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Abstract— As a first step toward the development of
closed-loop medical cyber-physical systems, this paper presents
a monitor for blood oxygen concentration that predicts critical
drops in oxygen levels caused by pulmonary shunts in infants.
Although blood oxygen concentration is one of the most closely
monitored vital signs in modern operating rooms, it cannot be
measured noninvasively and is currently monitored by a time-
delayed proxy—the hemoglobin oxygen saturation. To predict
sharp drops in blood oxygen concentration, we employ available
noninvasive respiratory measurements and build a parameterized
physiological model of the circulation of these gases through
the cardiopulmonary system. Since the model parameters
(e.g., metabolic rate) are unknown and vary greatly across
patients, we utilize a parameter-invariant detector designed
to provide a constant false alarm rate for different patients
regardless of the values of the parameters and robust to missing
measurements. Finally, we evaluate the performance of the
detector on real patient data collected during surgeries performed
at the Children’s Hospital of Philadelphia. As evaluated on 61
patients experiencing a drop in blood oxygen concentration, the
detector achieves a detection rate of about 85% with a potentially
life-saving early warning of 90 s on average. In addition, it
achieves a false alarm rate of 0.95 false alarms per hour (about
0.5% of the tests) across 314 patients who did not experience a
pulmonary shunt.

Index Terms— Medical cyber-physical systems (MCPSs),
parameter-invariant detectors, time-series analysis.

I. INTRODUCTION

THE multitude of sensors and measuring devices in
modern Intensive Care Units (ICUs) and operating

rooms (ORs) present a great opportunity for developing
medical cyber-physical systems (MCPSs) to aid clinicians.
Through analyzing trends and correlations of vital signs over
time, MCPSs provide critical event detections and decision
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Fig. 1. MCPS control loop.

support, thus allowing clinicians to be proactive as opposed
to be reactive in their treatment of patients. Ultimately, these
systems can be used to close the loop in an automated and the-
oretically sound fashion, thereby improving quality of care [2].

Building such an MCPS, however, introduces challenges
at all levels of the typical plant–controller loop (illustrated
in Fig. 1). In particular, deriving accurate plant models can
be difficult due to the complexity of human physiology; even
when models exist, they are often highly nonlinear and para-
meterized by physiological variables that differ across patients,
which makes the precise analysis challenging. In addition,
the model state maps on physiological variables (e.g., oxygen
content in the blood), which cannot be usually sensed noninva-
sively and in real time, thus forcing the use of available proxy
measurements and approximate models. Moreover, there are
stringent requirements on the clinical decision support system,
for example, a detector must not only have a low missed
detection rate but also a low false alarm rate, regardless of the
individual (unknown) patient parameters, since alarm fatigue is
a serious problem in ICUs [3]. Finally, physiological actuation
is restrictive (i.e., only a few points of actuation), often time
delayed, and subject to the clinician’s interpretation of the
situation, which varies with personal experience and intuition.

In this paper, we focus on a first step toward a closed-loop
MCPS, namely, the development of robust detectors for critical
events. Specifically, we address the detection of critical drops
in the oxygen (O2) concentration in arterial blood (denoted by
CaO2 and also referred to as O2 content) caused by pulmonary
shunts in infants. CaO2 is one of the most closely monitored
physiological variables in modern ICUs and ORs, where too
low CaO2 (hypoxia) can lead to organ failure (e.g., brain
damage) and too high CaO2 (hyperoxia) can result in atelec-
tasis (i.e., collapse of the lungs). A pulmonary shunt is a
condition in which only one lung is participating in pul-
monary exchange (i.e., in contact with fresh air); shunts
occur frequently in ORs—they can be natural (e.g., caused by
pulmonary edema) but most often occur during mechanical
ventilation when an endotracheal tube is used. One-lung ven-
tilation, especially in infants with underdeveloped lungs, may
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not supply enough O2 for the body, thus causing sharp drops
in CaO2; therefore, careful monitoring of CaO2 is crucial in
one-lung ventilation scenarios in order to ensure the patient’s
safety.

Currently, CaO2 can be directly measured using blood gas
analysis but this requires drawing blood from the patient and
takes at least several minutes. Instead, clinicians noninvasively
monitor the hemoglobin oxygen saturation in the peripheral
capillaries, denoted by SpO2, which is a good approximation
of the O2 content where it is measured (usually at a finger tip).
However, it takes time (at least tens of seconds) for the blood
to reach the peripheral capillaries, and thus SpO2 is a delayed
measure of the O2 content in other locations. Therefore, a low
CaO2 might not be observed until it is measured through
SpO2, at which point the patient may already be in a critical
state.

Thus, in this paper, we aim to use other available vital signs
in order to predict sharp decreases in CaO2 caused by shunts.
In particular, there are several reliable real-time pulmonary
measurements available, notably the partial pressures of O2
and carbon dioxide (CO2) in inhaled and exhaled air. However,
we are unaware of any models describing the circulation
of gases through the cardiovascular and pulmonary systems.
Therefore, our first contribution is the development of a
parameterized model of the circulation of O2 and CO2 in
both the blood and airways using physics laws and published
physiological data trends in the medical literature. This model
can then be used to develop a detector of critical drops
in CaO2 caused by shunts.

Building such a detector is challenging as the parameters
in the model (e.g., metabolic rate) can greatly vary across
patients and even in the same patient over time. In such cases,
one can still design powerful detectors by deriving tests whose
outcomes are invariant to the values of these parameters [4].
Thus, we can estimate the likelihood of each of the two
hypotheses in question (i.e., shunt or no shunt) and make a
decision which achieves a desired level of false alarm rate for
all patients, thus avoiding outliers with multiple false alarms.

In addition to varying parameters, the detector’s perfor-
mance is also affected by the fact that measurements are
often wrong or missing altogether. These artifacts may be
due to many reasons, including the patient moving or being
temporarily taken off mechanical ventilation. Therefore, rather
than not making a decision at such times, we enhance the
detector’s power by treating such measurements as unknown
parameters and again designing tests whose outcomes remain
the same regardless of these additional parameters.

Finally, we evaluate the detector’s performance using real
patient data collected at the Children’s Hospital of Philadel-
phia (CHOP). For 61 patients experiencing a critical shunt,
the detector correctly detects about 85% of the drops in CaO2,
on average, about 90 s before a corresponding drop in SpO2
was observed. In 314 control patients not experiencing a shunt,
the detector achieved a false alarm rate of about 0.95 false
alarms per hour (i.e., 0.5% of the tests). A full description of
the testing scenario and results is provided in Section VII.

In summary, the contributions of this paper are: 1) the devel-
opment of a physiological model of the circulation of O2 and

CO2 in both the presence and absence of a pulmonary shunt;
2) the first application, to our knowledge, of parameter-
invariant detectors to MCPSs; and 3) a case study evaluation
on real patient data obtained at the CHOP. In addition, the
extensions of this paper over [1] include the handling of
missing and bad measurements as well as an almost doubled
data set that confirms the quality of the developed detector.

The rest of this paper is organized as follows. In Section II,
we describe some of the related work on the MCPS. Section III
formulates the problem considered in this paper and outlines
the current approach, including its deficiencies. In Section IV,
we derive the physiological model, and in Section V, we apply
it to the parameter-invariant detector, which is also enhanced to
handle bad/missing data (Section VI). Section VII presents the
case study evaluation, and Section VIII concludes this paper.

II. RELATED WORK

The purpose and performance of MCPSs for a given
application are closely related to the availability of accurate
models. When available, such models allow researchers to
perform powerful analysis with strong theoretical guarantees;
a few examples include the cardiac pacemaker [5], [6], the
artificial pancreas [7]–[9], and the verification of the infusion
pump [2], [10]. Since a summary of all MCPS applications
is beyond the scope of this review, we leave the in-depth
review of medical monitoring and control to the various
surveys in [11]–[13]. In this section, we review commonly
employed approaches to system modeling and monitoring in
both the contexts of critical pulmonary shunt prediction and
physiological monitoring in general.

Before discussing monitoring techniques that require system
models, we note that the most common monitors in hospitals
use threshold alarms [14]. Threshold alarms monitor a single
physiologic signal as measured by a biosensor [15]. When
the signal crosses a predefined threshold, the system produces
an alarm that can be observed by a clinician. Threshold
alarms are popular because they are simple, they are easy
to implement, and easy for humans to understand. However,
research has shown that single sensor threshold alarms are
severely limited [16]–[18]. Various studies have documented
sensor threshold false alarm rates ranging from 57% to 99% of
all alarms, causing alarm fatigue in caregivers [19]–[21]. Thus,
threshold alarms can ultimately fail to provide clinicians with
a reliable understanding of their patients’ state.

In contrast, developing physiological models, coupled with
the robust monitor design, provides a systematic approach
to incorporating the time history of multiple measurements
into the MCPS. In general, physiological modeling belongs
to the broad class of system identification. System identi-
fication is a well-studied area in control theory and other
domains [22]–[24], where techniques can be broadly classified
as white-box (i.e., first principles) [25], gray-box [26]–[28],
and black-box models (i.e., data driven) [29]–[31].

Physiological modeling is generally performed using com-
partmental modeling [32], which pertains to white-box
and gray-box system identification. In this setting, the
model consists of compartments whose states interact with
each other through differential or time-differenced dynamics
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Fig. 2. Measurement devices currently available to clinicians. (a) Blood gas analyzer [54]. (b) Pulse oximeter [55]. (c) Standard anesthesia machine [56].

(i.e., a state-space model). Depending on the model,
a compartment may or may not correspond to a single physio-
logical location, e.g., a compartment may be used to represent
a single lung, but it may also be used to represent the transport
of blood from the heart to the tissues. Example applications of
these models include the cardiac [33] and insulin-glucose [34]
systems. A fundamental challenge of compartmental modeling
is the balance between physiological accuracy and model
identifiability. On one hand, high-fidelity models accurately
capture patient physiology, but the model parameters may not
be identifiable through the training data; on the other hand,
parsimonious models can be identifiable through the training
data, but their accuracy may be poor. In cases where a balance
between physiological accuracy and model identifiability can
be achieved, classical approaches to robust monitoring can be
applied [35], [36].

Due to the unpredictability of human physiology and the
recent explosion of patient data, data-driven (or black-box)
approaches to medical modeling and monitoring have gained
popularity [37]–[42] and shown improved performance over
competitive techniques [43]. However, there are often practical
challenges to data-driven approaches in the medical domain,
namely, algorithms require rich patient data representing the
entire population with accurate annotations [44]. Satisfying
this constraint is especially difficult in the surgical settings
considered in this work where accurate annotations are not
a primary clinician concern [19], [45]. Moreover, temporal
reasoning over clinical data using data-driven techniques is
still an open area of research [31], [43]. Thus, it is unlikely
that a purely data-driven approach will perform well as a
critical pulmonary shunt predictor, since data are scarce and
frequently missing, and the dynamic response is affected by a
high number of potential variables (e.g., body mass and lung
development) [3], [40], [46].

An alternative approach to handling inaccurate models and
sparse data is the parameter-invariant detector [4]. It uses
maximally invariant statistics to develop tests whose statistical
performance is invariant to the unknown model parameters.
Having invariant statistical performance provides the appealing
feature that these detectors can be specified to have a desired
level of false alarm rate and can alleviate the alarm fatigue
problem [21]. This class of detectors has been shown to work
well in other applications with parameterized models such as
fault detection in networked systems [47], [48] as well as
the development of heating, ventilating, and air conditioning
systems [49] and smart grids [50]. Beyond the applica-
tion of parameter-invariant detectors in [1], more recently

parameter-invariant detectors have been shown to work well
in medical monitoring applications for hypovolemia [51], [52]
and meal detection in type I diabetics [53].

III. PROBLEM FORMULATION

This section formulates the problem addressed in this paper.
We consider infants on mechanical ventilation in an ICU or
OR setting, in which a pulmonary shunt can occur, whether
inadvertently or at the request of the surgeon. In turn, this
could lead to a decrease in CaO2, i.e., the amount of O2
in the arteries, which is especially dangerous in infants who
may have underdeveloped immune systems or limited car-
diopulmonary reserve. We outline the current approach to
monitoring and controlling CaO2 and highlight its deficiency
before stating the precise problem for this work.

A. Current Approach to Monitoring and Control

As described in Section I, clinicians do not have a way to
monitor the values of CaO2 in real time. When suspecting a
problem, they may draw blood from the patient and use it
in a blood gas analyzer [Fig. 2(a)] for extraction of various
properties of the blood, e.g., acidity and partial pressure of
dissolved O2. This process is, however, invasive and time
consuming (ranging from several minutes to more than 30).

As a real-time proxy for CaO2, clinicians monitor the
hemoglobin saturated with O2 in the peripheral capillaries,
i.e., SpO2, which is the percent of hemoglobin binding sites
occupied by O2. SpO2 is measured noninvasively and in real
time (data are recorded every 15 s at the CHOP) by a pulse
oximeter [Fig. 2(b)]. The relation between SpO2 and CaO2 is
indirect and is governed by the oxygen content equation [57]

CaO2 = 1.34SaO2Hb + 0.003PaO2 (1)

where Hb is the amount of hemoglobin in grams per deciliter
of blood, PaO2 is the arterial partial pressure of dissolved
oxygen measured in mmHg (millimeters of mercury), and
SaO2 denotes the arterial hemoglobin oxygen saturation.
Equation (1) shows that for normal values of PaO2 around
80–110 mmHg and Hb around 12–17 g/d L [58], the majority
of O2 is bound to hemoglobin, and hence, SaO2 is a good
proxy for CaO2. Since the hemoglobin oxygen saturation is
constant as blood travels to the peripheral capillaries [58],
clinicians use SpO2 (peripheral capillaries) as a time-delayed
measure of SaO2 (arteries) and, consequently, CaO2. On the
other hand, SaO2 may be different from SpO2 during transient
periods (e.g., following a shunt), and hence, SpO2 may be a
delayed measure of CaO2.
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Delayed detection of low CaO2 causes clinician control
actions to be reactive (versus proactive) and results in the
degraded control of CaO2. Once low CaO2 is detected, the
corrective control action varies with the situation and clinician.
For unintentional pulmonary shunts, the typical control action
is to remove the shunt quickly. For induced pulmonary shunts
on ventilated patients, clinicians can actuate the CaO2 by
adjusting the inspiratory/expiratory pressures, the tidal vol-
ume, and the inspiratory oxygen concentration through the
anesthesia machine [Fig. 2(c)]; however, the applied control
is based predominantly on intuition and previous experience,
and hence, it varies according to the clinician [59].

B. Problem Statement

As described above, the current approach to monitoring
CaO2 is reactive and may lead to late recognition of critical
events and a delayed control response. To improve the control
of CaO2 during the shunt, we observe that in addition to
providing a means to actuate CaO2, the anesthesia machine
provides multiple pulmonary measurements, namely, the par-
tial pressures of O2 and CO2 in inhaled and exhaled air, as
well as tidal volume and respiratory rate. Thus, the problem
addressed in this paper is to develop, using only pulmonary
measurements, a supplemental detector that predicts critical-
shunt-induced drops in CaO2 before they are measured by
the pulse oximeter as low SpO2; such a detector would allow
clinicians to be proactive in their corrective response.

Formally, we assume the patient’s state at sampling time
k, M(k), has one of two discrete modes, shunt or no shunt,
denoted by MS and MNS, respectively. Thus, for any given
time K , we consider a detection window of M consecutive
time steps and write the hypothesis testing problem as

H0(K ) : M(K − M + k) = MNS, 1 ≤ k ≤ M

H1(K ) : M(K − M + k) =
{
MNS, 1 ≤ k ≤ MT

MS, MT < k ≤ M
(2)

where MT is the shunt transition time.1 The following sections
present a solution and evaluation to the hypothesis testing
problem in (2).

IV. PHYSIOLOGICAL MODELING

Solving the hypothesis testing problem specified in (2)
requires discriminatory information regarding the presence or
absence of a pulmonary shunt. Observing that the partial
pressures of O2 and CO2 in the respiratory and cardiovascular
systems are coupled, this section develops a model that relates
the available pulmonary measurements to the shunt dynamics.
To our knowledge, there does not exist a model describing the
dynamics of the circulation of these gases—while nominal
steady-state relationships exist for a healthy human [60],
we are unaware of any model describing the dynamics of
the partial pressures during a typical cycle as well as their
transient response to the occurrence of a shunt. Thus, this
section represents a major contribution of this paper.

1The values of M and MT are presented in Section VII.

Fig. 3. Typical oxygen–hemoglobin dissociation curve [57]. It shows the
shape of the relationship between the partial pressure of dissolved O2 and
hemoglobin saturation.

Note that the development of high-fidelity models in the
MCPS domain is difficult in large part due to varying
physiology over patients and even in the same patient over
time; moreover, physiological variables are often unidentifiable
through available sensors. While discriminatory physiological
models can be learned, this requires rich training data over
the entire patient population, which are unavailable in our
application. Hence, we develop a physiological model for
testing (2) by capturing general trends and first-order effects
as governed by laws of physics and observed physiological
properties in the medical literature. The remainder of this
section develops the model by first presenting physiological
preliminaries and an overview of the physiological dynamics,
followed by mathematical descriptions of the partial pressure
dynamics and the shunt dynamics, respectively.

A. Physiological Preliminaries

We begin by noting that O2 appears in only two forms
in the blood—it is either bound to hemoglobin or dissolved
in the blood, with the contribution of each to the total O2
content governed by the oxygen content equation in (1).
In addition to (1), the relationship between the partial
pressure of dissolved O2 and the hemoglobin saturation is
also described by the oxygen–hemoglobin dissociation curve
(Fig. 3). It shows that when the saturation is high, large
decreases in the partial pressure are correlated with small
decreases in saturation, but there is an inflection point after
which small changes in partial pressures can result in large
changes in saturation. It is important to note that the magnitude
of the dissociation curve varies across patients, but it always
retains the same shape [58]. Thus, by detecting sharp decreases
in the partial pressure of dissolved O2, one can predict the
decreases in saturation and hence in overall O2 content.

Therefore, it seems natural to develop a model for the
partial pressures of O2 in the blood and airways and use
the measured values in exhaled air, also provided in partial
pressures. However, developing a model for O2 is difficult
due to the fact that there is no known closed-form expression
for its diffusion, which is the movement of gases between
the blood and air in the lungs. While diffusion has a known
differential equation governed by Fick’s first law, solving it is
not possible due to insufficient blood measurements.
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Fig. 4. Simplified schematic of CO2 partial pressures in the respiratory and
cardiovascular systems.

TABLE I

CARDIOPULMONARY PARTIAL PRESSURES OF CO2

On the other hand, it is possible to build a complete model
for the partial pressures of CO2, which has diffusion properties
better suited to the development of such a model. In addition,
the partial pressure of CO2 is closely related to the O2 content
in the blood—as described in the following sections, in a
patient with large lung capacity, a shunt may not lead to a
decrease in the O2 content and may only cause a small increase
in the partial pressure of CO2; however, in an infant with low
lung capacity, a shunt will cause both a drop in O2 content and
a large increase in the partial pressure of CO2. Thus, detecting
sharp increases in the partial pressure of CO2 correlates with
detecting decreases in the O2 content.

B. Overview of Physiological Dynamics

To overview the modeled physiological processes, consider
the simplified schematic model of the cardiovascular and
respiratory systems, as shown in Fig. 4.2 In the following
overview, when a physiological location is described, the
variable denoting the corresponding partial pressure of CO2
is introduced in parentheses. For reference, all variable names
and the corresponding locations are listed in Table I.

2Note that for better illustration, Figs. 4 and 5 show the pulmonary veins
merging before entering the heart, whereas in healthy humans, they connect
to the left atrium directly.

The cycle begins with inhalation (Pi CO2) as air travels to
the lungs and the alveoli; we distinguish between the partial
pressures in the alveoli on the left-hand and right-hand sides
(PL

ACO2 and PR
ACO2, respectively) as those may be different

if there are differences between the two lungs (e.g., during
a shunt, as will become apparent in Section IV-D) [58].
Gases enter the blood stream through diffusion in the alveoli
and the pulmonary veins on both sides (PL

v CO2 and PR
v CO2,

respectively). When the blood in the pulmonary veins reaches
the heart, it is pumped in the arteries (PaCO2) [58]. The
arteries take the blood to the peripheral capillaries (PpCO2),
where metabolism occurs and converts O2 into CO2 [58].
Following metabolism, the blood enters the veins (PvCO2) and
is carried back to the heart, thus finishing the cardiovascular
cycle [58]. Finally, the pulmonary cycle ends with expiration
(PeCO2) [58].

It is important to note that the high diffusive capacity
of CO2 ensures that diffusion reaches equilibrium and the
partial pressures in the blood and lungs equalize. Thus,
in a healthy human with both lungs functioning correctly, the
partial pressure of CO2 in exhaled air is equal to its arterial
partial pressure, i.e., PeCO2 = PaCO2.3 Thus, in a healthy
human monitoring, PeCO2 is nearly equivalent to monitoring
PaCO2; however, in the presence of a shunt, the two are no
longer equal, which justifies the need for the dynamical model
developed in the next section.

C. Partial Pressure Dynamics

This section describes the dynamical model of the partial
pressure of CO2 in the cardiopulmonary system. Since we are
unaware of the exact dynamics, we refer to published trends
in the medical literature as well as laws of physics when
developing the model. We begin by explaining the model of a
healthy human breathing with both lungs and then emphasize
the changes introduced by a shunt. Fig. 5 can be used as a
graphical reference containing all equations used in the model.

1) Cardiovascular Dynamics: The first part of the model
captures the partial pressure dynamics in the cardiovascular
system, i.e., the cycle from the pulmonary veins to the
pulmonary arteries; diffusion and the pulmonary system are
discussed next. We note that the pulmonary veins are short in
comparison with the rest of the cardiovascular system [58];
hence, we model PaCO2 as an instantaneous average of the
partial pressures in the pulmonary veins, that is

PaCO2(t) = PL
v CO2(t) + PR

v CO2(t)

2
. (3)

Note that the body usually tries to optimize blood flow in the
direction of highest O2 intake; however, this process is less
pronounced during mechanical ventilation [62].

While there exist fluid dynamics models that can explain
the flow of blood through the blood vessels [63], they contain
multiple parameters that are difficult to obtain or estimate
(e.g., blood vessel wall thickness); since accurate models

3Note that the partial pressure in exhaled air might be smaller than that in
the alveoli due to dead space, i.e., the volume of air in the airways that is not
in contact with blood. However, dead space is about 5% of tidal volume [61],
and hence, it is not considered in this work.
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Fig. 5. Illustration of the response of the respiratory and cardiovascular partial pressures to a shunt. (a) System with two functioning lungs. (b) System with
a shunt.

cannot be employed, we analyze the average blood cycle.
On average, PpCO2 (i.e., the partial pressure in the peripheral
capillaries) is expected to be a time delay of PaCO2, that is

PpCO2(t) = PaCO2(t − τa) (4)

where τa is the average time it takes for the blood to travel
from the arteries to the peripheral capillaries.

Similarly, the partial pressure in the veins, PvCO2, can
be modeled as a delay of PpCO2, τv , plus the effect of
metabolism. Metabolism converts O2 into CO2 and increases
the partial pressure linearly [58], that is

PvCO2(t) = PpCO2(t − τv ) + μ. (5)

Note that μ may vary over time but is assumed constant for
a short period of time, e.g., 5 min.

Finally, we can characterize the average total circulation
time of the blood

τ = τa + τv . (6)

This time can be approximated by dividing the blood
volume (mL) by cardiac output (mL/min) [64]. Note that τ
may vary over time according to heart rate; however, as will
become apparent in Section VII, the anesthesia machine’s
sampling rate results in only one possible choice of τ , and
hence, we assume it is time invariant. If faster sampling is
available, one may use available filtering and downsampling
techniques to obtain better estimates of the measured signals.

2) Diffusion Dynamics: In the body, diffusion is the move-
ment of gases between the blood and air in the lungs from
higher to lower pressures. As described above, it is not
straightforward to model the diffusion of O2 due to its low
diffusive capacity and sensitivity to the percent of O2 in
inhaled air. On the other hand, CO2 has two well-studied
properties that allow us to accurately model its diffusion. The
first property is that postdiffusion partial pressures are always
a linear fraction of prediffusion ones [65], that is

PR
v CO2(t) = αR(t)PvCO2(t) (7)

PL
v CO2(t) = αL(t)PvCO2(t). (8)

As shown in [65], the fraction αi (t), i ∈ {L, R}, varies with
the tidal volume, i.e., the volume of air in the corresponding
lung, denoted by V i

t . In addition, the amount of diffused
CO2 is directly proportional to the lung area, as governed by
Fick’s law [58]. If the usual assumption is made that lungs are
spheres, then the lung area is directly proportional to (V i

t )2/3,
i.e., αi (t) is inversely proportional to (V i

t )2/3.
3) Respiratory Dynamics: To model the respiratory dynam-

ics of the partial pressure of CO2, we use its second diffusive
property, namely, its high diffusive capacity. This allows CO2
diffusion to always reach equilibrium before the end of the
breath, thus equalizing the partial pressures in the alveoli and
the pulmonary veins

PR
ACO2(t) = PR

v CO2(t) (9)

PL
ACO2(t) = PL

v CO2(t). (10)

Finally, the partial pressure of CO2 in exhaled air is equal to
the average of the alveolar partial pressures

PeCO2(t) = (1/2)
(
PL

ACO2(t) + PR
ACO2(t)

)
(11)

i.e., the effect of dead space is ignored.

D. Shunt Dynamics

Having described the dynamics of partial pressures in a
healthy human, in this section, we highlight the differences
introduced by a shunt. Without loss of generality, suppose for
the remainder of this paper that a shunt occurs on the right
side, as shown in Fig. 5(b), the right lung does not participate
in the removal of CO2 through diffusion [58]. Therefore, the
first change caused by a shunt is that (7) now becomes

PR
v CO2(t) = PvCO2(t). (12)

In addition, PeCO2(t) is now only equal to the partial pres-
sure in the alveoli on the left side, since the right lung no
longer participates in pulmonary exchange, i.e., (11) now
becomes

PeCO2(t) = PL
ACO2(t) = PL

v CO2(t) �= PR
v CO2(t). (13)
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This means that the blood in the pulmonary veins on the
right side is rich in CO2 and poor in O2—when it mixes
with the one on the left, it increases the overall CO2 content
and decreases the O2 content. Note that a shunt also means
PaCO2 �= PeCO2, thus making it impossible to simply monitor
the partial pressure of CO2 in exhaled air in order to check
for an increase in the arterial one.

This section developed the dynamics of the CO2 partial
pressures in the presence and absence of a shunt. Depending
on the patient’s lung capacity, a shunt may have a different
effect on the level of change of the arterial partial pressure.
Thus, lungs with smaller capacity can diffuse less CO2 and O2
(the former out of the blood and the latter in the blood),
i.e., large increases in PaCO2 are correlated with decreases
in the O2 content in the blood, and provide discriminatory
information for testing (2), as presented in the following
section.

V. CRITICAL SHUNT DETECTOR

This section develops the critical shunt detector based on
the physiological model described above. Given the hypothesis
problem in (2), we develop a state-space model under each
hypothesis that is then concatenated into a time-series model.
The model contains the unknown parameters described in
the physiological model, i.e., the metabolic rate and the
diffusion ratio; therefore, we develop a detector whose output
is invariant to the values of these parameters. The hypothesis
test is presented for a single time step; one may develop a
sequential detector by just repeating this process over time.

A. State-Space Model

Constrained by the sampling time of the anesthesia machine,
we build the state-space model in a discrete-time fashion.
We use the discrete variable κ to replace the continuous one τ ,
i.e., the average blood circulation time. Thus, the relevant
equations for a healthy human from Section IV become

PaCO2(k) = (1/2)
(
PL

v CO2(k) + PR
v CO2(k)

)
(14)

PvCO2(k) = PaCO2(k − κ) + μ (15)

Pi
vCO2(k) = αi (k)PvCO2(k), i ∈ {L, R} (16)

Pi
ACO2(k) = Pi

vCO2(k), i ∈ {L, R} (17)

PeCO2(k) = (1/2)
(
PL

ACO2(k) + PL
ACO2(k)

)
(18)

where k is the discrete time step. Note that this implies that
τ = κ ts , where ts is the sampling time. In addition, note that
PeCO2 is the only variable in this model that is measured
directly.

To develop the dynamics under MNS, we first esti-
mate αi (k). Note that, as argued in Section IV, it is inversely
proportional to (V i

t )2/3, where V i
t is the tidal volume.

Furthermore, as will be apparent in Section VII, the sampling
time of the bedside monitors is long enough for an infant to
take several breaths. Therefore, V i

t (k) can be approximated by
what may be called the cumulative tidal volume (normalized
to the power 2/3 in order to capture the relationship with αi )

V̄ i (k) = ts
60

× (
RR(k) × V i

t (k)
)2/3

, i ∈ {L, R} (19)

where RR(k) is the measured respiratory rate (in breaths per
minute). Applying (19), (16) can be approximated as

Pi
vCO2(k) = (ᾱ/V̄ i (k))PvCO2(k) + σni (k) (20)

where ᾱ is an unknown parameter representing the CO2 dif-
fusion ratio for fixed tidal volume (assumed the same for both
lungs), σ is an unknown variance, and ni (k) denotes noise.
The term σni (k) is added in order to capture the unknown
error introduced by the approximation. For theoretical conve-
nience, we assume the noise has a white Gaussian distribution,
i.e., ni (k) ∼ N (0, 1). While this assumption may not be true
in practice, we show in Section VII that the Gaussian-based
detector achieves nontrivial detection rates and a near-constant
false alarm rate across real patient data. Developing optimal
parameter-invariant detectors for general distributions is part
of future work. Finally, note that we cannot directly measure
the tidal volume in each lung; instead, the total tidal volume
Vt (k) (and V̄ (k), respectively) is measured. Thus, in a healthy
human

V̄ i (k) = (1/2)V̄ (k), i ∈ {L, R}. (21)

Thus, combining (20) and (21) with (14)–(18), the
state-space model for MNS can be written as

[
x L(k)

x R(k)

]
=

⎡
⎢⎢⎣

ᾱ

V̄ (k)

ᾱ

V̄ (k)
ᾱ

V̄ (k)

ᾱ

V̄ (k)

⎤
⎥⎥⎦

[
x L(k − κ)

x R(k − κ)

]

+

⎡
⎢⎢⎣

2ᾱ

V̄ (k)
nL(k)

2ᾱ

V̄ (k)
nR(k)

⎤
⎥⎥⎦

[
μ
σ

]

y(k) = [ 1/2 1/2 ]
[

x L(k)

x R(k)

]
(22)

where xi (k) = Pi
vCO2(k) and y(k) = PeCO2(k).

The derivation under MS is similar and proceeds as follows,
again assuming that a shunt occurred in the right lung4:

PR
v CO2(k) = PvCO2(k)

PL
v CO2(k) = (ᾱ/V̄ L(k))PvCO2(k) + σnL(k)

V̄ L(k) = V̄ (k) (23)

where the last equation follows from the fact that only the
left lung is now participating in pulmonary exchange, and
similar to (20), nL(k) ∼ N (0, 1) and σ is the same unknown
variance. Thus, the dynamics for MS are[

x L(k)

x R(k)

]
=

⎡
⎣ ᾱ

2V̄ (k)

ᾱ

2V̄ (k)
1/2 1/2

⎤
⎦[

x L(k − κ)

x R(k − κ)

]

+
⎡
⎣ ᾱ

V̄ (k)
nL(k)

1 0

⎤
⎦[

μ
σ

]

y(k) = [ 1 0 ]
[

x L(k)

x R(k)

]
(24)

4As can be observed in (22), the dynamics for x R and x L are the same,
and hence, we assume without loss of generality that the shunt is on the
right side.
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where y(k) and PeCO2(k), respectively, measure only the
partial pressure in the alveoli in the left lung and, hence,
in the pulmonary veins on the left-hand side.

Note that the dynamics for both modes contain three
unknown parameters, μ, ᾱ, and σ , that vary across patients.
Since the model is sensitive to their values, in the next sections,
we design a detector whose performance is invariant to the
values of these parameters.

B. Time-Series Model

Given the state-space models in (22) and (24), we construct
a detector invariant to the unknown parameters. To do this,
we note that the parameters appear linearly in the models under
each mode; therefore, we rearrange the state-space models
under each hypothesis in order to isolate the parameters.
Finally, we concatenate the equations to form a time-series
model that can be directly used in the detector. All proofs are
given in the Appendix.

1) Null Hypothesis: Note that under H0 the system is
always in MNS.

Proposition 1: Under H0, one can derive the following
recursive relation between the obtained measurements and the
unknown parameters:

y(k) = 2y(k − κ)

V̄ (k)
ᾱ + 2

V̄ (k)
ᾱμ + σ0n0(k) (25)

where σ0 = σ/
√

2 and n0(k) ∼ N (0, 1) is white noise.
Thus, with M time-concatenated measurements, we arrive

at the expression

y = F0θ + σ0n0 (26)

where θ = [ᾱ, ᾱμ]T captures the unknown parameters,
n0 is white Gaussian noise, and

y =

⎡
⎢⎢⎢⎣

y(κ + 1)
y(κ + 2)

...
y(M)

⎤
⎥⎥⎥⎦, and F0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2y(1)

V̄ (κ + 1)

2

V̄ (κ + 1)

2y(2)

V̄ (κ + 2)

2

V̄ (κ + 2)
...

...

2y(M − κ)

V̄ (M)

2

V̄ (M)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that the first κ measurements are not included in y since
the initial partial pressures are unknown, thus requiring the
blood to fully circulate before testing can commence.

2) Alternative Hypothesis: Under H1, the system begins in
MNS and switches to MS at time MT + 1.

Proposition 2: Under H1, one can derive the following
recursive relations between the obtained measurements and
the unknown parameters.

Case 1: κ ≤ k ≤ MT

y(k) = 2y(k − κ)

V̄ (k)
ᾱ + 2

V̄ (k)
ᾱμ + σ0n1(k).

Case 2: MT + 1 ≤ k ≤ MT + κ

y(k) = y(k − κ)

V̄ (k)
ᾱ + 1

V̄ (k)
ᾱμ + √

2σ0n1(k).

Case 3: k > MT + κ

y(k) = y(k − κ) + f (k − κ)

2V̄ (k)
ᾱ + 2 + g(k − κ)

2V̄ (k)
ᾱμ

+ √
2σ0n1(k)

where n1(k) ∼ N (0, 1) is white noise, and f (k) and g(k) are
defined as follows:

f (k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y(k − κ), if MT < k ≤ MT + κ
y(k − (Lk + 1)κ)

2Lk

+ ∑Lk
n=1

y(k − nκ)

2n
, if MT + κ < k ≤ M

g(k) =
⎧⎨
⎩

1, if MT < k ≤ MT + κ
1

2Lk−1 +
∑Lk

n=1

1

2n−1 , if MT + κ < k ≤ M

where Lk = �(k − MT )/κ� ≥ 1.
Therefore, we arrive at a similar expression for y under H1

y = F1θ + σ0Rn1 (27)

where y is the same as in (26), R ∈ R
M−κ×M−κ is a diagonal

matrix such that Rii = 1 if i ≤ MT , and Rii = √
2 otherwise,

n1 is white Gaussian noise, and

F1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F0(1 : K − κ − 1, :)
y(K − κ)

V̄ (K )

1

V̄ (K )
...

...

y(K − 1)

V̄ (K + κ − 1)

1

V̄ (K + κ − 1)
y(K )

2V̄ (K + κ)
+ f (K )

2V̄ (K + κ)

1

V̄ (K + κ)
+ g(K )

2V̄ (K + κ)
...

...

y(M − κ)

2V̄ (M)
+ f (M − κ)

2V̄ (M)

1

V̄ (M)
+ g(M − κ)

2V̄ (M)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where K = MT + 1 and F0(1 : K − κ − 1, :) denotes the first
K − κ − 1 rows of F0.

Thus, we have derived the model y = F0θ + σ0n0 under
H0 and y = F1θ + σ0Rn1 under H1. We now convert this to
a form that can be used by the parameter-invariant detector.

C. Parameter-Invariant Test Statistics

In the previous section [(26) and (27)], we reformulated the
hypothesis test problem stated in (2)5

H0 : y = F0θ + σ0n0

H1 : y = F1θ + σ0Rn1. (28)

We now wish to design statistics for testing the hypotheses.
Recalling from Section IV, the parameters θ and σ0 represent
patient-specific unknown physiological variables correspond-
ing to metabolism, diffusion ratio, and model uncertainty;

5Note that the index K from (2) is dropped in Sections V and VI in order to
simplify the notation. Designing a sequential detector can be done by simply
repeating over time the test described in Sections V and VI.
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as argued above, none of these parameters can be accu-
rately estimated a priori. The parameters induce a group
of transformations, G ⊆ {g | g(y) : R

M−κ �→ R
M−κ },

on the measurements y; thus, the statistical properties of
the hypotheses in (28) vary according to the values of the
parameters. In such a scenario, we ideally aim to design test
statistics that are maximally invariant to the parameter-induced
transformations.

Definition 1 (Maximally Invariant Statistic): t (y) is maxi-
mally invariant to a group G if [4]

1) t (y) = t (g(y)) ∀g ∈ G (invariant)

2) t (y) = t (y′) −→ ∃g ∈ G, y = g(y′) (maximal).
Maximally invariant statistics have two attractive properties
in medical applications. First, the invariance property ensures
that the resulting test statistic has a similar performance for
all patients, as opposed to performing well for some patients
and poorly for others (due to varying physiology). Second, the
maximal property ensures that only the information corrupted
by the unknown parameters is removed from the hypothesis
testing problem (i.e., a minimal loss of discriminatory infor-
mation). This combination of invariance and maximality has
been shown to work well in other domains with parameterized
models [47]–[50] and in other medical applications with scarce
data and unknown parameters [51]–[53].

However, for the hypothesis testing problem in (28),
a maximally invariant statistic does not exist since the columns
of F0 are linearly independent of the columns of F1 [4]. This
implies that θ is an unknown test parameter (i.e., provides
discriminatory information) under each hypothesis rather than
a nuisance parameter (i.e., provides no discriminatory infor-
mation) like σ . Since no maximally invariant statistic exists,
we design near-maximally invariant test statistics in two steps.

1) Step 1: Design a statistic, t0(y), maximally invariant to
the test-parameter-induced transformations under H0.

2) Step 2: Design a statistic, r0(t (y)), maximally invari-
ant to the nuisance-parameter-induced transformations
for (28).

The remainder of this section presents how to obtain such
a near-maximally invariant statistic. In the following, for
an arbitrary matrix X, we denote the projection matrices
corresponding to the column space and null space of X as
PX and PX⊥ , respectively, where PX = I − PX⊥ .

For Step 1, we ask for maximal invariance to the parameters
affecting the mean under H0, namely, θ , which induce the
group of transformations

G1 = {g | g(y) = y + F0θ , θ ∈ R
2}. (29)

Proposition 3: The statistic t (y) = PF⊥
0

y is a maximally
invariant statistic with respect to the group G1 defined in (29).

Remark 1: In Proposition 3, the maximally invariant statis-
tic for (29) is proved to be the projection onto the null space
of F0. Intuitively, this makes sense since the mean of y under
H0 lies in the column space of F0, with θ affecting only the
mean’s coordinates in this space. Thus, by projecting y onto
the null space of F0 (orthogonal to its column space), we make
sure that the mean of y is invariant to the value of θ .

TABLE II

DECISION SPACE FOR THE DETECTOR DEVELOPED IN THIS PAPER.
THE DETECTOR’s DECISION IS GIVEN IN PARENTHESES

Applying t (y), we rewrite the hypothesis testing problem

H0 : z0 = σ0PF⊥
0

n0

H1 : z0 = G0θ + σ0N0n1 (30)

where z0 = t (y) = PF⊥
0

y, G0 = PF⊥
0

F1, and N0 = PF⊥
0

R.

Thus, z0 ∼ N (0, σ0PF⊥
0
) under H0 and z0 ∼ N (G0θ , σ0N0)

under H1.
For Step 2, we obtain the maximally invariant statistic

for (30) as follows [4]:

r0 = c0
z�

0 PG0z0

z�
0 (I − PG0)z0

(31)

where c0 = rank(G0)/(M − κ − rank(F0) − rank(G0)) is a
scaling constant. Thus, under H0, z0 ∼ F(rank(G0),
M −κ − rank(F0)− rank(G0)). Here, we stress that regardless
of the parameter values, r0 has the same distribution under H0.
Therefore, a detector can be designed that utilizes r0 to provide
a consistent performance regardless of an individual patient’s
physiology.

Before introducing the detector in the following section,
we note that a second near-maximally invariant statistic can
be generated by switching the hypotheses in Steps 1 and 2,
i.e., performing Step 1 using H1 and performing
Step 2 using H0. By first multiplying the measurements
by R−1 and then following the same procedure as above, we
can write a second near-maximally invariant statistic as:

r1 = c1
z�

1 PG1z1

z�
1 (I − PG1)z1

(32)

where z1 = P(R−1F1)⊥R−1y, G1 = P(R−1F1)⊥R−1F0,
c1 = rank(G1)/(M − κ − rank(F1) − rank(G1)), and
z1 ∼F(rank(G1), M − κ − rank(F1) − rank(G1)) under H1.

D. Decision Space

Using the near-maximally invariant statistics, r0 and r1, this
section introduces a test for evaluating (28). We begin by
recalling that r0 has a central F distribution under H0 and r1
has a central F distribution under H1, regardless of the
unknown parameters θ and σ0. Under H0, by choosing a
threshold t∗0 at the tail of the F distribution and raising an
alarm only when r0 > t∗0 , one can guarantee a false alarm rate
for the test across all patients. Similarly, under H1, by choosing
a threshold t∗1 and raising an alarm only when r1 > t∗1 , one can
guarantee a missed alarm rate. Based on these two statistics,
the detector’s decision space consists of four cases as shown
in Table II.
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In particular, if the two tests agree, then the correspond-
ing hypothesis is accepted. If they disagree, then one of
two warnings is output. When both tests reject their individual
hypotheses (i.e., r0 > t∗0 and r1 > t∗1 ), we conclude that
the model is likely inaccurate. Model inaccuracies are natural
in the physiological model developed in Section IV since
the model is somewhat crude and may (partly) capture other
conditions that can manifest in a patient, e.g., hypovolemia.
When both tests fail to reject their individual hypotheses
(i.e., r0 ≤ t∗0 and r1 ≤ t∗1 ), we conclude that the test cannot
make a decision to the chosen levels of false alarm and missed
alarm.

This section developed a critical shunt detector for the
problem in (2). The detector utilizes the physiological model
in Section IV to construct time-series models for the mea-
surements under each hypothesis. A pair of near-maximally
invariant statistics is employed, one providing patient invariant
performance under H0 and the other under H1. The statistics
are used to design a test that can either provide a decision
which achieves a specified performance or provide feedback
regarding why the performance specification is not satisfied.
The detector is evaluated in Section VII, after being augmented
to handle missing and bad data in the following section.

VI. ROBUSTNESS TO MISSING AND BAD DATA

For various reasons, vital sign measurements are often
wrong or missing altogether. In particular, some sensors
are greatly affected by the patient’s movement (e.g., pulse
oximeter), while others provide irrelevant measurements
because patients are sometimes taken off mechanical venti-
lation so that clinicians can check for leaks. In this section,
we provide a framework for handling missing measurements
with regard to the model developed above. In addition,
we describe how to reduce the number of alarms caused by
wrong measurements by observing correlations between bad
and missing data.

A. Handling Missing Measurements

One way of dealing with missing measurements is to not
make a decision when a vital sign is missing. However, this
may be too conservative as measurements are often missing
in medical settings—for example, in [1], we use only 26 out
of 91 cases with shunts due to being unable to make a decision
while the event occurs. Thus, in this paper, we aim to include
some of these unused cases in an effort to make the detector
applicable in a real-world setting.

In order to handle missing measurements in a robust way,
we treat them as unknown parameters and ask for invari-
ance to them in the same way that physiological parameters,
e.g., μ, the metabolic rate, are treated. This step is performed
before the hypothesis test, i.e., when the model is in the form
y = F0θ + σ0n0 under H0 and y = F1θ + σ0Rn1 under H1.

The three measurements that are used in the model
are PeCO2, Vt , and RR; they affect the model in different
places, and hence, different techniques are used. We describe
each one in turn, beginning with missing Vt or RR, which
are treated in the same way. The following proposition makes

it clear which parts of the model are affected by missing
measurements. The proof is given in the Appendix.

Proposition 4: The matrices F0 and F1 can be represented
in the following way, for some matrices K0, K1 ∈ R

M−κ×M

and vectors k0, k1 ∈ R
M−κ×1 that do not depend on the

measurements:
F0 = [ V̄ ◦ K0ȳ V̄ ◦ k0 ]
F1 = [ V̄ ◦ K1ȳ V̄ ◦ k1 ]

where ◦ denotes the element-wise product and
ȳ = [y(1) · · · y(M)]� ∈ R

M and V̄ = [(1/V̄ (κ + 1)), . . .,
(1/V̄ (M))]� ∈ R

M−κ .
1) Missing Tidal Volume or Respiratory Rate: It is now

clear how a missing Vt or RR measurement affects the detec-
tor, namely, it affects the corresponding rows in F0 and F1.
In particular, suppose V̄ (p) is missing, that is, either a tidal
volume or respiratory rate measurement is missing at step p.6

Therefore, we ask for invariance to row p.
To achieve a maximally invariant statistic, note that V̄ can

also be represented as IM−κ V̄, i.e., row p in V̄ is multiplied
by column p in IM−κ . Thus, similar to Section V-C, one needs
to find the projection to the null space of matrix

QV = [ep] (33)

where ep is the unit vector with a 1 in position p and 0
otherwise.

2) Missing Partial Pressure of Exhaled Carbon Dioxide:
The difference when a PeCO2 measurement is missing is that
the y vector is affected. Note that ȳ and y have different indices
and different dimensions. Suppose that y(q) is missing. Then
the vector y is affected in position q −κ , whereas ȳ is affected
in position q . Therefore, the corresponding columns in the
premultiplying matrices, IM−κ , K0, and K1, respectively, must
be eliminated. In other words, we look for the projection to
the null space of the following matrix:

QE = [ eq−κ V̄ ◦ K0
q V̄ ◦ K1

q ]
where K0

q and K1
q denote column q in the respective matrix.

Consequently, one may build the matrix Q = [QV QE]
and obtain the projection to its null space, PQ⊥ , similar
to Section V-C. By premultiplying both models by PQ⊥ ,
we arrive at the following models under each hypothesis:

H0 : y′ = F′
0θ + σ0n0

H1 : y′ = F′
1θ + σ0R′n1

where y′ = PQ⊥y, F′
0 = PQ⊥F0, F′

1 = PQ⊥F1, and
R′ = PQ⊥R. Finally, note that when testing H1 against H0

(see Section V-D), one needs to premultiply both models by
R−1 before handling missing measurements.

B. Reducing Technical Alarms

In addition to missing measurements, we have observed
multiple wrong measurements caused by similar factors.
Furthermore, we have also observed correlations between

6To keep notation simple, we consider only the case of a single missing
measurement, though the approach can be straightforwardly extended to
multiple measurements. In fact, windows with multiple missing measurements
frequently occur in the case study presented in Section VII; there, we use the
extended framework to handle multiple missing measurements.
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Fig. 6. Typical missing/bad data patterns in a surgery case at the CHOP.
Missing measurements are set to −1.

certain missing measurements and other bad measurements
(since they are all provided by the same machine). These
correlations have been incorporated in the detector in order to
reduce the number of technical alarms, i.e., false alarms caused
by bad measurements. As will be demonstrated in Section VII,
technical alarms constitute a large portion of all false
alarms.

The first observation was that positive end-expiratory pres-
sure (PEEP) measurements are often missing when other
measurements are bad, as can be seen in Fig. 6, which presents
the Vt , RR and PEEP measurements in a typical case at the
CHOP. Thus, while PEEP is not directly used in the model,
it is used to reduce the number of false alarms. Specifically,
as will be apparent in Section VII, the detector is run in a
sliding window fashion, and any window with more than half
missing PEEP measurements is discarded.

A second method to reduce technical alarms is through RR.
RR is controlled by clinicians and is usually steady during
the case (also shown in Fig. 6). Therefore, a measurement
must be wrong if it is too far from the mode; specifically,
if 90% of RR measurements are the same in a window and if
another measurement is at least 2 breaths/min away from the
mode, then it is treated as bad. When a bad RR measurement
is detected, the threshold for raising an alarm is doubled.

VII. CASE STUDY

To evaluate the performance of the detector, we use real
patient data from lobectomy surgeries performed on infants
at the CHOP during the period 2005–14. A lobectomy is
the incision of a cystic lung lesion and requires mechan-
ical ventilation; sometimes, at the request of the surgeon,
one-lung ventilation is performed, which leads to a shunt and
a potentially critical drop in the blood O2 content. The dataset
consists of 484 cases, of which 167 had shunts. This is a
significant improvement upon [1] where we had 292 patients
total and 97 with shunts.

The vital signs were sampled every 15 s, and thus each
step k in the discrete-time model corresponded to 15 s. Note
that the average time for the blood to circulate the body
(i.e., the parameter τ in the continuous-time model) was about
a minute in adults but much shorter in infants [66]. Thus, in the
discrete-time model, the best choice that matches observed
data [66] was τ ≈ 30 s, i.e., κ = 2 time steps. The detector

Fig. 7. Histogram showing how many minutes in advance each critical event
was detected. Negative times indicate early detection.

was run in a sliding window fashion; a window of size M = 34
(i.e., 8.5 min) was used, whereas the detection window size
was M − MT = 10, i.e., 2.5 min. For the thresholds, t∗0 and t∗1 ,
we specify 1% and 0.01% as the desired false alarm and
missed detection rates, respectively.

In the next sections, we describe the empirical detection and
false alarm rates of the detector developed in this paper.

A. Detection Rate Evaluation

To evaluate the detection rate, we use all cases that had a
shunt during the surgery. Note that the detector is designed
to capture critical drops in the O2 content caused by shunts;
thus, a good detection occurs when the detector raises an
alarm slightly before or very soon after such an event occurs.
Defining these events in the data, however, is challenging; as
argued in Section III, shunt annotations are not always very
accurate; even when they are, shunts do not always cause
immediate drops in the O2 content. Therefore, we inspected
the data and identified the nearest in time decrease in SpO2
as the actual event that the detector needs to predict.

The three vital signs that are used directly in our model
are Vt , RR, and EtCO2 (EtCO2 measures the partial pressure
of CO2 at the end of the breath, i.e., PeCO2). Note that while
the detector can handle missing measurements, it still does not
make a decision if more than half of the PEEP measurements
are missing in a given window, as described in Section VI-B.
Thus, if an event occurs when the detector does not have
enough data to make a decision, that case is removed from
the dataset. Furthermore, all cases that have the event in the
first 15 min were removed because measurements tend to
be very noisy at the beginning of cases when patients are
getting intubated and suctioned. After removing these cases,
we retain 61 cases with shunts that we could evaluate the
detection performance. Only 26 were used in [1]; with the
current detector that can handle missing measurements, 40 of
the old cases could be used.

Note that detectors are usually evaluated using receiver
operating characteristic (ROC) curves. We cannot provide such
a curve due to the fact that we do not know exactly when
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Fig. 8. Example cases for different scenarios. The shaded area denotes the occurrence of the isolation. (a) Example case with good prediction. (b) Example
case with late detection.

events occur and which alarms can be treated as true or false;
an ROC-like curve is shown in Section VII-C. Instead, this
section provides a more practical evaluation of the detection
rate—it gives the percentage of cases in which the event was
predicted and it shows a histogram of how many minutes in
advance the event was predicted.

To record the time of detection, note that several alarms
may be raised before the event—taking the time of the last
one as the time of detection may misrepresent the detector
as alarming too late, whereas taking the earliest may mean it
is alarming too early. Thus, we set a rule for recording the
time of detection—it is the time of the alarm closest to 2 min
before the event; that may provide clinicians enough time to
take action and reverse (or even avoid) the effect of the shunt.

With this rule in mind, Fig. 7 provides a histogram with
the detection times and how many minutes before the event
the detection occurred. The vast majority of cases (87%) have
alarms less than 5 min before the event and up to 2 min after.
Note also that there are only two outliers that do not have
alarms within 15 min of the event.

Fig. 7 shows that the detector is robust to differences across
patients and to bad measurements. In addition, for the cases
that have alarms less than 5 min before the event, clinicians
would receive warning on average 90 s before the event.
According to our clinical collaborators, this would provide
them with enough time to identify the problem and apply the
appropriate control response (e.g., deliver more O2).

To better illustrate the performance of the detector,
we provide example cases with good and late detection.
Fig. 8(a) shows an example case with good detection, i.e., an
alarm was raised that would alert clinicians to take proactive
action and avoid the critical scenario. It contains the evolution
of the vital signs as well as the decision made. As described
above, note that the case starts with a period with noisy data,
followed by the clear pattern of a rise in EtCO2, which is

what eventually triggers the alarm. Note that the shunt likely
occurred before the drop in SpO2, but that would not be
captured by the detector due to the noisy EtCO2. Finally, note
that there is a long period during the surgery when the detector
is not alarming, which indicates that it is not prone to raise
false alarms when good data are available.

Fig. 8(b) presents a case with late detection. One can
observe the same bad/missing data patterns at the beginning
of the case. The case is detected late because all vital signs
are very noisy for a long period before the event. The detector
does raise an alarm as soon as better data are available.

B. False Alarm Rate Evaluation

To evaluate the false alarm rate, we use the remaining
317 cases that did not have a shunt. Thus, most alarms in these
cases are false. Yet, upon investigation of the cases, we found
that many alarms are actually near periods with decreased
SpO2; since these alarms would be beneficial to clinicians and
since they still detect critical drops in the O2 content, they are
treated as true. Thus, we treat as true all alarms that precede
by 10 min have a 2%-point (or more) drop in SpO2 or exceed
it by 2 min. Any other alarm is considered false.

To count the false alarms in a way that would be meaningful
to the medical community,7 the detector would be imple-
mented as follows. If an alarm is raised, then it can be muted
by a clinician; this alarm denotes the beginning of an event.
If the following decisions of the detector are also alarms or
warnings, then they are part of the same event, and hence, no
further alarms are raised. When a no alarm decision is made,
the event has ended, and the next alarm indicates a new event.

7The definition of false alarm rate in statistics is different from medicine.
In the former, it is the number of false alarms divided by the number of
tests; in the latter, it is the number of false alarms divided by the number of
alarms.
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Fig. 9. Scatterplot with the average number of false alarms per hour for
each of the cases with no shunts. The red dashed line denotes the average
for the old dataset, the green dashed line the average for the new, and the
blue dashed line the average for the both datasets combined.

For each case, we count the average number of events per
hour, and all are treated as false (except the ones described
above). A scatter plot with the average number of events per
hour for each case is shown in Fig. 9. As can be seen in Fig. 9,
the cases are reasonably uniformly distributed, with just a
few cases with more than three false alarms per hour. This
distribution is due to the constant false alarm rate property
of the parameter-invariant detector—it achieves the same false
alarm rate regardless of the unknown parameters.

For reference, the cases are divided into the ones from
the old and new datasets. The overall average is 0.95 false
alarms per hour, though for the old cases, it is much higher
than the new ones—1.21 versus 0.64. The variance of the old
dataset is visibly higher as well. This trend suggests that the
improvement in sensors and measuring devices is naturally
decreasing the false alarm rate of our detector by providing
it with less noisy or bad data. Note also that the average
false alarm rate is much lower than current threshold-based
alarms [67], which caused the alarm fatigue problem.

In addition, note that the average false alarm rate in [1] with
the old dataset was 2.15. In this work, through reduction of
technical alarms, this is brought down to 1.21, with no cost
in detection performance. We consider this rate a significant
improvement and have implemented the detector in real time
in an OR.

C. ROC Curves
As further evaluation of the proposed detector, we illustrate

its performance using an ROC-like curve. In particular, each
point on the curve represents a detection rate over the entire
population (as computed in Fig. 7) corresponding to a false
alarm rate over the entire population (as shown in Fig. 9).
Fig. 10 shows the resulting curve. As can be seen, the
detector’s power increases linearly with the false alarm rate,
which once again shows the robustness of the approach.8

8Note that the curve is not monotonically increasing due to the way alarms
are counted. When thresholds are varied, some alarm events are combined
(or separated), thus sometimes affecting the false alarm rate differently than
the detection rate.

Fig. 10. ROC-like curve showing the performance of the parameter-invariant
detector compared with that of a CUSUM detector. Operating points used in
Figs. 7, 9, and 11 are circled in red.

Fig. 11. Scatterplot with the average number of false alarms per hour
generated by the CUSUM detector.

Finally, the detector is also compared with a standard
change detection technique, namely, the cumulative sum con-
trol chart (CUSUM) detector, in order to show the merit
of the parameter-invariant approach. In order to develop the
CUSUM detector, the model parameters for each patient
were estimated using the expectation maximization technique
described in [68]; the detector algorithm was then borrowed
from [69, Ch. 8.10]. As can be seen in Fig. 10, the CUSUM
detector is greatly outperformed by the parameter-invariant
detector. There are two main reasons for this difference.

1) The model developed in this paper captures general
trends but is a poor predictor of the future that makes it
unsuitable for model-predictive techniques such as the
Kalman filter.

2) It is difficult to obtain good parameter estimates in the
presence of noisy and missing measurements.

Finally, the CUSUM detector’s false alarm rate distribution
is shown in Fig. 11 (with roughly the same false alarm rate
as the parameter-invariant detector operating point shown in
Fig. 9); as can be seen in Fig. 11, multiple patients receive
more than 5 alarms per hour, which might create a serious
burden on clinicians and might result in critical alarms being
ignored.
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VIII. CONCLUSION

In this paper, we addressed the problem of predicting critical
drops in the blood O2 content as caused by shunts in infants.
We developed a physiological model of the cardiopulmonary
system that is parameterized by several variables that vary
across patients, e.g., metabolic rate. In order to guarantee a
low false alarm rate regardless of the values of the para-
meters, we utilized a parameter-invariant detector—the first
application of this class of detectors to the MCPS. To evaluate
its performance, we used real patient data from surgeries
performed at the CHOP and confirmed a near-constant false
alarm rate across all patients. To further evaluate the quality
of the detector, we are currently implementing it in real time
in an OR.

APPENDIX

Proof of Proposition 1: From (22)

y(k) = x L(k) + x R(k)

2

=
(

2ᾱ

V̄ (k)

)
x L(k − κ) + x R(k − κ)

2
+ 2ᾱμ

V̄ (k)
+ σ0n0(k)

= 2y(k − κ)

V̄ (k)
ᾱ + 2

V̄ (k)
ᾱμ + σ0n0(k)

where σ0n0(k) = (σ/2)
(
nL(k) + nR(k)

) ∼ N (0, σ 2/2). �
Proof of Proposition 2:
Case 1: By definition, for κ ≤ k ≤ MT , y(k) evolves

according to MNS, and hence the recursive relation is the
same

y(k) = 2y(k − κ)

V̄ (k)
ᾱ + 2

V̄ (k)
ᾱμ + σ0n1(k).

Case 2: For k >MT , the observation (with a right shunt) is

y(k) = x L(k) (34)

= ᾱ(x L(k − κ) + x R(k − κ))

2V̄ (k)
+ ᾱμ

V̄ (k)
+ σnL(k).

(35)

Note that depending on the value of k, x L(k − κ) and
x R(k − κ) may evolve according to either MNS or MS .
In the case MT + 1 ≤ k ≤ MT + κ , (35) reduces to

y(k) = y(k − κ)

V̄ (k)
ᾱ + 1

V̄ (k)
ᾱμ + √

2σ0n1(k) (36)

since x L(k − κ) and x R(k − κ) are both observed through
y(k − κ) in (22).

Case 3: For k > MT + κ , y(k − κ) = x L(k − κ), and
therefore, (35) becomes

y(k) = y(k − κ)

2V̄ (k)
ᾱ + x R(k − κ)

2V̄ (k)
ᾱ + 1

V̄ (k)
ᾱμ + σnL (k).

(37)

Note that, for k > MT + κ , x R(k − κ) is unknown
since y(k − κ) measures the no-shunt partial pressure.
Therefore, one can compute x R(k − κ) by following the

dynamics under MS . Thus, from (24), one can derive the
following for k > MT + κ :

x R(k − κ) = x L(k − 2κ) + x R(k − 2κ)

2
+ μ. (38)

Using the same observation as in (35), we split the analysis in
two cases, depending on whether x L(k − 2κ) and x R(k − 2κ)
evolve according to MNS or MS .

Case 3a: MT +κ+1 ≤ k ≤ MT +2κ . This reduces similarly
to (36)

x R(k − κ) = y(k − 2κ) + μ. (39)

Case 3b: k > MT + 2κ . Again, in this case
y(k − 2κ) = x L(k − 2κ), and hence (38) now becomes

x R(k − κ) = (1/2)y(k − 2κ) + (1/2)x R(k − 2κ) + μ. (40)

Therefore, one may compute x R(k −κ) in the above recursion
by recursively substituting the formula for x R(k − nκ), until
a time step p ≤ MT + 2κ is reached such that x R(p) can be
computed according to Case 3a

x R(k − κ) = y(k − (Lk + 2)κ)

2Lk
+ μ

2Lk−1

+
Lk∑

n=1

y(k − (n + 1)κ)

2n
+ μ

2n−1 (41)

where Lk = �(k − MT − κ)/κ� ≥ 1.
Thus, by combining Case 3a and 3b and by grouping the

terms according to whether they contain μ, x R(k − κ) can be
represented as [ f and g are derived from (39) and (41)]

x R(k − κ) = f (k − κ) + g(k − κ)μ, k > MT + κ. (42)

Finally, one can substitute (42) for x R(k − κ) in (37), thus
obtaining the desired form of y(k). �

Proof of Proposition 3: To show invariance,

t (g(y)) = PF⊥
0
(y + F0θ) = PF⊥

0
y = t (y).

To show optimality,

t (y) = t (y′), i.e., PF⊥
0

y = PF⊥
0

y′

i.e., y = y′ + PF0(y − y′)
i.e., ∃θ ∈ R

2, y = y′ + F0θ

i.e., ∃g ∈ G, y = g(y′).

�
Proof of Proposition 4: Let F0 be written as

F0 = [ f0,0 f0,1 ].
Then f0,0 can be written as f0,0 = V̄ ◦ 2S0ȳ, where

S0 = [ IM−κ 0M−κ×κ ]
where IM−κ ∈ R

M−κ is the identity matrix and
0M−κ×κ ∈ R

M−κ×κ is a matrix of 0s. Thus

K0 = 2S0.

Similarly, f0,1 = V̄ ◦ (2 × 1M−κ×1), where 1M−κ×1 ∈
R

M−κ×1 is the vector of all 1s. Thus

k0 = 2 × 1M−κ×1.
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Note that F1 can be represented as F1 = F0 + H, where

H

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0K−κ−1×2

− y(K − κ)

V̄ (K )
− 1

V̄ (K )
...

...

− y(K − 1)

V̄ (K − 1 + κ)
− 1

V̄ (K − 1 + κ)

− 3y(K )

2V̄ (K + κ)
+ f (K )

2V̄ (K + κ)

g(K )

2V̄ (K + κ)
− 1

V̄ (K + κ)
...

...

−3y(M − κ)

2V̄ (M)
+ f (M − κ)

2V̄ (M)

g(M − κ)

2V̄ (M)
− 1

V̄ (M)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where K = MT + 1. Similar to F0, we write

F1 = [ f1,0 f1,1 ]
H = [ h0 h1 ]

with f1,i = f0,i + hi , i ∈ {0, 1}. Write h0 = v1 − v0, such that
v0 contains all terms that do not contain f (padded with zeros
to be in the right dimension) and v1 contains the rest.

Consider first the vector v0. It can be written as

v0 = V̄ ◦ T0S0ȳ

where T0 ∈ R
M−κ×M−κ is a diagonal matrix such that

T0,ii = 0 if i ≤ MT − κ , T0,ii = 1 if MT − κ + 1 ≤ i ≤ MT ,
and T0,ii = 3/2 if i > MT .

To show that v1 has the same form, consider
f = [ f (MT + 1) · · · f (M − κ)]�. From (39) and (40),
in the proof of Proposition 2, it can be observed that

(IM−MT −κ + B)xS = yL + μ1M−MT −κ×1 (43)

where xS = [x R(MT + 1) · · · x R(M − κ)]� and

yL =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(MT − κ + 1)
...

y(MT )
(1/2)y(MT + 1)

...
(1/2)y(M − 2κ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Thus, f = (IM−MT −κ + B)−1yL. Now v1 becomes

v1 = V̄ ◦ (1/2)T1S1ȳ

where

S1 =
⎡
⎣ 0MT ×M

0κ×MT −κ Iκ 0κ×M−MT

0M−MT −2κ×MT
1
2 IM−MT −2κ 0M−MT −2κ×2κ

⎤
⎦

and

T1 =
[

0MT ×MT 0MT ×M−MT −κ

0M−MT −κ×MT (IM−MT −κ + B)−1

]
.

Therefore, we conclude that

h0 = v1 − v0 = V̄ ◦ ((1/2)T1S1 − T0S0)ȳ

and

f1,0 = f0,0 + h0 = V̄ ◦ (2S0 + (1/2)T1S1 − T0S0)ȳ

that is

K1 = 2S0 + (1/2)T1S1 − T0S0.

We proceed similarly to compute f1,1. Write h1 = u1 − u0
and let u0 be the vector containing all elements in h1 that do
not contain g (again, padded with 0s)

u0 = V̄ ◦ c

with c a vector such that ci = 0 if i ≤ MT − κ and ci = 1
otherwise.

Finally, let u1 contain all elements in h1 that contain g. Note
that from (43), g = (IM−MT −κ + B)−11M−MT −κ×1, where
g = [g(MT + 1) · · · g(M − κ)]�. Thus

u1 = V̄ ◦ (1/2)T11M−κ×1.

Therefore

f1,1 = f0,1 + h1 = f0,1 + u1 − u0

= V̄ ◦ (2 × 1M−κ×1 + (1/2)T11M−κ×1 − c)

that is

k1 = 2 × 1M−κ×1 + (1/2)T11M−κ×1 − c.

�
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