sensor attacks is considered in Fig. 3. Similar
to the results for the stable system, here we observe that resilient parameter-
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Fig. 3. Unstable system (a = 1.8) with no sensor attacks.

invariant controller stabilizes the system with respect to unknown disturbances,
and has a response very similar to the stable system results in Fig. 1. Although
the control input is different, the performance is nearly identical, which is a
direct result of the controller design requirement to be invariant to the unknown
system parameters, regardless of stability. Similarly, we notice a similar sensor
selection and rejection profile as in Fig. 1. This result is consistent with the fact
that the sensor fusion strategy is design invariant to the unknown state, which
orthogonalizes the issues of stability and resilience for the purposes of identifying
corrupted sensors.

The final figure in this subsection, Fig. 4, illustrates the results when consid-
ering an unstable system and with sensor attacks. Consistent with the results
when no sensor attacks are present, we observe nearly identical results when
senors are attacked, regardless of the underlying system stability. This further
illustrates that the specification based-design of the resilient parameter-invariant
controller can be achieved regardless of the underlying system parameters. We
note, however, a multi-step design specification will vary with the system stabil-
ity since the multi-step predicted state covariance is a non-linear function of the
process noise and state dynamic gain, a. For this reason, it is necessary that the
resilient parameter invariant controller be designed at each time step in order to
satisfy the performance specification invariant to the unknown state dynamics.

6.2 Vehicle Cruise Control

To evaluate the resilient parameter-invariant controller as a potential cruise con-
trol mechanism, we consider a simplified first-order model of a mobile robot as

x(k + 1) = 0.95x(k) + u(k) + w(k)

y(k) = [2, 3, 4]⊤x(k) + v(k)
(6)
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Fig. 4. Unstable system (a = 1.8) with sensor 1 and 5 under attack .
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Fig. 5. Landshark cruise control with no corruption.

where w(k) [−1, .01], and we assume α⋆ = .1, and η = 1 for the performance
constraint. In this simulation, we assume the initial vehicle speed is 5 miles per
hour (x(0) = 5) and at time step 50 the speed is desired to increase to 15 miles
per hour. Additionally, we assume the control input is bounded on the interval
of −1 to 5. The result of employing the resilient parameter-invariant controller
for cruise control is provided in Fig. 5 without sensor attacks. We observe in
Fig. 5 that the vehicle speed is stabilized with a lag in the state trajectory. The
lag is a result of the fact that a history of measurements is required to generate
a control sequence. It remains a focus of future research to reduce this lag. A
portion of the state trajectory lag is due to the saturation of the control signal,
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Fig. 6. Landshark cruise control with corruption.

which does not affect the stability of the system despite the resilient control law
being designed without a constraint on the control sequence.

The cruise controller performance in the presence of a sensor attack on sensor
three is illustrated in Fig. 6. Here we observe, and consistent with previous
observations, that when attacked, the measurement of sensor three is accepted
less often. In this case, sensor one (known to be more noisy) is selected more
often. This results in the need for, on a average, a more aggressive control law
to meet the performance criteria.

7 Discussion and Future Work

This work address the problem of resilient control of unknown first-order stochas-
tic LTI systems in the presence of sensor attacks. A resilient sensor fusion strat-
egy is introduced that minimizes the likelihood of a corrupted sensor being
trusted. A time-series concatenation of secure estimates is utilized in cooper-
ation with a desired state trajectory and previous control inputs to design a
mean-stabilizing finite-horizon control sequence, invariant to the unknown sys-
tem parameters. The parameter-invariant controller is designed using a frequency
domain representation of an equivalent time-series representation of the system
inputs to system outputs, thus allowing the design of a mean-stabilizing con-
troller. Simulated results illustrate that the resilient parameter-invariant con-
troller is capable of stabilizing unknown state disturbances and can perform
state trajectory tracking with a lag.

Future work on this topic includes the extension of the scalar results in
this paper to multi-dimensional systems with known dynamical structures but
unknown parameters. Additionally, further insight is needed to investigate a
method to reduce (or remove) the lag and to quantify its behavior in terms of
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the underlying system and design parameters. Experimentation of the resilient
parameter-invariant controller is planned on a robotic platform as a potentially
cooperative approach with model-based approaches which assume knowledge of
model parameters.
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