
A Stochastic Approach for Attack Resilient UAV Motion Planning

Nicola Bezzo, James Weimer, Yanwei Du, Oleg Sokolsky, Sang H. Son, Insup Lee

Abstract— In this paper we propose a stochastic strategy for
motion planning of unmanned aerial vehicles (UAVs) subject
to malicious cyber attacks. By injecting erroneous information
and compromising sensor data, an attacker can hijack a system
driving it to unsafe states. In this work we bear on the problem
of choosing optimal actions while one or more sensors are not
reliable. We assume that the system is fully observable and one
or more measurements (however unknown) return incorrect
estimates of a state. We build an algorithm that leverages the
theory of Markov decision processes (MDPs) to determine the
optimal policy to plan the motion of a UAV and avoid unsafe
regions of a state space. We name Redundant Observable MDPs
(ROMDPs) this class of markovian processes that deal with
redundant attacked measurements. A quadrotor case study
is introduced and simulation and experimental results are
presented to validate the proposed strategy.

I. INTRODUCTION

In recent years autonomous robotic systems are becom-
ing more and more popular for both civilian and military
operations. Thanks to the continue growing of sensing and
computation capabilities, this class of cyber-physical systems
can perform complex missions in unknown environments,
with small or even inexistent user interactions. However
this increase in functionality is also introducing security
vulnerabilities which can compromise the integrity of the
system. In fact not only a robot has to deal with noisy
measurements from its sensors and possible disturbances
from the environments, but nowadays, also malicious attacks
on the sensing and communication infrastructure of the
system need to be taken into account to avoid reaching unsafe
regions of a state space. In this work we consider a way-point
navigation case study for an unmanned aerial vehicle (UAV)
that needs to fly between two locations within a certain
environment. In normal conditions (not attacked) the robot
will periodically estimate its location using GPS, cameras,
and inertial sensors and compensate for disturbances (e.g.,
wind) to reach its desired goal. If the measurements noise
and disturbances are high, the controller may not be robust
enough to drive the UAV to the final goal. If now we
also consider that a malicious attack could hide within the
measurements noise and disturbance, the system will be
confused about its state which could lead to an action in
favor of the attacker - e.g., the attacker hijacks the robot to
a third unwanted location. Examples of these attacks have
already been exploited and demonstrated with real vehicles

Nicola Bezzo is with the Department of Systems and Information
Engineering, University of Virginia, Charlottesville, VA 22902, USA
nbezzo@virginia.edu

James Weimer, Yanwei Du, Oleg Sokolsky, and Insup Lee are
with the PRECISE Center, Department of Computer and Information
Science, University of Pennsylvania, Philadelphia, PA 19104, USA
{weimerj, duyanwei}@seas.upenn.edu {sokolsky,
lee}@cis.upenn.edu

Sang H. Son is with the Real-Time Cyber-Physical Systems Research
Laboratory, DGIST, Korea son@digist.ac.kr

Fig. 1. Example of mission envisioned in this work: the UAV needs to reach
goal areas (green) and avoid the undesired areas (red) in the environment
while one or more measurements are maliciously compromised by attacks.

like in [1] where a GPS was spoofed hijacking a yacht off
route.

Fig. 1 shows an example of a waypoint navigation scenario
in which a quadrotor UAV needs to cross a grid, to reach
a goal point (green areas) and avoid undesired regions (red
areas). If the robot is confused about its current state, an
improper action can drive the system inside the undesired
regions of the workspace. The example displayed in Fig. 1
will be used as a reference for the experimental validations
farther on in this paper.

Thus, within this work we are interested in determin-
ing the optimal actions to take to control an autonomous
robotic system given uncertain estimations of its state, due to
possible attacks on sensor measurements. Problems like the
one described above, can be mapped into Markov decision
processes (MDPs) and applied not only to robotic systems
but to any cyber-physical system that consists of sensor
measurements for state estimation, like power plants, medical
systems, and transportation systems. The proposed technique
in this paper, named Redundant Observable Markov Decision
Process (ROMDP) considers uncertainties in the actions and
leverages redundant sensor measurements with partially com-
promised observations (partially here is in terms of number
of sensors that return different observations) to determine
the optimal action to take and minimize the probability
of reaching undesired regions of a workspace. Note that,
differently from partially observable MPDs (POMDPs) in
which a system is not capable of observing its state for a lack
of estimation information, within our strategy we consider
that at least one of the observations (not known a priori)
contains complete knowledge of the state.

The contribution of this paper is threefold: i) we develop
an algorithm that leverages MDPs to find the optimal plan-
ning policy when malicious attacks on one or more sensors
are present, ii) the proposed technique works as a worst case

2016 American Control Conference (ACC)
Boston Marriott Copley Place
July 6-8, 2016. Boston, MA, USA

978-1-4673-8682-1/$31.00 ©2016 AACC 1366

attack-resilient controller dealing with up to N − 1 sensors
under attack, and iii) we validate the proposed technique
through extensive simulations and hardware implementations
on a quadrotor UAV.

The rest of the paper is organized as follows. In Section
II we review some of the recent literature on the topics of
attack detection and estimation. In Section III we formally
define the problem under investigation followed by details
about the ROMDP algorithm in Section IV. A quadrotor case
study is then presented in Section V outlining simulation
results under sensor attacks with noisy measurements and
environment disturbances, followed by an indoor experiment
with a self localizing UAV architecture. Conclusions and
future work are finally drawn in Section VI.

II. RELATED WORK

The study of high assurance vehicular systems is a recent
topic that is attracting several researchers in both the control
and computer science communities. Malicious attacks are
defined as adversarial actions conducted against a system
or part of it and with the intent of compromising the
performance, operability, integrity, and safety of the system.
The main difference between failure and malicious attack is
that the former is usually not coordinated while an attack is
usually camouflaged or stealthy and behaves and produces
results similar or expectable by the dynamics of the system
and environment disturbances.

Even though this area of study is still at an early stage,
some preliminary work on vehicular security was performed
in [2] in which the authors showed through intensive exper-
iments on common cars, that an attacker could take over
a vehicle and compromise its safety. Specifically it was
shown that the CAN bus system is unprotected and several
functionalities of a car can be controller and accessed by
different devices in the vehicle.

Standing from a control perspective, authors in [3] propose
a resilient consensus algorithm based on receding-horizon
control to deal with replay attacks between an operator and
a remotely controlled unmanned ground vehicle. In [4] the
authors use plant models for attack detection and monitoring
in cyber-physical systems. In [5], motivated by SCADA
system security control, the authors incorporate knowledge
of the physical system under control to detect cyber attacks
that change the behavior of a control system.

For deterministic linear systems this problem of attack
detection and estimation has been mapped into an l0 op-
timization problem in [6]. In [7] we leverage the work in
[6] and present a state estimation method for linear systems
in the presence of attacks showing that an attacker cannot
destabilize the system by exploiting the difference between
the model used for the state estimation and the real physical
dynamics of the system. In [8] we propose a recursive
implementation based on the linear-quadratic estimator in
which together with the update and predict phases a shield
procedure is added to remove the malicious effects of attacks
on noisy sensor measurements.

In this paper we move one step forward by considering
sensor attacks on stochastic systems with input-output prob-
abilistic models. To solve this problem we leverage the theory
of MDP [9], [10] to obtain an optimal planning policy.

III. PROBLEM FORMULATION

Within this work we are interested in finding an optimal
strategy to maximize the probability that a robot under mali-
cious attack can reach a desired state without being hijacked.
We assume that the robot dynamics can be represented as
a discrete-time linear time-invariant (LTI) system of the
following form

xk+1 = Axk +Buk + dk,
zk = Cxk + νk,
yk = zk + λk,

(1)

where xk ∈ Rn, uk ∈ Rm, and dk ∈ Rm are the state
vector, control inputs, and disturbance at time k respectively.
The disturbance is considered bounded, meaning that we
assume a maximum disturbance above which value, the
robot becomes unstable or uncontrollable. zk is the set of
measurements without the effects of attack while yk =
[yk,1, yk,2 . . . yk,N] ∈ RN is the sensor measurements vector
with attack where yk,i ∈ R is the measurement taken by the
ith sensor at time k. λk is the attack vector in which each term
represents an attack of magnitude ‖λk,i‖. The attack vector
is assumed to be arbitrary, but stealthy i.e., hidden within
the noise and disturbance profile of the system. Finally, the
sensor measurement noise νk = N (0, V, eν) is expressed as
a truncated Gaussian random variable (i.e., bounded normal
distribution) with maximum error eν .

Given {sgoal, sbad} ∈ S with S a finite set of states of the
world, our problem for this work can be expressed as follows

Problem 1: Optimal Planning against Attacked Sen-
sors in Stochastic Systems Given a vehicle with N sensors
measuring state s ∈ x while one or more sensor measure-
ments yi ∈ y are maliciously compromised by an adversarial
attacker, find the optimal action policy π that maximizes the
probability that the system can reach a desired state sgoal

without being hijacked to sbad.
In our previous work, [7], [8], an upper bound on the

maximum tolerable number of attacked sensors was imposed
equal to N/2 to provide attack-resiliency guarantees. In
this work we relax this constraint and consider a worst
case scenario where up to N − 1 compromised sensors are
allowed. This scenario is considered as the extreme case,
since to have all sensors attacked would imply a completely
unobservable system from which it is impossible to estimate
a state.

IV. REDUNDANT OBSERVABLE MARKOV DECISION
PROCESSES

In this section we outline a novel algorithm for solving
Markov decision processes (MDPs) when one or several
measurements (up to N − 1) return incorrect observations
of the world. The technique that we derive in this work
deals also with sensor faults; however, here we are far more
interested in the attack scenario where an attacker could drive
the system to undesired/unsafe states (e.g., a bad region of
a workspace) while hiding under the expected disturbance
and noise model dynamics of the system. POMDP could be
used to solve our problem but it would be an unnecessary
and unpractical over-complication. The ROMDP approach
presented next leverages MDP making the problem more
computationally efficient while guaranteeing optimality.

1367

A. ROMDP Framework

The Redundant Observable MDP (ROMDP) framework
attempts to solve the problem of computing the best policy
to safely navigate a UAV when its measurements are not
consistent because under attack.

A ROMDP can be described as a tuple 〈S,A,P,R,O, C〉
where:
• S is a finite set of states of the world;
• A is a finite set of actions;
• P : S × A → Γ(S) is the transition probability:

a function mapping elements of S × A into discrete
probabilities distributions over S. Specifically we will
represent Pa(s, s′) = Pr(sk+1 = s′|sk = s, ak = a)
as the probability that action a in state s at time k
will result into state s′ at time k + 1. This mapping
is crucial to take into account the possible effects that
any disturbance can have on the system;

• R : S × A → R is the reward function that specifies
the instantaneous reward received by taking each action
at each state. Ra(s) is the reward received by taking
action a from state s;

• O is a finite set of weighted observations that follows
a certain action a. For instance Ok = {si,Ni , sj,Nj}
indicates that two states, si and sj were observed after
taking N measurements at time k. si was recorded Ni
times and sj , Nj times with N = Ni +Nj ;

• C : O → Γ(S) is a confidence function mapping
elements of O into discrete probabilities distributions
in S. We will use C(s) to represent the probability that
the robot is in state s given the observation O.

Specifically here O and C are the two elements added from
the conventional definition of MDP.

A naive approach for calculating C is to classify O based
on the number of different observations for each state and
evenly divide the probability among the observed states.
This approach however does not consider the difficulty of
attacking multiple sensors and can be limiting in scenarios
where a system has several sensors. Thus, a better model is to
consider that attacking multiple sensors is more complicated
and less probable, which increases the probability associated
with the state that receives more observations and decreases
the confidence for the state that is observed the least. The
transition probability for these scenarios, which we call
transition confidence will have the following form

Definition 1: Transition Confidence If starting from a
state s and choosing action a, a system observes different
states si ∈ O, each with a confidence probability C(si) s.t.∑
si∈O C(si) = 1, then the transition probability to state s′

which we call transition confidence becomes

Pa(O, C, s′) =
∑
si∈O

Pr(s′|si, C(si), a)=
∑
si∈O

C(si)Pa(si, s
′)

(2)
Given these premises, our ROMDP framework follows the
MDP process in which a measure of the cumulative future
received reward is maximized over a finite or infinite horizon.
Within a finite-horizon approach the system has a finite
lifetime K which in the majority of cases is known and
can be approximated while, if an infinite-horizon approach

is chosen, K =∞. More specifically we have

E

[
K∑
k=0

γkrk

]
(3)

in which the rewards are summed over the lifetime of
the system, but discounted geometrically using the discount
factor 0 < γ < 1. Finally the robot should act as to maximize
(3). The larger the discount factor, the more future rewards
affect the current decision making. Since we are considering
a Markov process, the current state and action are the only
mean to predict the next state. In order to find the best action
at each state, a policy π, mapping S → A, is necessary to
describe the behavior of the robot. Therefore πk will be the
policy to be used to choose the action ak on state sk, from
the kth time to K. Let Vπ,k(s) represent the expected sum
of rewards gained by executing policy πk from state s, then
the kth value associated with policy πk from state s is given
by

Vπ,k(s) = Rπk(s)(s) + γ
∑
s′∈S
Pπk(s)(s, s

′)Vπ,k−1(s′) (4)

which means that to evaluate the future, we need to consider
all resulting states s′, the probability of their occurrence
Pπk(s)(s, s

′) and their value Vπ,k−1(s′).
If the robot is not able to determine its state with complete

reliability, we need to consider all possible outcomes when
implementing a certain policy π, to better select the optimal
action a to take. Following our ROMDP formulation above,
we can modify (4) to consider uncertainties in the observa-
tions due to malicious attacks, as follow

Vπ,k(O) = Rπk,O + γ
∑
s′∈S

∑
si∈O

C(si)Pπk
(si, s

′)Vπ,k−1(s′)

(5)
with

Rπk,O = Rπk
(O) =

∑
si∈O

C(si)Rπk
(si) (6)

Equation (6) represents the expected reward the system
receives using policy πk given a certain confidence that the
robot is in a certain state s. A mapping from O to S will
give the identity Vπ,k(si ∈ O) = Vπ,k(O) ∀si ∈ O. This
mapping is necessary to project the obtained values back
into the original state space S.

So far we have derived a formula to calculate a value
function given a policy. We are now interested in deriving
a policy based on the value function. A greedy policy with
respect to the value function in (5) is defined as

πV (O)=arg max
a

[
Ra,O+γ

∑
s′∈S

∑
si∈O

C(si)Pa(si, s
′)Va(s′)

]
which represents the policy obtained at every step taking the
action that maximizes the expected immediate reward and
the discounted value of the next state. The optimal policy
at the kth step, π̂k is achieved from the (k − 1) step value
function V̂k−1 = Vπ̂k−1,k−1(s′).

π̂k(O)=arg max
a

[
Ra,O+γ

∑
s′∈S

∑
si∈O

C(si)Pa(si, s
′)V̂k−1

]

1368

Now, let’s introduce the following result in MDP, which
is also applicable herein for our ROMDP formulation.

Proposition 1: Blackwell Optimality In any ROMDP
with finitely many states S and finitely many actions A, there
is a stationary policy π̂ that is optimal for every discount
factor γ that tends to one.
We omit here the proof for the Blackwell optimality since it
follows the same proof applied to MDP, found in [11]. Thus,
using this result, since the state space and actions are finite,
there exists an optimal stationary policy π̂(O) from which
the optimal value function V̂ (O) is defined as

V̂ (O)=max
a

[
Ra,O+γ

∑
s′∈S

∑
si∈O

C(si)Pa(si, s
′)V̂ (s′)

]
(7)

It is important to note that if at any time, all observations
are superimposing (i.e., only one state is observed at each
iteration), then we are in the classical MDP scenario with
O = {s} and C(s) = 1. Solving (7) can be computationally
expensive especially for large state and action spaces. Fortu-
nately, there are several methods in the literature for finding
optimal MDP policies using finite horizon iterations [12], [9].
The most common way is to use the value iteration process
that computes iteratively the sequence V̂k of discounted
finite-horizon optimal value functions in (7). The iterative
algorithm presented below computes improved estimates of
the optimal value function in ROMDPs.

Algorithm 1 ROMDP Value Iteration Algorithm
1: k ← 1
2: Vk(s)← 0 ∀s
3: while k ≤ K or |Vk(s)− Vk−1(s)| ≥ ε ∀s ∈ S do
4: k ← k + 1
5: for all s ∈ S and a ∈ A do
6: Qa,k(s)← Ra(s) + γ

∑
s′∈S Pa(si, s

′)Vk−1(s′)
7: Vk(s)← maxaQa,k(s)
8: end for
9: if O is not a singleton then

10: Qa,k(O)←Ra(O)+γ
∑
s′∈S Pa(O, C, s′)Vk−1(s′)

11: Vk(O)← maxaQa,k(O)
12: end if
13: end while

Using this framework, a system acts in order to maximize
the expected sum of rewards that it gets on the next k
steps. Selecting an improper reward function value may lead
to different actions. If the objective is to avoid undesired
states, the reward for these undesired states has to be large
and negative (approaching -∞) as described in the following
lemma.

Lemma 1: Necessary and Sufficient condition for Re-
siliency in ROMDPs At every time k a system modeled as
a ROMDP is able to avoid an undesired state sbad at k + 1
if (necessary condition) ∃ a ∈ A s.t. Pa(O, sbad) = 0 and
it is guaranteed to avoid an undesired state sbad at k + 1
if (sufficient condition) one of the following conditions is
satisfied:

1) the transition probability associated with sbad is null
or more formally ∀ a ∈ A, Pa(O, sbad) = 0.

2) the necessary condition is satisfied and the reward
associated to sbad is a sufficiently large negative value,
more specifically if R(sbad) < − R(sgoal)

minC(s)Pa(s,s′)

Proof: Necessary Condition: The proof is straightfor-
ward and can be derived by using the transition probability
definition.

Proof: Sufficient Condition: The proof for condition 1)
is intuitive. To guarantee the second sufficient condition we
need to satisfy the following inequality

Rai(O) + γ
∑

s′∈S\sbad

∑
si∈O

C(si)Pai(si, s′)V̂ (s′)

+ γ
∑
si∈O

C(si)Pai(si, sbad)R(sbad)

< Raj (O)+γ
∑
s′∈S

∑
si∈O

C(si)Paj (si, s
′)V̂ (s′) (8)

Now, assuming worst case scenario, (8) becomes

min
C,Pa

[C(s)Pa(s, s′)]R(sbad) +R(sgoal) < 0 (9)

in which, we have assumed Rai = Raj since normally
the workspace is uniform with the same reward everywhere
besides at the goal and the areas to avoid. Thus, we have
obtained the inequality for the second sufficient condition of
the lemma.

Although the conditions for Lemma 1 are limit cases, a
system will always try to maximize its reward and thus take
an action that minimizes the probability of reaching sbad. As
it will be shown in the simulation results in Section V-C,
an improper selection of the parameters in (7) can lead to
unsafe situations.

V. QUADROTOR CASE STUDY

The case study investigated in this paper is a motion
planning way-point navigation mission in which a quadrotor
aerial vehicle needs to cross a workspace from a starting
point to a desired goal avoiding undesired locations.

A. Quadrotor Model and Controller

Fig. 2 shows the coordinate system and free body diagram
for modeling the quadrotor dynamics. The quadrotor center
of mass in the inertial frame is specified by the position
vector x =

[
x y z

]T
. The roll, pitch, and yaw Euler

angles, φ, θ, and ψ, specify the quadrotor attitude and the
body angular velocity is then defined as the rate vector
ω =

[
p q r

]T
, [13], [14].

Fig. 2. Quadrotor and World frames.

1369

The controller is derived by linearizing the equations
of motion and motor models at an operating point that
corresponds to the nominal hover state x = {x, y, z}, θ = 0,
φ = 0, ψ = ψ0, ẋ = 0 and φ̇ = θ̇ = ψ̇ = 0 with roll
and pitch angles small. The nominal values for the inputs at
hover are u1 = mg, u2 = u3 = u4 = 0.

In order to control the quadrotor to follow a desired
trajectory, we use the architecture in Fig. 3.

Fig. 3. Diagram of the overall controller used on a quadrotor for ROMDP
operations.

The position control is used to track a desired trajectory
ξ characterized by xξ(t) and ψξ(t). Using a PID feedback
controller on the error ek = (xk,ξ − xk) we can control
the position and velocity of the quadrotor to maintain a
desired trajectory. After linearization, we can obtain the
relationship between desired roll and pitch angles and desired
accelerations as follows

φdes =
1

g

(
ẍdes sin(ψξ)− ÿdes cos(ψξ)

)
(10)

θdes =
1

g

(
ẍdes cos(ψξ) + ÿdes sin(ψξ)

)
(11)

and
u1 = mg +mz̈des (12)

Finally, the attitude control is realized using a PD con-
troller as follows u2

u3
u4

 =

 kp,φ(φdes − φ) + kd,φ(pdes − p)
kp,θ(θ

des − θ) + kd,θ(q
des − q)

kp,ψ(ψdes − ψ) + kd,ψ(rdes − r)

 (13)

B. Environment Setup
The environment configuration plays an important role in

ROMDPs. The state space is discretely represented as an
occupancy grid which maps the environment as an array
of cells each representing a state and holding a probability
value associated with the action taken by the robot. The
minimum size of the cell has to be greater than the maximum
displacement we can record due to measurements noise.
Choosing small cells has the benefit that the robot could
have a finer estimate of its state, however, fewer cells in the
environment allows for a faster computation of the ROMDP
algorithm. A better strategy which we plan to investigate in
future work is to have adaptive cells whose size changes over
time based on the observed state. Fig. 4 shows an example
of occupancy grid for the missions considered in this work.
Green colored cells represent the goals to reach while red
colored cells are areas to be avoided.

At each step the vehicle will make some observations and
compute Algorithm 1 that will produce the optimal action to
perform. We define a finite set of primitive actions as follows

Fig. 4. Example of discretized environment. Each cell represents a
different position state. Moving forward from state A5, the quadrotor has
0.8 probability of reaching B5 and 0.2 probability of reaching B4 and B6.

• A = { move forward (F), move backward (B),
move left (L), move right (R) }.

Each action is mapped into the position and attitude control
described in the previous section. Specifically here {F,B}
is mapped into u3 and {L,R} into u2 control inputs. Asso-
ciated with each action there is a transition probability Pa.
If there are not disturbances in the environment, each action
will make the quadrotor move to the next cell in the direction
of the action. Since UAVs often exhibit position drifts due to
noise and disturbances, here we build a stochastic model of
the disturbance effect on each action. Specifically we assume
that there is a probability Pa(s, s′) that the UAV will end up
in the desired state s′ from s, and 1− Pa(s, s′) probability
to reach either adjacent cells of s′ (s′−1 or s′+1), as shown
in Fig. 4.

C. Simulation Results
This section presents a series of Matlab simulation results

on the ROMDP framework applied to a waypoint navigation
case study for a quadrotor vehicle.

In the first simulation in Fig. 5, a 5×5 cells environ-
ment with 3 goal states sgoal and 2 undesired states sbad

is presented. Associated with each goal cell there is a
reward Ra(sgoal) = 100 while for the unwanted cells
Ra(sbad) = −1 × 1018. For all other freespace locations
of the environment Ra(s) = −5. Pa(s, sdes) = 0.8 and
Pa(s, sdes − 1) = Pa(s, sdes + 1) = 0.1, as depicted in
Fig. 4. Three position sensor measurements are available. A
mismatch in the sensor measurements (i.e., multiple incon-
sistent observations) is displayed with gray colored cells. The
first row of Fig. 5(a-e) displays consecutive snapshots for the
motion of the quadrotor from state to state. The second row
(f-j) shows the set of actions associated with the first row and
calculated via the ROMDP algorithm presented in this paper.
In Fig. 5(b,c) two of the three sensors are compromised. The
attack is stealthy hidden within the disturbance model and it
manifests as two measurements on the adjacent cell from the
actual position of the quadrotor. The effect of the ROMDP
is clearly visible in Fig. 5(d) and the corresponding action
policy (i) in which the quadrotor chooses to move forward
instead of going right. In fact, since the robot is undecided
about its position, it considers both observations in Fig. 5(d)
as reasonable: moving right in that particular case results in
2/3×0.1 = 0.067 probability of ending inside one of the bad
areas. Although, this is a small chance, the controller decides
to move forward and then to conclude safely the mission in
Fig. 5(e). Fig. 6 shows the velocities of the quadrotor for

1370

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 5. Simulation results of the ROMDP algorithm implementation on a quadrotor waypoint navigation. The second row shows the computed action
policy relative to the steps on the first row.

the mission presented in Fig. 5. Each “bump” in the two
plots of the figure represents an action taken by the ROMDP
controller. The sequence of actions for the mission in Fig. 5
is {R,R,R, F, F,R}.

Fig. 6. Quadrotor x and y velocities

Fig. 7 shows a more complex simulation result in which
disturbance (e.g., wind) is injected in the negative y direction
drifting the quadrotor away from its path. Fig. 7(a) displays
the cumulative trace of the attacked measurement (gray
colored cells) in comparison with the actual path of the
quadrotor. The attacker tries to leverage the disturbance
effects, making the quadrotor believe that it is in a safe
location, while it is actually in a cell where a lateral motion
could send it inside the undesired red cell. The resilient
ROMDP algorithm intervenes moving the robot forward and
then right (Fig. 7(b)) where, although the disturbance, it
reaches the desired goal.

Finally, both Table I and Table II summarize some sim-
ulation results run with different parameters and different
environment setups. The first row of the table shows
the setup for the goal and bad areas while the remaining
cells of the environment have the same uniform reward
(R(sfreespace) = −5). Last column shows the outcome from
the simulations: “goal” means that the quadrotor was able
to reach the goal, “bad” means that it run inside one of
the bad regions, and “lm” means that it got stuck in a local
minimum. As the reder can observe, the results on this tables

(a) (b)
Fig. 7. Simulation results with environmental disturbances in the -y
direction.

TABLE I
5×5 AREA, 3 GOOD CELLS, 2 BAD CELLS, ATTACK ON THE LEFT

Case γ R(sgoal) R(sbad) R(sfreespace) Result
1 0.1 100 -1.0e18 -5 goal
2 0.1 1.0e6 -100 -5 bad
3 0.5 100 -1.0e18 -5 goal
4 0.5 1.0e6 -100 -5 bad

TABLE II
5×5 AREA, 1 GOOD CELL , 4 BAD CELLS, ATTACK ON THE RIGHT

Case γ R(sgoal) R(sbad) R(sfreespace) Result
1 0.1 100 -100 -5 goal
2 0.5 100 -1.0e18 -5 lm
3 0.5 1.0e6 -100 -5 bad

conforms with Lemma 1. If R(sbad) is sufficiently negative,
the robot is always guaranteed to avoid sbad, which means
that sometime it can get trapped in local minima to avoid
any risk of reaching undesired states.

1371

D. Hardware Implementation
Preliminary indoor experiments using an AR.Drone 2.0

Parrot quadrotor [15] were implemented with different envi-
ronment setups. Here we show the results for one of these
implementations on a 3 × 3, 3.6 m2, cells environment, as
depicted in Fig. 1. The Parrot is equipped with two cameras
(front and underneath), a sonar facing downward, and an
IMU. Onboard, the vehicle has limited computational power
allowing only low-level attitude control, leaving the position
control and ROMDP algorithm presented in this paper on a
base station linux-based machine. The base station laptop
is equipped with a quad-core i7 CPU running the Robot
Operating System (ROS) [16]. The linux box communicates
with the quadrotor using standard Wi-Fi protocol at an
average rate of 200 Hz. The high level position estimator is
implemented with an Extended Kalman Filter (EKF) which
fuses together vision, inertial, and sonar measurements, as
described in [17]. To implement our ROMDP strategy we
need at least two position measurements. Because the Parrot
has limited capabilities, we duplicated the measurement as
if two measurements were propagated from the quadrotor
to the base station. Then one of these measurements was
attacked. The environment setup for this experiment follows
Fig. 1 with 2 goal cells and 2 undesired cells. Fig. 8
shows the position estimates from both the good and the
attacked sensors in comparison with the desired position
command, all recorded during the hardware implementation.
The quadrotor was under attack starting from its initial state
for two consecutive steps in the y direction (middle plot
in Fig. 8). The optimal sequence of actions chosen by the
ROMDP solver was {L,F, F}.

Fig. 8. Position estimate for the ROMDP quadrotor experiments.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a stochastic approach
for optimal planning under malicious attack on sensors. Our
ROMDP framework leverages the MDP theory to obtain an
optimal policy (i.e., actions) to drive a vehicle that has not
consistent observations of the world. We use redundancy in
the sensor measurements considering sensor attacks hidden
within the disturbance profile of the system. Resiliency
against attacks is achieved by properly selecting the reward
function thus avoiding actions that could hijack the vehicle
to undesired regions of a state space. As demonstrated in
the simulation and experimental results, this technique is
especially advantageous for systems that are highly sensitive
to environmental disturbances like aerial vehicles that are
affected by weather perturbations. The main drawback of
this approach is that, because it leverages MDP, it is com-
putationally expensive, growing with the number of actions
and the square of the number of states.

Future work will be centered on: i) studying the environ-
ment topology and performing reachability analysis, ii) using
model checkers, like PRISM [18] to analyze ROMDPs and
iii) analyzing different disturbance and attack models.

ACKNOWLEDGMENTS

This research was supported in part by Global Research
Laboratory Program (2013K1A1A2A02078326) through
NRF, by the Institute for Information & communications
Technology Promotion (IITP) grant funded by the Korean
government (MSIP) (No. B0101-15-0557, Resilient Cyber-
Physical Systems Research), and by NSF CNS-1505799
and the Intel-NSF Partnership for Cyber-Physical Systems
Security and Privacy. This material is based in part on
research sponsored by DARPA under agreement number
FA8750-12-2-0247.

REFERENCES

[1] “Spoofers Use Fake GPS Signals to Knock a Yacht Off
Course. http://www.technologyreview.com/news/517686/spoofers-use-
fake-gps-signals-to-knock-a-yacht-off-course.”

[2] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno,
“Comprehensive experimental analyses of automotive attack surfaces,”
in Proc. of USENIX Security, 2011.

[3] M. Zhu and S. Martinez, “On resilient consensus against replay attacks
in operator-vehicle networks,” in American Control Conference (ACC),
2012. IEEE, 2012, pp. 3553–3558.

[4] F. Pasqualetti, F. Dörfler, and F. Bullo, “Attack detection and identi-
fication in cyber-physical systems,” IEEE Transactions on Automatic
Control, vol. 58, no. 11, pp. 2715–2729, 2013.

[5] A. A. Cardenas, S. Amin, Z.-S. Lin, Y.-L. Huang, C.-Y. Huang, and
S. Sastry, “Attacks against process control systems: risk assessment,
detection, and response,” in Proc. of the 6th ACM symposium on
information, computer and communications security. ACM, 2011,
pp. 355–366.

[6] H. Fawzi, P. Tabuada, and S. Diggavi, “Secure estimation and control
for cyber-physical systems under adversarial attacks,” IEEE Transac-
tions on Automatic Control, vol. 59, no. 6, pp. 1454–1467, 2014.

[7] M. Pajic, J. Weimer, N. Bezzo, P. Tabuada, O. Sokolsky, I. Lee, and
G. Pappas, “Robustness of attack-resilient state estimators,” in Proc.
of the 5th ACM/IEEE International Conference on Cyber-Physical
Systems (ICCPS), Apr. 2014, pp. 163–174.

[8] N. Bezzo, J. Weimer, M. Pajic, O. Sokolsky, G. J. Pappas, and I. Lee,
“Attack resilient state estimation for autonomous robotic systems,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2014). IEEE, 2014, pp. 3692–3698.

[9] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press,
2005.

[10] A. R. Cassandra, L. P. Kaelbling, and J. A. Kurien, “Acting under
uncertainty: Discrete bayesian models for mobile-robot navigation,”
in Proc. of IEEE/RSJ International Conference on Intelligent Robots
and Systems, (IROS), vol. 2. IEEE, 1996, pp. 963–972.

[11] M. L. Puterman, Markov decision processes: discrete stochastic dy-
namic programming. John Wiley & Sons, 2009, vol. 414.

[12] M. L. Littman, “The witness algorithm: Solving partially observable
markov decision processes,” Brown University, Providence, RI, 1994.

[13] N. Bezzo, B. Griffin, P. Cruz, J. Donahue, R. Fierro, and J. Wood,
“A cooperative heterogeneous mobile wireless mechatronic system,”
IEEE/ASME Transactions on Mechatronics, vol. 19, no. 1, pp. 20–31,
2014.

[14] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The grasp
multiple micro-uav testbed,” IEEE Robotics & Automation Magazine,
vol. 17, no. 3, pp. 56–65, 2010.

[15] “AR.Drone 2.0 Parrot. http://ardrone2.parrot.com.”
[16] “Robotic Operating System. http://www.ros.org.”
[17] J. Engel, J. Sturm, and D. Cremers, “Scale-aware navigation of

a low-cost quadrocopter with a monocular camera,” Robotics and
Autonomous Systems, 2014.

[18] B. Lacerda, D. Parker, and N. Hawes, “Optimal and dynamic planning
for markov decision processes with co-safe ltl specifications,” in
Proc. of IEEE International Conference on Intelligent Robotic Systems
(IR0S). IEEE, 2014.

1372

