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Abstract
The paper presents a fingertip photoplethysmography based technique to assess patient fluid status that is
robust to waveform artifacts and health variability in the underlying patient population. The technique is
intended for use in intensive care units, where patients are at risk for hypovolemia, and signal artifacts and
inter-patient variations in health are common. Input signals are preprocessed to remove artifact, then a
parameter-invariant statistic is calculated to remove effects of patient-specific physiology. Patient data from the
Physionet MIMICII database was used to evaluate the performance of this technique. The proposed method
was able to detect hypovolemia within 24 hours of onset in all hypovolemic patients tested, while producing
minimal false alarms over non-hypovolemic patients.
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Robust Monitoring of Hypovolemia in Intensive Care Patients using
Photoplethysmogram Signals

Alexander Roederer1, James Weimer1, Joseph DiMartino2, Jacob Gutsche2, and Insup Lee1

Abstract— The paper presents a fingertip photoplethysmog-
raphy based technique to assess patient fluid status that is
robust to waveform artifacts and health variability in the
underlying patient population. The technique is intended for
use in intensive care units, where patients are at risk for
hypovolemia, and signal artifacts and inter-patient variations in
health are common. Input signals are preprocessed to remove
artifact, then a parameter-invariant statistic is calculated to
remove effects of patient-specific physiology. Patient data from
the Physionet MIMICII database was used to evaluate the
performance of this technique. The proposed method was
able to detect hypovolemia within 24 hours of onset in all
hypovolemic patients tested, while producing minimal false
alarms over non-hypovolemic patients.

I. INTRODUCTION

The photoplethysmograph (PPG) is an optical measure-
ment used to changes in detect blood volume in the microvas-
cular tissue bed. Devices (such as pulse oximeters) which
measure PPG contain a light emitting diode and an optical
sensor. Light is emitted into flesh and either reflected off
bone and back to the sensor, or transmitted directly through
the flesh and into the sensor. The amount of light reabsorbed
by the sensor is impacted by the scattering, absorption,
reflection, and fluorescence of the biological tissue [1].

PPG has seen widespread clinical application, as it is
noninvasive and can be used to measure many different
aspects of cardiovascular function, most commonly pulse rate
and tissue oxygenation [1]. The signal also contains informa-
tion about vascular distensibility, cardiac arrhythmia, systolic
blood pressure, respiratory variability [2], and, notably, blood
volume. Recorded pulses bear a direct relationship with
perfusion, as larger blood volumes produce larger attenuation
in the light source [1].

Patients who present to emergency rooms with trauma,
patients undergoing surgery, and post-operative patients in
intensive care units frequently suffer from hemorrhage. Per-
sistent internal hemorrhage can, over time, cause a decrease
in the volume of blood in the circulatory system, a condition
known as hypovolemia [3]. Hypovolemia is common among
post-operative patients. Bleeding-related complications (such
as rapidly fatal hypovolemic shock) are a major cause of
prolonged length of stay and death in hospitals [4], [5].
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Assessment of decreasing blood volume is one of the most
difficult tasks in current clinical medicine [6], as the body’s
hemodynamic compensation mechanisms can mask changes
in most of the vital signs which would traditionally be used
to assess volume status. [3], [7], [8], [9], [10]. Patient fluid
inputs and outputs are closely monitored for changes [11],
as common medical practice holds that these changes may
reflect changes in blood volume. These changes only occur,
however, after significant blood is lost [12].

There have been numerous attempts to use the PPG
waveform to noninvasively monitor fluid status and detect hy-
povolemia, with the goal of providing earlier, more accurate,
less invasvie detection [12], [13], [14], [15], [16], [17], [18].
These studies have used compensatory reserve index (CRI),
variations in pulse oximeter waveform amplitude (∆POP)
and/or pleth variability index (PVI) (Masimo, Irvine, CA).
Results show promise, but predictive values seem to vary
substantially between studies [19], [20], and few studies
gauge performance in critically ill patients.

While PPGs contain large amounts of information about
a patient’s cardiovascular function, they can be difficult to
use because they often experience large amounts of artifact.
The PPG sensor is sensitive to movement and orientation
against the skin and small shifts can significantly impact the
measured intensity of light, and subsequently the accuracy of
the data. Detection is made still more challenging by inter-
patient variability. Patients’ blood volumes and compensatory
mechanisms vary, and the body’s response to blood loss
varies based on the severity and location of the bleed. Both
of these problems make utilizing PPG for fluid management
a non-trivial problem.

In this work, we present a technique for utilizing PPG
waveforms to monitor patients’ fluid status, in particular for
detecting hypovolemia. We apply preprocessing to remove
artifact, then apply novel parameter invariance techniques
to create a statistic that is invariant to common forms of
signal noise. We evaluate the detector over a set of both
hypovolemic and non-hypovolemic ICU patients from the
Physionet MIMIC II database [21], [22].

II. METHODOLOGY

To design a robust detector, this work employs parameter
invariant statistics to build CFAR detectors as described
in [23], [24]. We utilize a sampled average of the PPG
waveform over time to test for fluid loss. This section first
addresses modeling the PPG waveform, the describes design
of the proposed robust test, and finally provides a description
of the algorithm used for PPG waveform pre-processing.



A. PPG Trend Modeling

Following the methodology in [24] for designing
parameter-invariant monitors, in this subsection we develop
models representing the PPG trends under normal (null)
and hypovolemic (event) scenarios. The PPG waveform is
composed of a static DC signal related to the absorption of
light by the non-blood components of the body (i.e. bone,
muscle, skin, etc.) and a dynamic AC signal corresponding
to the blood-related absorption. In [25], it is shown that
immobilized healthy patients experiencing central blood vol-
ume loss have AC PPG signals which tend to decrease in
amplitude and pulse width such that the average value of the
PPG waveform, over the respiratory cycle, decreases.

Let PPG(t) be the value of the PPG waveform at time
t ≥ 0, and let PPG(n) with n ∈N represent the n-th sampled
average of the PPG waveform over a time window of T
seconds. (Note that PPG(n) is a function of PPG(t) over
the domain (n−1)T ≤ t < nT ) Then we can model the trend
of PPG in a hypovolemic scenario as

H1 : PPG(k+1) = α1PPG(k)+β1 +σ1n(k) (1)

with β1 > 0 and 0 < α1 < 1 proportional to the fluid
loss volume and fluid loss rate parameters, respectively.
σ1 represents the variance of the noise. Due to varying
patient physiology and condition, the parameters α1,β1,σ1
are unknown.

Intensive care patients are rarely immobilized and healthy,
thus the average of the PPG waveform of non-hypovolemic
patients tends to drift over time. Rather than attempt to model
all possible physiological scenarios that explain drifts in
the PPG waveform, we model PPG under non-hypovolemic
conditions (the null hypothesis) as a Brownian motion,

H0 : PPG(k+1) = PPG(k)+σ0n(k) (2)

where σ0n(k)∼N[0,σ2
0 ] denotes the input noise. Consistent

with the event model in (1), the noise parameter σ0 is
unknown.

The models developed in this subsection utilize medical
trends to describe the dynamics of the PPG mean. As
discussed in [24], the parameter-invariant design approach
only requires models which capture the general trend of
the PPG signal, and need not be an accurate first-principles
representation of the hemodynamics.

B. Parameter-Invariant Test Design

As described in the previous section, the parameters of the
models (2) and (1) are unknown, and vary over each patient.
Attempting to estimate these parameters directly would re-
quire a prohibitive amount of data. Instead, this subsection
introduces a test to identify signal patterns indicative of
hypovolemia that is invariant to the model parameter values
(a parameter-invariant test). A one-sided test statistic is used
to produce a sufficient statistic threshold test with a constant
false alarm rate (CFAR).

To develop the statistic, we assume a testing window
of K samples and write y(k) = PPG(k)−PPG(k− 1) and

rearrange to obtain a time-concatenated model under each
hypothesis that can be written as

H0 : yyyk = σ0nnn
H1 : yyyk = fff k(α1−1)+111β1 +σ1nnn

(3)

where

yyyk =

 y(k−K)
...

y(k)

 and fff k =

 PPG(k−K−1)
...

PPG(k−1)

 . (4)

We then construct a sufficient statistic for the hypothesis
testing problem in (3) which is invariant to the effect of
the unknown parameters as

t(yyyk) =
111>PPPkyyyk√

111>PPPk111
√

yyy>k PPPk

(
III− 1

K 111111>
)

PPPkyyyk
(5)

where

PPPk = III− fff k fff>k
fff>k fff k

. (6)

In words, we design invariant to the effect of α by projecting
onto the null space of fff k (i.e. multiplying by PPPk).

The sufficient statistic t represents the ratio of the signal
affected by β1 to the signal unaffected by β1 such that the
scaling imposed by σi is canceled between the numerator
and denominator.1 This eliminates the effect of the noise
parameter σi under each hypothesis.

A threshold test φ is then employed to decide between the
hypotheses:

φ(yyyk) =

{
H0 if t(yyyk)≥ η

H1 else (7)

φ(yyyk) is CFAR since the distribution of the statistic t is in-
variant to the unknown parameters under the null hypothesis.
A CFAR detector is desireable as it has a constant probability
of deciding H1 when H0 is actually true, regardless of the
unknown parameters.

C. PPG Waveform Preprocessing

The PPG waveform is known to contain artifact associ-
ated with movement, spontaneous breathing, clipping, and
missing data. The removal of PPG waveform artifact is an
open area of research [14], [20]. Consistent with [8], [12],
[25] we observe that without artifacts, the dominant non-
DC frequencies of the PPG waveform correspond to the
fundamental frequency of the heart rate and its harmonic
frequencies. As test in (7) only requires the sampled average
PPG waveform, PPG, we can employ this observation to
generate the sampled average PPG waveform at each time
step k, PPG(k), corresponding to a T second time window by
dividing the T second window into J sub-windows of equal
length. We then perform a spectral analysis via the fourier
transform of each sub-window. The sub-window’s data is

1Due to space constraints, a detailed derivation is omitted, but follows
closely the formulation in [23].



only included in the sampled average if the maximum non-
DC frequency in that sub-window is likely to correspond
to the heart rate. In the event that too many sub windows
do not meet the criteria, we treat the sampled average at
that time as a missing measurement. Formally, this process
is described in the following algorithm (assuming ω =
exp{−i2π/N} and N0 and J0 correspond to the minimum
heart rate frequency and minimum number of sub-windows
which must be included in the average, respectively):

Algorithm 1 PPG preprocessing algorithm

1: procedure PPG–PREPROCESSING
2: PPG(k+1) =−1, S = 0, J = 0
3: for each sub window j ∈ {0, . . . ,J−1} do
4: for each frequency l ∈ {0, . . . ,N−1} do
5: Xl, j = ∑

N−1
n=0 PPG(τ (kJN + jN +n))ωnl

6: end for
7: l̂ = argmaxl∈{1,...,N−1}Xl, j

8: if l̂ > N0 then S += 1
N Xw,0 and J ++

9: end if
10: end for
11: if J > J0 then PPG(k+1) = S

J
12: end if
13: end procedure

III. RESULTS AND DISCUSSION

A. Data used for Evaluation

We evaluated the proposed technique over hypovolemic
and non-hypovolemic patients drawn from the matched sub-
set of the Physionet MIMIC II Waveform Database [21],
[22]. The matched subset allowed us to use nursing notes
to find annotated times of suspected hypovolemia and sub-
sequent fluid administration. To select non-hypovolemic pa-
tients, we chose patients from the database who had PPG
waveforms, did not die, and had four or fewer ICD9 codes.

To select patients with a high likelihood of hypovolemia,
we searched for patients with documented hypovolemia
ICD9 codes on discharge with accompanying notes docu-
menting approximate time of suspected hypovolemia. From
these patients, we selected those who did not die and who
had available PPG waveforms. Time of hypovolemia was
annotated as the timestamp of the note describing suspected
hypovolemia in the patient’s file. We ran the algorithm only
on data from the ICU stay with documented hypovolemia.
Probability of false alarm was set to 4 false alarms per day.

B. Parameter Invariant Results

The results of running the proposed technique on each
patient’s PPG data can be found in Table I. For all seven
hypovolemic patients, our detector presented a higher-than-
average number of alarms within a 24 hour envelope of first

documented hypovolemia. 2 A number of the hypovolemic
patients had alarms prior to documented suspicion of hypov-
olemia. Several also had alarms long after. We consider these
other alarms inconclusive, as no clear indication of when
hypovolemia ended for these patients. Total alarm duration
for these seven patients was 189 minutes (3.15 hours) out of
a total time in the ICU of 474.81 hours (19.8 days).

The detector generated alarms for only three of the 18
non-hypovolemic patients. In total, these patients had a total
388.18 hours of ICU time, and experienced 18 alarms. These
alarms had a duration of 196.8 minutes (3.28 hours). One
of these patients (patient 19608) suffered respiratory issues
which we believe may have triggered the false alarms.

IV. CONCLUSION

We have described a method for creating a hypovolemia
detector robust to artifact and noise by employing parameter
invariant statistical techniques to PPG waveforms. Prelimi-
nary tests on retrospective patient data suggest the proposed
detector produces alarms near and before time of diagnosed
hypovolemia while producing few false alarms in healthy
patients, and seems to perform better than PVI, a state of
the art method, over these patients. The proposed approach
seems to perform well over noisy data with artifact, making
it particularly applicable to clinical intensive care settings.

Though the size of the patient data set was too small
to assess definitive sensitivity or specificity, the results are
promising. We hope to further expand the data set to provide
a more robust assessment of the technique. To improve the
technique’s predictive power, future work will investigate ex-
tracting more features from the PPG waveform and applying
parameter invariance, as well as the possibility of using other
waveforms to improve preprocessing artifact detection.
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