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ABSTRACT
The interaction between information technology and phys-
ical world makes Cyber-Physical Systems (CPS) vulner-
able to malicious attacks beyond the standard cyber at-
tacks. This has motivated the need for attack-resilient
state estimation. Yet, the existing state-estimators are
based on the non-realistic assumption that the exact
system model is known. Consequently, in this work
we present a method for state estimation in presence
of attacks, for systems with noise and modeling errors.
When the the estimated states are used by a state-based
feedback controller, we show that the attacker cannot
destabilize the system by exploiting the difference be-
tween the model used for the state estimation and the
real physical dynamics of the system. Furthermore, we
describe how implementation issues such as jitter, la-
tency and synchronization errors can be mapped into
parameters of the state estimation procedure that de-
scribe modeling errors, and provide a bound on the
state-estimation error caused by modeling errors. This
enables mapping control performance requirements into
real-time (i.e., timing related) specifications imposed on
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ernment is authorized to reproduce and distribute reprints
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notation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorse-
ments, either expressed or implied, of DARPA or the U.S.
Government.

the underlying platform. Finally, we illustrate and ex-
perimentally evaluate this approach on an unmanned
ground vehicle case-study.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Informa-
tion Systems]: Security and Protection—Unauthorized
access; C.3 [Special-purpose and Application-based
Systems]: Process control systems

1. INTRODUCTION
Tight coupling of computation and communication

substrates with sensing and actuation components in
Cyber-Physical Systems (CPS) has introduced signifi-
cant changes in the system design process; the hetero-
geneity of these systems has challenged the standard de-
sign methods that completely ignore cross-cutting con-
straints, as component-level understanding usually does
not translate to the system level. A great example for
CPS are modern vehicles that present a complex inter-
action of a large number of embedded Electronic Control
Units, interacting with each other over different types
of networks. In addition, there is a current shift in
vehicle architectures, from isolated control systems to
more open automotive architectures that would intro-
duce new services such as remote diagnostics and code
updates, and vehicle-to-vehicle communication.

Until recently, security of CPS (and embedded control
systems before) has usually been an afterthought. How-
ever, the increasing set of functionalities, network inter-
operability, and system design complexity may intro-
duce security vulnerabilities that are easily exploitable.
The interaction between information technology and phys-
ical world have made CPS vulnerable to malicious at-
tacks beyond the standard cyber attacks [5]. As shown
in [11, 6], using simple methods an attacker can disrupt
the operation of a car to either disable the vehicle or
hijack it. This problem is even more emphasized with
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the rise of vehicle autonomy; thus, criticality analysis
for various automotive components will have to be com-
pletely re-done. Similarly, attacks on CPS could hamper
the critical infrastructure with undesired consequences
as illustrated in the Maroochy Water breach [18] and
StuxNet virus attack on a SCADA system used in in-
dustrial processes control [7].

Relying exclusively on cyber-security techniques for
securing CPS is insufficient. This is highlighted in cases
when non-invasive sensor attacks occur – i.e., when the
physical environment around a sensor is compromised to
allow for injection of a malicious signal [17]. For exam-
ple, non-invasive attacks on Anti-lock Braking Systems
are presented in [17]. In addition, attacks on GPS sen-
sors by spoofing a GPS to misguide a yacht off route
are demonstrated in [2], while [22] presents the steps
and equipment required for GPS spoofing.

These results have spanned research into control-level
techniques that address the problem of state estimation
and intrusion detection under attacks on the environ-
ment of the controller, such as attacks on sensors, ac-
tuators and communication networks (e.g., [19, 21, 15,
9, 20, 13]). Attack-resilient state estimation has drawn
considerable attention since knowing the system’s state
even when some components have been compromised
would allow for the use of the same controllers as in the
case without attacks. For deterministic linear systems
this problem has been recently mapped into l0 optimiza-
tion problem [9, 15]. However, the proposed techniques
consider systems without noise and for which the exact
model of the system’s dynamics is known. As a result,
it is not clear whether most of the resilience guarantees
hold when these assumptions are violated.

This problem is even more emphasized when issues
inherently present in any system implementation are
taken into account. For example, real-time issues such
as sampling and actuation jitter, and synchronization
errors between system components directly affect the
controlled plant’s model that should be used for state
estimation. Consequently, there is a need to provide
a robust method for attack-resilient state estimation in
the presence of noise and modeling errors. This would
also allow for the extraction of system level requirements
imposed by control algorithms on the underlaying OS
and utilized networking, and facilitate reasoning about
attack-resilience across different implementation layers.

We address this problem in the paper. Building on the
work from [9] we present a procedure for attack-resilient
state estimation in presence of noise and modeling er-
rors. We show that the attacker cannot destabilize the
system by exploiting the difference between the model
used for state estimation and the real physical dynamics
of the system. Furthermore, we describe how implemen-
tation issues such as jitter, latency and synchronization
errors can be mapped into parameters of the state esti-

mation procedure (describing modeling errors), and pro-
vide a bound on the state-estimation error due to the
modeling error. This effectively enables mapping con-
trol performance requirements into real-time (i.e., tim-
ing related) specifications imposed on the underlying
platform. Finally, we illustrate the use of this approach
on an autonomous robot case-study.

The rest of the paper is organized as follows. In Sec-
tion 2, we present an l0-based state-estimator for deter-
ministic linear systems, before describing common mod-
eling errors caused by system implementation. Section 3
presents a resilient state estimator that can be used in
systems with modeling errors. In Section 4, we show
that the maximal state-estimation error is bounded, be-
fore we present a procedure that can be used to compute
a bound. We evaluate this procedure in Section 5 and
illustrate its use on unmanned ground vehicle (UGV)
case study (Section 6). Finally, we provide concluding
remarks in Section 7.

1.1 Notation and Terminology
For a set S, |S| denotes the cardinality (i.e., size) of

the set, while for two sets S and R, we use S \ R to
denote the set of elements in S that are not in R. In
addition, for a set K ⊂ S, we specify the complement
set of K with respect to S as K{ – i.e., K{ = S \K. We
use R to denote the set of reals, and 1′N to denote the
row vector of size N containing all ones.

We use AT to indicate the transpose of matrix A,
while the ith element of a vector xk is denoted by xk,j .
For vector x and matrix A, we use |x| and |A| to denote
the vector and matrix whose elements are absolute val-
ues of the initial vector and matrix, respectively. Also,
for matrices P and Q, P � Q specifies that the matrix
P is element-wise smaller than or equal to the matrix Q.

For a vector e ∈ Rp, the support of the vector is the set

supp(e) = {i | ei 6= 0} ⊆ {1, 2, ..., p},

while the l0 norm of vector e is the size of supp(e) –
i.e., ‖e‖l0 = |supp(e)|. For a matrix E ∈ Rp×N , we use
e1, e2, ..., eN to denote its columns and E′1,E

′
2, ...,E

′
p to

denote its rows. We define the row support of matrix E
as the set

rowsupp(E) = {i | E′i 6= 0} ⊆ {1, 2, ..., p}.

As for vectors, the l0 norm for a matrix E is defined as
‖E‖l0 = |rowsupp(E)|.

2. MOTIVATION AND PROBLEM
DESCRIPTION

Consider a Linear-Time Invariant (LTI) system

xk+1 = Axk + Buk + vk

yk = Cxk + wk + ek,
(1)
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where x ∈ Rn and u ∈ Rm denote the plant’s state and
input vectors, respectively, while y ∈ Rp is the plant’s
output vector obtained from measurements of p sensors
from the set S = {s1, s2, ..., sp}. Accordingly, the matri-
ces A,B and C have suitable dimensions. Furthermore,
v ∈ Rn and w ∈ Rp denote the process and measure-
ment noise vectors,1 while e ∈ Rp denotes the attack
vector. To model attacks on sensors, we assume that
sensors with indices in set K ⊆ {1, 2, ..., p} are under at-
tack. This means that ek,i = 0 for all i ∈ KC and k ≥ 0,
where KC = S \ K, and thus supp(ek) ⊆ K, ∀k ≥ 0.

Remark 1. The setup presented in this paper can be
easily extended to include attacks on system actuators.
In this case additional vector eak is added to the plant in-
put at each step k ≥ 0. As shown in [8], the same tech-
nique used for resilient-state estimation in the presence
of attacks on sensors can be used to obtain the plant’s
state when both sensors and actuators are compromised.
Consequently, the analysis and results presented in this
paper can be easily extended to the case when a subset
of the actuators is also under attack.

2.1 Attack-resilient State Estimation
for Noiseless Systems

For linear systems without noise (i.e., systems from (1)
where wk = 0 and vk = 0, for all k ≥ 0), a l0-
norm based method to extract state estimate in pres-
ence of attacks is introduced in [9]. To obtain the plant’s
state at any time-step t (i.e., xt), the proposed proce-
dure utilizes the previous N sensor measurement vectors
(yt−N+1, ...,yt) and actuator inputs (ut−N+1, ...,ut−1)
to evaluate the state xt−N+1; the state is computed as
the minimization argument of the following optimiza-
tion problem2

min
x∈Rn

‖Yt,N − ΦN (x)‖l0 . (2)

Here, Yt,N = [ỹt−N+1|ỹt−N+2| . . . |ỹt] ∈ Rp×N aggre-
gates the last N sensor measurements while taking into
account the inputs applied during that interval

ỹk = yk, k = t−N + 1

ỹk = yk −
k−t+N−2∑

i=0

CAiBuk−1−i, k = t−N + 2, ..., N

In addition, ΦN : Rn → Rp×N is a linear mapping

defined as ΦN (x) =
[
Cx|CAx| . . . |CAN−1x

]
, which

1Later we will assume that the noise vectors are constrained
in certain ways. Furthermore, we will use v and w to cap-
ture different types of modeling errors which may be caused
by some implementation (e.g., real-time) issues. We will ad-
dress this in more details in Section 2.2.
2The state xt can then be obtained from xt−N+1 and the
history of actuator inputs (ut−N+1, ...,ut−1) by applying the
system evolution from (1) for N − 1 steps.

captures the system’s evolution over N steps caused by
the initial state x.

The rationale behind the problem (2) is that the ma-
trix Et,N = Yt,N −ΦN (xt−N+1) presents the history of
the last N attacks vectors et−N+1, ..., et – i.e.,

Et,N = [et−N+1|et−N+2| . . . |et] ∈ Rp×N . (3)

The critical observation here is that for a noiseless LTI
system there is a pattern of zeros (i.e., zero-rows) in
the matrix Et,N that corresponds to the non-attacked
sensors and which remains constant over time; if K is the
set of compromised sensors then rowsupp(Et,N ) ⊆ K,
for all N and t such that N ≥ 0 and t ≥ N − 1.

As shown in [8, 9], for noiseless systems the state esti-
mator from (2) is optimal in the sense that if another es-
timator can recover xt−N+1 then the one defined in (2)
can as well. In addition, the estimator from (2) can
extract the system’s state after N steps when up to q
sensors are under attack if and only if for all x ∈ R\{0},

|supp(Cx) ∪ supp(CAx) ∪ . . . ∪ supp(CAN−1x)| > 2q

We use qmax to denote the maximal number of com-
promised sensors for which the system’s state can be re-
covered afterN steps despite attacks on sensors.3 Hence,
if the number of compromised sensors q satisfies that
q ≤ qmax, for noiseless systems the minimal l0 norm
of (2) is equal to q. Note that for these systems qmax
does not decrease with N, and due to Cayley-Hamilton
theorem [3] it cannot be further increased when more
than n previous measurements are used – i.e., qmax ob-
tains the maximal value for N = n. Finally, beside the
measurement window size N , qmax only depends on the
system’s dynamics (i.e., matrices A and C).

2.2 Sources of Modeling Errors
Besides measurement and process noise, vectors vk

and wk in (1) can be used to capture any deviation in
the plant model (1) from the real dynamics of the con-
trolled physical system. Here, we present some of the
common modeling errors introduced by non-idealities
of control system implementation and limitations of the
utilized computation and communication platforms. Specif-
ically, we focus on the modeling errors caused by sam-
pling and computation/actuation jitter, and synchro-
nization errors between system components in scenarios
where continuous-time plants are being controlled.

The described attack-resilient state estimator (2) is
based on discrete-time model (1) of the system. Conse-
quently, to be able to deal with continuous-time plants
it is necessary to discretize the controlled plant, while
taking into account real-time issues introduced by com-
munication and computation schedules. To illustrate

3The size of the utilized measurement history N is consid-
ered to be an input parameter to the resilient-state estima-
tor. In the general case we should use the notation qmax,N .
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this, consider a standard continuous-time plant model

ẋ(t) = Acx(t) + Bcu(t)

y(t) = Ccx(t),
(4)

with state x(t) ∈ Rn, output y(t) ∈ Rp and input vec-
tor u(t) ∈ Rm, where matrices Ac,Bc,Cc are of the
appropriate dimensions.

We first consider setups where all plant’s output are
sampled (i.e., measured) at times tk, k ≥ 0, and where
all actuators apply newly calculated inputs at times
tk + τk, k ≥ 0, as shown in Fig. 1. We denote the
kth sampling period of the plant by Ts,k = tk+1 − tk,
and note that the the input signal will have the form
shown in Fig. 1(b). Using the approach from [10, 23],
we describe the system as

ẋ(t) = Acx(t) + Bcu(t),

y(t) = Ccx(t), t ∈ [tk + τk, tk+1 + τk+1),

u(t+) = uk, t ∈ {tk + τk, k = 0, 1, 2, . . .}
(5)

where u(t+) is a piecewise continuous function that only
changes values at time instances tk + τk, k ≥ 0. From
the above equation, the discretized model of the system
can be represented as [3]

xk+1 = Akxk + Bkuk + B−k uk−1

yk = Cxk,
(6)

where xk = x(tk), k ≥ 0, and

Ak = eAcTs,k ,

Bk =

∫ Ts,k−τk

0

eAcθBcdθ, B−k =

∫ Ts,k

Ts,k−τk
eAcθBcdθ.

(7)

Note that the matrices Ak,Bk and B−k are time-varying
(with k) and depend on the continuous-time plant dy-
namics, inter-sampling time Ts,k, and latency τk. On
the other hand, when control (and state estimation) is
performed using resource constrained CPUs, the design-
ers usually utilize the ‘ideal’ discrete-time model of the
system of the form (1) where for all k ≥ 0, Ts,k = Ts
and τk = 0

A = eAcTs , B =

∫ Ts

0

eAcθBcdθ, (8)

Hence, by comparing the discrete-time models (1) and (6),
in this case sampling and actuation jitter, and actu-
ation latency (caused by computation and/or commu-

nication) introduce the error component vjitk (k ≥ 0)
defined as

vjitk = (eAcTs,k − eAcTs)︸ ︷︷ ︸
∆A

xk +

∫ Ts,k−τk

Ts

eAcθBcdθ︸ ︷︷ ︸
∆B

uk

+ B−k uk−1

Figure 1: Scheduling sampling and actuation.

Finally, from the equation above it follows that a bound
on the size of the error vjitk can obtained from the con-
servative bounds on the sampling jitter (i.e., Ts,k − Ts)
and latency (i.e., τk), for a predefined range of accept-
able system states and actuator inputs.

2.2.1 Effects of Synchronization Errors
Consider a setup where the sensors do not have a com-

mon clock source, resulting in a bounded error between
the individual clocks at sensors.4 In this case, although
scheduled to measure corresponding plant outputs at
the same time-instance tk, each sensor sj will actually
perform the measurement at time tk,j . Hence, for every
j = 1, ..., p, yk,j = C′jx(tk,j) instead of C′jx(tk), where

C′j denotes the jth row of C, and the synchronization
error introduces a measurement error defined as

vsynk,j = C′j(x(tk,j)− x(tk))

= C′j(e
Ac∆tk,jx(tk) +

∫ ∆tk,j

0

eAcθBcdθuk−1)

Here, ∆tk,j = tk,j − tk captures the synchronization er-
ror for each sensor sj . Hence, for a predefined actuation
range it is possible to provide a bound on the size of the
measurement error vector vsynk ∈ Rp describing model-
ing errors due to synchronization errors between sensors.

2.3 Problem Description
The existence of modeling errors5 limits the use of the

attack-resilient state estimator from (2). For example,
in this case the l0 norm of a solution of the problem
4To simplify the presentation we only describe the case
where there possibly exist synchronization errors between
sensors, because the same approach can be extended to
scenarios where there exist synchronization errors between
plant actuators.
5In the rest of this paper, unless otherwise specified we will
include process and measurement noise as part of model-
ing errors. We will also use the term noise to capture the
modeling errors – i.e., discrepancy between the model used
to design the state-estimator and real dynamics of the con-
trolled system.
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in (2) may be larger than qmax, indicating that more
than the allowed number of sensors has been compro-
mised, which violates requirements for correct operation
of the state estimator. Therefore, in this paper we focus
on the following problems

• How can we design attack-resilient state estimators
in presence of noise and modeling errors?

• Can the attacker exploit the modeling errors in
the state-estimator’s design in order to destabilize
the system when the state estimates are used for
control by a stable state-based feedback controller?

• Is it possible to obtain a bound on the worst-case
performance degradation of the introduced resilient-
state estimator due to bounded modeling errors?

3. RESILIENT STATE ESTIMATION IN
PRESENCE OF MODELING ERRORS

As illustrated in Section 2, the effects of the input
vectors uk are taken into account when computing the
matrix Yt,N . Thus, in the rest of this paper (unless
otherwise stated) we will assume that in (1) uk = 0 for
all k ≥ 0. In addition, to further simplify the notation
we consider the case for t = N−1, meaning that our goal
is to obtain x0, and we denote the matrices Yt,N ,Et,N

and ΦN (x) as Y,E and Φ(x), respectively.
We assume that the state of the plant at k = 0 is

x0 and that the system evolves for N steps as specified
in (1) (for uk = 0) for some attack vectors e0, ..., eN−1

applied on the sensors from set K = {si1 , ..., siq} ⊆ S,
where |K| ≤ qmax, and the corresponding matrix E =
[e0|e1| . . . |eN−1]. Furthermore, we assume that |wk| �
εwk

and |vk| � εvk for k = 0, 1, ..., N − 1, and we define

Yw,v = [y0|y1| . . . |yN−1] .

Note that the matrix Yw,v contains measurements of
the system with noise. Finally, we use Ȳ = [ȳ0|ȳ1|...|ȳN−1]
to denote the sensor measurements (plant outputs) that
would be obtained in this case if the system was noise-
less – i.e., for ‖εwk

‖2 = ‖εvk‖2 = 0 (meaning that

ȳk = CAkx0 + ek, k = 0, 1, ..., N − 1).
We consider the following optimization problem

P0(Y) : min
E,x
‖E‖l0

s. t. E = Y − Φ(x)
(9)

As described in Section 2.1,

(x0,E) = argmaxP0(Ȳ) (10)

where q = ‖E‖l0 ≤ qmax. However, the ‘ideal’ (noise-
less) measurements from Ȳ are not available to the es-
timator; the estimator can only use the measurements
specified by the matrix Yw,v. In addition, it is worth
noting that (x0,E) may not even be a feasible point for

problem P0(Yw,v) that utilizes noisy sensor measure-
ments. Consequently, there is need to adapt problem
P0(Y) to non-ideal models that capture noise and mod-
eling errors.

To achieve this we consider the following problem that
relaxes the equality constraint from (9) by including a
noise allowance

P0,∆(Y) : min
E,x
‖E‖l0

s. t. |Y − Φ(x)−E| �∆
(11)

In the above problem, the matrix ∆ ∈ Rp×N contains
non-negative tolerances δj,i for each sensor si, i = 1, ..., p,
in each of the N steps j – i.e.,

∆ = [δ0|δ1| . . . |δN−1] .

We use the following notation

(x0,∆,E∆) = argmaxP0,∆(Yw,v)

q∆ = ‖E∆‖l0
(12)

Note that P0,0p×N (Y) = P0(Y), for all Y ∈ Rp×N .
To allow for the use of (11) as an attack-resilient state

estimator it is necessary to ensure that P0,∆(Y) has a
feasible point (x,E) such that ‖E‖l0 ≤ qmax.6 This can
be guaranteed with an appropriate initialization of the
matrix ∆. From (1) we have that for k = 0, 1, ..., N−17

yk = CAkx0 + ek + C

k−1∑
i=0

Ak−1−ivi + wk

= ȳk + C

k−1∑
i=0

Ak−1−ivi + wk

If we use |Ak−1−i| to denote the matrix whose ele-
ments are absolute values of the corresponding elements
of the matrix Ak−1−i, then we can specify the following
bound

|yk − ȳk| ≤ |C|
k−1∑
i=0

|Ak−1−i||vi|+ |wk|

≤ |C|
k−1∑
i=0

|Ak−1−i|εvi + εwi = δ̄k. (13)

Therefore, for δk � δ̄k (k = 0, ..., N − 1) we have that
(x0,E) from (10) is a feasible point for the problem
P0,∆(Yw,v), meaning that there exists a solution of the
problem – i.e., there exists (x0,∆,E∆) from (12) such
that q∆ = q ≤ qmax. This means that the solution of
P0,∆(Yw,v) from (11) can be used as a state-estimator
in the sense that if at most qmax sensors have been com-
promised it would provide a solution where the size of
row-support of E∆ is not larger than qmax.
6This condition has to be satisfied for all Y ∈ Rp×N that
could be ‘generated’ by the system when at most qmax sen-
sors have been attacked.
7We assume that

∑−1
i=0 αi = 0 for any sequence of αis.
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4. ROBUSTNESS OF P0,∆(Y) STATE ESTI-
MATION

In this section, we provide robustness analysis for
P0,∆(Y) optimization problem when matrix ∆ satisfies
conditions from the previous section. We start by show-
ing that the attacker cannot exploit the modeling errors
to destabilize the system before we present a method to
bound the error caused by noise and modeling errors –
i.e., we provide a bound on ‖x0,∆ − x0‖2.

Consider (x0,∆,E∆) from (12), and a matrix Σ ∈
Rp×N such that

Y − Φ(x0,∆)−E∆ = Σ. (14)

Here, |Σ| �∆. In addition, because (x0,E) is a feasible
point for P0,∆(Y), it follows that

q = ‖E‖l0 ≥ ‖E∆‖l0 = q∆,

implying that ‖E−E∆‖l0 ≤ 2q. Our goal is to provide
a bound on ‖∆x‖2 where

∆x = x0,∆ − x0. (15)

If we also define ∆E = E∆ −E, it holds that

∆E = (Yw,v − Φ(x0,∆)−Σ)− (Ȳ − Φ(x0))

= (Yw,v − Ȳ −Σ)︸ ︷︷ ︸
Ω

−Φ(∆x0)

Let us denote by ∆y0, ...,∆yN−1 the columns of the
matrix Ω (i.e., Ω = [∆y0|...|∆yN−1]). From (13) and (14)
it follows that

|∆yk| � δ̄k + δk � 2δk

Accordingly, to provide a bound on ‖∆x‖2 we con-
sider the following problem

max
∆x

‖∆x‖2 (16)

‖Φ(∆x)−Ω‖l0 ≤ 2q (17)

Ω � 2∆ (18)

Since q ≤ qmax, we can increase the feasible space by
relaxing constraint (17) to

‖Ω− Φ(∆x)‖l0 ≤ 2qmax (19)

Therefore, our goal is to bound ∆x for which there exists
Ω ∈ Rp×N that satisfies (18), and for where at least
p− 2qmax rows of the matrix Φ(∆x)−Ω are zero-rows.
Let us use F and KF ⊂ S to denote the number of rows
Φ∆(x) that are zero-rows and the set of corresponding
sensors, respectively. This means that at least Fc =
p − 2qmax − F rows of Φ(∆x) are equal to the rows of
Ω, which are non-zero, and we use KF1 ⊂ S to denote
sensors corresponding to those rows. It is worth noting
here that |KF ∪ KF1 | = p− 2qmax and KF ∩ KF1 = ∅.

We use the following notation – for any set K ⊆ S we
define the matrix OK as

OK =


PKC
PKCA

...

PKCAN−1

 . (20)

Here, PK denotes the projection from the set S to the
set K by keeping only rows of C with indices that cor-
respond to sensors from K.8 Since KF ⊂ S contains
indices of zero-rows of Φ(∆x) we have that OKF

∆x = 0.
In addition, OKF1

∆x = ΩKF1
, where for Ω = [ω1|ω2|...|ωN ]

(i.e., ωi, i = 1, ...N are columns of Ω such that |ωi| �
2δi), and we define

ΩKF1
=


PKF1

ω1

PKF1
ω2

...
PKF1

ωN

 ∆KF1
=


PKF1

δ1
PKF1

δ2
...

PKF1
δN

 .
Consequently, for ∆x to satisfy constraints (19) and (18)

there have to exist sets KF ,KF1
⊂ S such that

|KF | = F, |KF1 | =p− 2qmax − F, (21)

KF ∩ KF1
= ∅ (22)

OKF
∆x = 0 (23)

|OKF1
∆x| � 2∆KF1

(24)

We consider the polyhedron P defined with constraints
(21)-(24). Note that the point ∆x = 0 belongs to the
polyhedron. In the rest of this section we will first
prove that the polyhedron is bounded, before we present
a procedure that can be used to provide a bound on
max ‖∆x‖2. We start by introducing the following lemma.

Lemma 1. For any two sets KF ,KF1
⊂ S such that

|KF | = F , |KF1
| = p− 2qmax − F and KF ∩ KF1

= ∅,

rank(OKF∪KF1
) = n. (25)

Proof. From [9], qmax = ds/2− 1e where s is the
cardinality of the smallest set K ⊆ S for which the
matrix OK{ has non-trivial kernel. Note that |K{| =
p− s, and since s ≥ 2qmax + 1 > 2qmax, it follows that
|K{| < p − 2qmax. Now consider any set K1 for which

|K{
1| ≥ p − 2qmax, meaning that |K1| ≤ 2qmax < s.

Thus, OK{
1

does not have non-trivial kernel (since K is

the smallest such matrix), meaning that columns of OK{
1

are linearly independent. Thus, since OK{
1
∈ RN |K{

1 |×n,

rank(OK{
1
) = n.

8Formally, PK =

 i′k1

...
i′k|K|

, where K = {sk1 , ..., sk|K|} and

k1 < k2 < ... < k|K|, and i′j denotes the row vector (of

appropriate size) with a 1 in its jth position.
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The above relation holds for any K{
1 with at least p−

2qmax sensors, and hence (25) holds since the set KF ∪
KF1

contains p− 2qmax sensors.

Theorem 1. The polyhedron P defined by constraints
(21)-(24) is bounded.

Proof. We start by assuming the opposite, that P
is unbounded; there exist a feasible point ∆x ∈ P and
a direction d ∈ Rn such that d 6= 0 and for any ε > 0,
∆x + εd ∈ P [4]. Therefore, OKF

(∆x + εd) = 0, and
since ∆x ∈ P it follows that OKF

d = 0. In addition,

|OKF1
(∆x + εd)| � 2∆KF1

(26)

implies that OKF1
d = 0 (otherwise, for any non-zero

element of the vector OKF1
d, when ε → ∞ the ab-

solute value of that element in vector εOKF1
d will be

unbounded and the constraint (26) will be violated).
Therefore, d belongs to the kernel of OKF∪KF1

– i.e.,
OKF∪KF1

d = 0. However, from Lemma 1, OKF∪KF1

has full rank (i.e., rank(OKF∪KF1
) = n), meaning that

it does not have a non-trivial kernel and thus d = 0,
which violates our initial assumption and concludes the
proof.

As a direct consequence of the above theorem we have
that maximal ‖∆x‖2 is bounded, and the attacker
can not use modeling errors and the correspond-
ing relaxation of the l0 optimization problem to
introduce unbounded error in the attack-resilient
state estimator. Thus, we can formulate the corollary.

Corollary 1. Consider a matrix K such that A + BK
is stable. If x0,∆ from (12) is used as state estimate by
the state-feedback controller K (i.e., u = Kx0,∆) then
the closed-loop system will remain stable when at most
qmax sensors have been compromised.

4.1 Bounding the State-estimation Error
Theorem 1 also facilitates bounding the error of the

resilient state estimator P0,∆(Yw,v) by starting from
the following lemma.

Lemma 2. Consider the optimization problem

max
x∈Q

f(x)

where f : Rn → R is a convex function and Q is a
bounded polyhedron. Then, there exists an optimal so-
lution f(x∗) where x∗ is a vertex of the polyhedron Q.

Proof. See Appendix 8.

From the above lemma, to determine the maximal
‖∆x‖2 over the polyhedron P it is sufficient to compute
‖∆x‖2 at each vertex of the polyhedron. On the other
hand, the vertices of the polyhedron satisfy that[

OKF

OKF1

]
︸ ︷︷ ︸
ÕKF∪KF1

·∆x =

[
0

2∆+−
KF1

]
, (27)

where ∆+−
KF1

denotes a vector such that |∆+−
KF1
| = ∆KF1

(i.e., with elements whose absolute values are equal to
the corresponding elements of ∆KF1

). It is worth noting

that there are 2|KF1
|·N such elements and thus 2|KF1

|·N

vertices of the polyhedron. Finally, since ÕKF∪KF1
is a

full rank matrix (rank(ÕKF∪KF1
) = rank(OKF∪KF1

) =
n), vertex points can be found as

∆xver = (ÕT
KF∪KF1

ÕKF∪KF1
)−1ÕT

KF∪KF1

[
0

2∆+−
KF1

]
.

(28)
Consequently, for any sets KF and KF1 that satisfy

(21) and (22), by checking all 2|KF1
|·N vertices defined

by (28) we can determine the maximal ‖∆x‖2 for the
corresponding polyhedron. However, since

‖∆xver(∆
+−
KF1

)‖2 = ‖∆xver(−∆+−
KF1

)‖2,

where ∆xver(∆
+−
KF1

) denotes the solution of (28) for spe-

cific ∆+−
KF1

, we only need to evaluate norms at 2|KF1
|·N−1

points (i.e., vertices). Furthermore, to provide a bound
on ‖∆x‖2 for all ∆x that satisfy (18) and (19) we have
to consider all such sets KF and KF1 . Therefore, it is
necessary to evaluate all possible values for F . From the
definition F ≥ 0. On the other hand, from (23) OKF

has a nontrivial kernel, meaning that as in the proof of
Lemma 1, F = |KF | ≤ p− s ≤ p− 2qmax − 1.

This allows for the formulation of Algorithm 1 and
proves the following theorem.

Theorem 2. Algorithm 1 provides an upper bound
on the state estimation error ‖x0,∆ − x0‖2.

Finally, note that the matrix ∆ captures several sources
of modeling errors (e.g., noise, jitter, synchronization
errors). Since (28) is linear in ∆, the estimation error
bound obtained by Algorithm 1 for ∆ will be less than
or equal to the sum of estimation error bounds com-
puted separately for each error component. Thus, it is
possible to analyze the impact of each source of model-
ing errors on robustness of the state estimator.

4.1.1 Complexity of Algorithm 1
The complexity of Algorithm 1 depends on the num-

ber of plant states and sensors (n and p, respectively),
considered window size (i.e., history) N , and the max-
imal number of attacked sensors qmax for which it is
possible to estimate the state of the noiseless system af-
ter N steps. Hence, in the general case the number of
times that equation (28) needs to be solved is

p−s∑
F=0

(
p

F

)(
p− F

p− 2qmax − F

)
2(p−2qmax−F )N−1

However, for almost all systems, meaning that for al-
most all pairs of matrices A ×C ∈ Rn×n × Rp×n (i.e.,
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Algorithm 1 Design-time procedure used to provide
a bound on ∆x
1: MAX ‖∆x‖ = 0
2: for F = 0, 1, ..., p− s do

3: for all sets KF ⊂ S with F elements do
4: for all sets KF1

⊂ (S \KF ) with p−2qmax−F
elements do

5: for all ∆+−
KF1

do

6: Compute ∆xver using (28)
7: if ‖∆xver‖2 > MAX ‖∆x‖ then
8: MAX ‖∆x‖ = ‖∆xver‖2
9: end if

10: end for

11: end for
12: end for

13: end for

the set of matrices for which the property does not
hold has Lebesgue measure zero), the number of cor-
rectable errors using the previous N = n measurement
vectors is (maximal and) equal to qmax = dp/2− 1e [9].
Note that in this case s = p, and thus F can only
take the value 0 in Algorithm 1. On the other hand,

qmax =

{
p−1

2 p is odd
p
2 − 1 p is even

and thus

|KF1 | =
{

1, p is odd
2, p is even

Therefore, for almost all systems with n states and p
sensors, if we use N = n past measurement vectors the
complexity of Algorithm 1 is p ·2n−1 if p is an odd num-

ber, or p(p−1)
2 22n−1 if the system has an even number

of sensors.

5. EVALUATION
To evaluate conservativeness of the error bound ob-

tained using Algorithm 1 we consider two types of sys-
tems – systems with n = 10 states and p = 5 sen-
sors, and with n = 20 states and p = 11 sensors. For
each system type we randomly generated 100 systems
with measurement models satisfying that the rows of
the C matrix have unit magnitude and matrices ∆ had
elements between 0 and 2. In addition, for each of
the 200 systems we evaluated the state-estimation er-
ror ∆x = ‖x0,∆ − x0‖2 in 1000 experiments for various
attack and noise realizations. Attacks and noise profiles
were chosen randomly assuming uniform distribution
of the following: (a) The number of attacked sensors be-
tween 0 and 2 for systems with 5 sensors, and between
0 and 5 for systems with 11 sensors, (b) Attack vec-
tors on the compromised sensors between −10 and 10,

chosen independently for each attacked sensor, and (c)
Noise realizations between the noise bounds specified by
matrices ∆.

In both simulations and Algorithm 1 executions, we
considered the case when window size N is equal to the
number of system states (i.e., N = n). Comparison
between the bounds provided by Algorithm 1 and sim-
ulation results are shown in Fig. 2 and Fig. 3. Fig. 2(a),
Fig. 2(b) and Fig. 3(a) present histograms of ‖∆x‖2 er-
rors for all 1000 scenarios for three randomly selected
systems. As can be seen, the bound provided by Algo-
rithm 1 is an order of magnitude larger than the aver-
age state-estimation error for each system. However, for
each system S we are more interested in the ratio be-
tween the worst-case observed state estimation error for
all 1000 simulations – i.e., maxi=1:1000 ‖∆xS‖2, and the
error bound MAX ‖∆xS‖2 provided by Algorithm 1
for the system. Thus, we consider relative estimation
error defined for each system S as

Rel errorS =
maxi=1:1000 ∆xS

MAX ‖∆xS‖2
.

A histogram of the relative errors for both types of sys-
tems are presented in Fig. 2(c) and Fig. 3(b). For the
systems with n = 10 states the maximal relative er-
ror reaches almost 20% of computed bounds, while for
larger system (with n = 20 states) the maximal relative
error is 2% of computed bounds.

However, it is worth noting here that conservativeness
of the presented results is (at least partially) caused by
the fact that for each system we only considered random
initial points, and random uncorrelated attack vectors
and noise profiles/modeling errors. Thus, the errors ob-
tained through simulation do not represent the worst-
case errors; for each system, to obtain scenarios that
result in the worst-case estimation errors it is necessary
to derive the corresponding attack vector (and the ini-
tial state), which is beyond the scope of this paper.

This is especially illustrated in histograms of relative
estimation errors for systems with different size. As in
the histograms from Fig. 2(c) and Fig. 3(b), in simula-
tions we observed a decrease in the obtained maximal
relative estimation error with an increase in the system
size n (and thus increase in the window size N = n).
One of the reasons is that with the increase of N we
increase the number of attack vectors, and due to the
random selection of the attack vectors we reduce proba-
bilities to incorporate a worst-case attack. On the other
hand, for systems with n = 1 and n = 2 states we
were able to generate initial states and attack vectors for
which the bounds from Algorithm 1 are tight – i.e., the
error ‖∆x‖2 is equal to the obtained bounds.

6. CASE STUDY
We illustrate the development framework on a design
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(a) Histogram for a system with error
bound 41.43

(b) Histogram for a system with error
bound 35.74

(c) Histogram of the maximal relative
state-estimation error for all 100 system

Figure 2: Simulation results for 1000 runs of 100 randomly selected systems with n = 10 states and
p = 5 sensors.

(a) Histogram for a system with error
bound 155.98

(b) Histogram of the maximal relative
state-estimation error for all 100 system

Figure 3: Simulation results for 1000 runs of 100 randomly selected systems with n = 20 states and
p = 11 sensors.

of secure cruise control of the LandShark vehicle [1], a
fully electric Unmanned Ground Vehicle (UGV) shown
in Fig. 4(a). In a tethered mode, the robot can be fully
tele-operated from the Operator Control Unit (OCU).
However, in our scenario the operator only specifies the
desired vehicle speed, while the on-board control has to
ensure that all of the safety requirements are satisfied
even if some of the sensors are under attack.

Vehicle Modeling
To obtain a dynamical model of the vehicle we used the
standard differential drive vehicle model (Fig. 4(b)) [12].
Here, Fl and Fr denote forces on the left and right set
of wheels respectfully, and Br is the mechanical resis-
tance of the wheels to rolling. The vehicle position
is specified by its x and y coordinates, θ denotes the
heading angle of the vehicle measured from the x axis,
while v is the speed of the vehicle in this direction. The
LandShark employs skid steering, meaning that in or-
der to make a turn it is necessary to generate enough
torque to overcome the sticking force Sl. Therefore,
when B

2 |Fl−Fr| ≥ Sl the wheels start to slide sideways

(i.e., the vehicle begins to turn). Consequently, if we as-
sume that the wheels do not slip, the dynamical model
of the vehicle can be specified as

v̇ =

{
1
m (Fl + Fr − (Bs +Br)v, if turning
1
m (Fl + Fr −Brv, if not turning

ω̇ =

{
1
Jt

(B2 (Fl − Fr)−Blω, if turning

0, if not turning

θ̇ = ω

ẋ = v sin(θ), ẏ = v cos(θ)

Also, w = 0 if the vehicle is not turning.
Finally, to estimate the state of the vehicle for cruise

control (i.e., its speed and position) we use three sensors
– two speed encoders, one on each set of wheels, and a
GPS. The GPS provides time-stamped global position
and speed, while from the encoders we can obtain the
rotation angle (which could be translated into rotational
velocity and finally into linear velocity). Note that other
sensors can be used to estimate the state of the vehicle;
for instance, linear acceleration measurements coming
from the IMU, or use optical flow algorithms to com-
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Figure 4: LandShark unmanned ground vehicle; (a) The vehicle; (b) Coordinate system and variables
used to derive the model; (c) Control system diagram used for cruise control.

pute visual odometry from a camera. However, to il-
lustrate the use (and robustness) of the attack-resilient
state estimator we only used the encoders and GPS.

The above model presents a high-level model of the
vehicle, describing only the motion equations. However,
the forces Fl and Fr, which can be considered as inputs
to the model, are derived from the vehicle’s electromo-
tors and are affected by the motors, gearbox and wheels.
Thus, we have also derived a 6-state linear model of this
low-level electromechanical system based on the model
from [12], which is then used to derive a local state (i.e.,
velocity) feedback controller that provides the desired
Fl, Fr levels.

System Architecture
On the LandShark, the CPU that implements the state-
estimation and controller procedure is connected to all
sensors through independent serial buses, while the mo-
tors are connected to the CPU via motor drivers (as
presented in Fig. 4(c)). Since the speed of the vehicle is
bounded, the attack-resilient state-estimator from (11)
can be formulated as a mixed linear integer program-
ming (MILP) problem

min
γ,E,x

1>p γ

−δk � yk −CAkx− ek � δk, k = 0, ..., N − 1

−γjα · 1′N �E′j � γjα · 1′N , j = 1, ..., p

where E′j and ek denote the jth row and kth column of

the matrix E ∈ Rp×N , respectively. Here, γ = (γ1, . . . , γp) ∈
{0, 1}p are binary optimization variables representing,
for each sensor j, whether the sensor is considered at-
tacked (γj = 1) or safe (γj = 0), and α is a sufficiently
large positive constant.9

The developed resilient controller is executed on top
of Linux OS and the Robot Operating System (ROS)

9Since the robot cannot obtain speed larger than 20 mph, all
sensor measurements larger than the value are obtained from
compromised sensors and thus can be discarded. Hence, we
can assume that elements of attack vectors can not be larger
than the maximal speed.

middleware [16]. ROS is a meta-operating system that
facilitates development of robotic applications using a
publish/subscribe mechanism in which a master super-
intend every operation. There is a driver associated with
each sensor, which takes care of getting time stamped
informations from the sensor and publishing this data
in the ROS format to the ROS master. The controller
written in C++ language subscribes to each sensor mea-
surements (called topics) through the master, and sends
inputs to the motor driver in order to maintain the de-
sired cruise control speed.

Experiments
Fig. 5 presents a deployment of the robot during ex-
periments run on a tiled uneven surface and a grass
uneven field. From the developed GUI we demonstrate
that the robot can reach and maintain the desired refer-
ence speed even when one of the sensors is under attack,
as shown in Fig. 6. Fig. 6(a) presents speed estimates
from the encoders and GPS; each of the sensors has
been attacked at some point, with attacks such that
their measurements would result in the speed estimate
equal to 4 m/s, except in the last period of the simula-
tion when we have switched to an alternating attack on
the encoder left. However, as shown in Fig. 6(b) when
the attack-resilient controller is active the robot reaches
and maintains the desired speed of 1 m/s. On the other
hand, if the state estimator is disabled and instead a
simple observer is employed (as in the interval between
68 s and 73 s – the shredded area in Fig. 6), even when
one of the sensors is under attack the robot cannot reach
the desired state (e.g., it can even be forced to stop).10

Robustness Analysis
All ROS nodes are executed in the run-to-completion
manner. Thus, although the execution period for the
controller node is 20 ms, other instantiated nodes might
affect its execution (i.e., the controller might run with a

10Videos of the Landshark experiments can be seen at
http://www.seas.upenn.edu/~pajic/research/CPS_
security.html.
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Figure 6: Experimental results; (a) Comparison of velocity estimated from the encoders’ and GPS
measurements; (b) Reference speed, the estimated speed, and the input applied to the motors.

Figure 5: Deployment of the LandShark on a
tiled pathway. The picture in the picture dis-
plays the user interface used in experiments.

variable period). Each sensor has its own clock and all
measurements are time-stamped before being transmit-
ted to the controller. However, since relative changes in
obtained measurements are used, time synchronization
error between sensors does not accumulate. In addi-
tion, there is a huge discrepancy between sensors’ sam-
pling jitters. For example, encoders’ sampling jitters
are bounded by 100 µs (as shown in Fig. 7), while GPS
has highly variable jitter with maximal values up to
125 ms. Therefore, it is not possible to use the ide-
alized discrete-time model from (8), but rather the full
input compensation has to be done as in (6) and (7),
before the state-estimator is executed.

Consequently, a bound on GPS error is determined
from manufacturer specifications, worst-case sampling
jitter and synchronization error, and is experimentally
validated to be δk,1 ≤ 0.4 m/s. On the other hand,
each encoder has 192 cycles per revolution, resulting
in a measuring error of 0.5%. Thus, since the maximal
achievable vehicle speed is 20m/s, we have that for both
encoders δk,2 = δk,2 ≤ 0.1 m/s. For these values Alg. 1
provides a state-estimation error bound of 0.72 m/s.

Figure 7: Times between consecutive left en-
coder measurements.

Note that the conservativeness of the bound was mostly
caused by the large worst-case GPS sampling jitter.

7. CONCLUSION
In this paper, we have considered the problem of attack-

resilient state estimation in systems with noise and where
the exact model of the system dynamics is not known.
We have described a l0-norm based state estimator that
can be used for these systems, and showed that the at-
tacker cannot exploit the noise and limitations in model
accuracy to destabilize the system. Furthermore, we
have provided an algorithm to derive a bound for the
state estimation error caused by noise and modeling er-
rors, and presented a procedure to map these bounds
into a set of implementation specifications imposed on
the underlying platform. Finally, we have illustrated
our approach by designing an attack-resilient constant
speed cruise controller for unmanned ground vehicle.

We have shown that the presented l0-norm optimiza-
tion procedure for state estimation can be formulated
as a mixed integer linear program. Although there exist
efficient MILP solvers, MILPs are effectively NP hard.
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Therefore, the natural next step would include trans-
forming the l0 state estimator into a convex program
based on l1/lr optimization (e.g., r = 2) as done in [8].
In this case, providing a bound for the state-estimation
error when the l1/lr convex relaxation is used will be an
avenue for future work.

8. APPENDIX
Proof of Theorem 2. The proof uses a generaliza-

tion of the proof of Theorem 2 from [14]. We start
by assuming that there exist a non-vertex point x̃0 =
argmaxx∈Q f(x), and that for every vertex point x ∈ Q,
f(x) < f(x̃). Note that x̃0 exists since the polyhedron
Q is bounded. Since x̃0 is not a vertex of Q ∈ Rn, less
than n constraints used to specify Q are active at x̃0 [4];
we denote by d (d < n) the number of active constraints
in x̃0 and denote them as aTi x̃0 = bi, i = {j1, ..., jd}.
Thus, the vectors ai, i = j1, ..., jd belong to a proper
subspace of Rn and there exists d ∈ Rn such that d 6= 0
and aTi d = 0, for all i = j1, ..., jd.

Consider vectors x̃0 + εd and x̃0 − εd for any ε >
0. From the definition of x̃0, f(x̃0) ≥ f(x̃0 + εd) and
f(x̃0) ≥ f(x̃0 − εd), meaning that

f(x̃0) ≥ 1

2
(f(x̃0 + εd) + f(x̃0 − εd)).

However, since f is a convex function, we have that for
all ε > 0

f(x̃0) = f(x̃0 + εd) = f(x̃0 − εd). (29)

Because Q is bounded, there exists some ε1 > 0 for
which additional constraint used to specify Q gets acti-
vated either at point x̃0 +ε1d or x̃0−ε1d. Let us denote
that point as x̃1. Note that from (29), f(x̃0) = f(x̃1)
and that at x̃1 at least d+ 1 constraints used to specify
Q are activate (because all previously active constrains
will remain active).

The above procedure can be repeated until we reach
a point x̃r (r ≤ n − d, i.e., in at most n − d steps) in
which n constraints are activated and where f(x̃r) =
f(x̃0). However, since in x̃r exactly n constraints used
to specify Q are active we have that x̃r is a vertex of
the polyhedron [4], and therefore there exist an optimal
point of the maximization problem that is a vertex of
the polyhedron Q.
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