
Towards Scenario-Based Design and Verification of Resilient
Cyber-Physical Systems

Extended Abstract

Rajeev Alur1, Insup Lee1, Rahul Mangharam2, Mayur Naik1, Oleg Sokolsky1, James Weimer1, Houssam Abbas2

I. INTRODUCTION

A cyber-physical system consists of computing devices
communicating with one another and interacting with the
physical world via sensors and actuators. Increasingly, such
systems are everywhere, from smart buildings to autonomous
vehicles to mission-critical military systems. Model-based
design offers a promising approach for assisting developers
to build cyber-physical systems in a systematic manner.
In this methodology, a designer first constructs a model,
with mathematically precise semantics, of the system under
design, and performs extensive analysis with respect to cor-
rectness requirements before generating the implementation
from the model [1], [2], [3]. However, as new vulnerabilities
are discovered, requirements evolve aimed at ensuring re-
siliency. Current methodology demands an expensive, and
at times infeasible, redesign and reimplementation of the
system from scratch. The goal of the proposed methodology
and the associated toolkit, which we call REAFFIRM, is to
facilitate integration of evolving resiliency requirements in
model-based design and verification.

Traditionally a model of a cyber-physical system consists
of block diagrams describing the system architecture and
a combination of state machines and differential equations
describing the system dynamics [4]. Building a behavioral
model at design time that offers resiliency for all kinds of
failures is notoriously difficult. The REAFFIRM solution to
design for resiliency is to allow a designer to specify sce-
narios as a separate part of the model description. A scenario
describes a finite execution of the system corresponding to
a specific situation, and consists of the sequences of actions
by different agents including interaction among them. Such
scenarios were first used in design of telecommunication
software to specify different features separately, and were
formalized. Our insight is that scenarios can be used nat-
urally to describe how a system should respond when a
particular sensor fails or a previously unanticipated attack
is discovered. Furthermore, negative scenarios can express

*This work supported by the DARPA CASE program through SPAWAR
Contract N66001-18-C-4007.

1Alur, Lee, Naik, Sokolsky, and Weimer are with the Department of
Computer and Information Science, University of Pennsylvania, Philadel-
phia, PA 19104, USA {alur, lee, mhnaik, sokolsky,
weimerj}@cis.upenn.edu

2Mangharam and Abbas are with the Department of Electrical and
Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104,
USA rahulm@seas.upenn.edu

undesirable, or shall not, situations. The model synthesizer
can automatically integrate scenarios with state-machine-
based models thus allowing incremental design to support
resiliency. The central research challenge is to come up
with a formal and usable notion of scenarios for cyber-
physical systems so that it allows specification of timing
constraints and dynamic evolution of physical environment
and is customizable to different system architectures.

II. THE REAFFIRM VISION

The REAFFIRM solution aims to offer a fresh approach to
integrate resiliency in model-based design of cyber-physical
systems based on scenarios. The REAFFIRM vision consists
of developing a toolkit that incorporates the following inno-
vations.

• Scenarios as an integral part of the model: We
advocate the idea that a model of the system under
design consists of two parts: (1) a traditional model
using block diagrams and state machines, and (2) a
collection of positive and negative scenarios that corre-
spond to resiliency requirements. As new vulnerabilities
are discovered and requirements evolve, the scenarios
get updated allowing iterative model-based design for
resiliency in a convenient manner.

• Model repair using resiliency patterns: The task
of the model synthesizer is to consistently integrate
the original state-machine based model and scenarios
to produce an updated resilient behavioral model. We
propose a technique based on searching through the
space of potential edits to the original model to solve
this computational problem. This search will be guided
by known patterns for ensuring resiliency. Examples
of such patterns include switching to a safe mode of
operation and adding redundant modes of operation.

• Comprehensive verification: Our methodology allows
the use of formal verification with respect to require-
ments at multiple stages. The complete model generated
by the model synthesizer can be verified using a static
verification tool; the implementation can be monitored
for violations using a runtime verification tool; and
the scenarios themselves can be checked for mutual
consistency and missing cases. The proposed scenario
analyzer examines scenarios and counterexamples pro-
duced by verification tools to produce feedback to the
designer.



Fig. 1. Overview of Scenario-based Design for Resilient CPS

III. TOWARDS A REAFFIRM TOOLKIT

The REAFFIRM toolkit will consist of three tools: (i) Model
Synthesizer; (ii) Runtime Verifier; and (iii) Scenario Analyzer,
shown in Figure 1. In the following we describe our vision
for each tool and their integration.

A. Model Synthesizer
The Model Synthesizer takes as input an original (partial)

behavioral model and a set of positive and negative scenarios
and outputs a complete behavioral model consistent with
both the views. Communicating state machines and scenarios
can be viewed as two dual views of the desired functionality.
The task of the model synthesizer is to consistently inte-
grate these two views to produce a complete state-machine-
based behavioral model. We will leverage our past work
in the domain of distributed protocols [5], [6] to design
and implement such a synthesis tool for cyber-physical
systems. Intuitively, compared to the partial state machines,
the completed model can have additional modes of operation
as well as new transitions between different modes, and as a
result has resilient behaviors captured in scenarios. Realizing
the model synthesizer requires developing a technique for
searching through the space of potential edits to the original
model to solve the model synthesis problem. This search will
be guided by known patterns for ensuring resiliency. For ex-
ample, a conservative way ensuring safety upon encountering
an unexpected or hazardous situation is to hand over control
to a baseline safety controller.

B. Runtime Verifier
The Runtime Verifier takes as input the implementation

and requirements/scenarios and produces counterexamples.
The model generated by the synthesizer can be verified for
correctness with respect to requirements. As an illustrative
case, the requirements are specified in a timed temporal
logic, the generated model is a hybrid automaton, and in
such a case, we will use off-the-shelf verifiers for hybrid
systems such as DReach [7] and S-TaLiRo [8]. We have
established a formal relationship between reachability and
falsification as implemented in these two tools [9], and
demonstrated an early application of this relationship in [10].
In addition, we will explore simulation-guided techniques for

runtime verification based on dynamical models [11]. The
counterexample generated by the verifier is then analyzed by
the scenario analysis tool, described in the following subsec-
tion, to give feedback to the designer. To complement static
verification, the tool-chain also includes a runtime verifier
that analyzes the code generated from models. Building on
the long-term technology for runtime monitoring of code
with respect to temporal properties [12], the challenge is
developing a runtime verifier suitable for checking timing
and resiliency requirements, expressed as temporal logic
formulas or positive and negative scenarios, of cyber-physical
system implementations.

C. Scenario Analyzer
The final and key part of the proposed methodology is

the scenario analyzer that analyzes the scenarios provided
by the designer as well as the counterexamples generated by
the verifiers to provide meaningful feedback to the designer.
Note that the original scenarios can be checked for mutual
consistencies and with respect to requirements before the
model generation phase. Developing the scenario analyzer
requires identifying designer feedback mechanisms for (1)
identification of missing cases prompting the designer to
provide additional scenarios, (2) identification of root causes
for inconsistencies and violation of requirements, and (3)
suggested patterns for scenarios for common ways of ensur-
ing resiliency.

REFERENCES

[1] E. A. Lee, “What’s ahead for embedded software,” IEEE Computer,
pp. 18–26, 2000.

[2] T. Henzinger and J. Sifakis, “The embedded systems design chal-
lenge,” in FM 2006: 14th International Symposium on Formal Meth-
ods, ser. LNCS 4085, 2006, pp. 1–15.

[3] R. Alur, Principles of Cyber-Physical Systems. MIT Press, 2015.
[4] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P.-H. Ho,

X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic
analysis of hybrid systems,” Theoretical Computer Science, vol. 138,
pp. 3–34, 1995.

[5] A. Udupa, A. Raghavan, J. Deshmukh, S. Mador-Haim, M. Martin,
and R. Alur, “TRANSIT: specifying protocols with concolic snippets,”
in ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2013, pp. 287–296.

[6] R. Alur and S. Tripakis, “Automatic synthesis of distributed protocols,”
SIGACT News, vol. 48, no. 1, pp. 55–90, 2017.

[7] S. Kong, S. Gao, W. Chen, and E. M. Clarke, “dreach: delta-
reachability analysis for hybrid systems,” in Tools and Algorithms
for the Construction and Analysis of Systems - 21st International
Conference, Proceedings, ser. LNCS 9035. Springer, 2015, pp. 200–
205.

[8] Y. Annpureddy, C. Liu, G. E. Fainekos, and S. Sankaranarayanan, “S-
TaLiRo: A tool for temporal logic falsification for hybrid systems,”
in Tools and Algorithms for the Construction and Analysis of Sys-
tems - 17th International Conference, Proceedings, ser. LNCS 6605.
Springer, 2011, pp. 254–257.

[9] H. Abbas, M. O’Kelly, and R. Mangharam, “Relaxed decidability
and the robust semantics of metric temporal,” in Hybrid Systems:
Computation and Control, 2017.

[10] M. O’Kelly, H. Abbas, and R. Mangharam, “Computer-aided design
for safe autonomous vehicles,” in Resilience Week, 2017.

[11] S. Chen, O. Sokolsky, J. Weimer, and I. Lee, “Data-driven adaptive
safety monitoring using virtual subjects in medical cyber-physical
systems: a glucose control case study,” Journal of Computer Science
and Engineering, vol. 10, no. 3, p. 75, 2016.

[12] M. Kim, M. Viswanathan, S. Kannan, I. Lee, and O. Sokolsky, “Java-
MaC: A run-time assurance approach for java programs,” Formal
Methods in System Design, vol. 24, no. 2, pp. 129–155, 2004.


