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ABSTRACT
This paper presents Verisig, a hybrid system approach to verifying

safety properties of closed-loop systems using neural networks as

controllers. Although techniques exist for verifying input/output

properties of the neural network itself, these methods cannot be

used to verify properties of the closed-loop system (since they

work with piecewise-linear constraints that do not capture non-

linear plant dynamics). To overcome this challenge, we focus on

sigmoid-based networks and exploit the fact that the sigmoid is

the solution to a quadratic differential equation, which allows us

to transform the neural network into an equivalent hybrid system.

By composing the network’s hybrid system with the plant’s, we

transform the problem into a hybrid system verification problem

which can be solved using state-of-the-art reachability tools. We

show that reachability is decidable for networks with one hidden

layer and decidable for general networks if Schanuel’s conjecture is

true. We evaluate the applicability and scalability of Verisig in two

case studies, one from reinforcement learning and one in which the

neural network is used to approximate amodel predictive controller.

1 INTRODUCTION
In recent years, deep neural networks (DNNs) have been success-

fully applied to multiple challenging tasks such as image process-

ing [30], reinforcement learning [20], learningmodel predictive con-

trollers (MPCs) [26], natural language translation [28], and games

such as Go [27]. These promising results have inspired system

developers to use DNNs in safety-critical Cyber-Physical Systems

(CPS) such as autonomous vehicles [3] and air traffic collision avoid-

ance systems [14]. At the same time, several recent incidents (e.g.,

Tesla [1] and Uber [3] autonomous driving crashes) have under-

scored the need to better understand DNNs and verify safety prop-

erties about CPS using such networks.

This material is based upon work supported by the Air Force Research Laboratory

(AFRL) and the Defense Advanced Research Projects Agency (DARPA) under Contract

No. FA8750-18-C-0090. Any opinions, findings and conclusions or recommendations

expressed in this material are those of the author(s) and do not necessarily reflect

the views of the AFRL, DARPA, the Department of Defense, or the United States

Government. This work was supported in part by NSF grant CNS-1837244. This

research was supported in part by ONR N000141712012.

The traditional way of assessing a learning algorithm’s perfor-

mance is through bounding the expected generalization error (EGE)

of a trained classifier, i.e., the expected difference between the

classifier’s error on training versus test examples [21]. The EGE

can be usually bounded (e.g., in a probably approximately correct

sense [16]) by assuming that a large enough training set satisfy-

ing some statistical assumptions (e.g., independent and identically

distributed examples) is available. However, it is difficult to obtain

tight EGE bounds for DNNs due to the high-dimensional input

and parameter settings DNNs are used in (e.g., thousands of inputs,

such as pixels in an image, and millions of parameters) [37]. Thus,

it remains a challenge to bound the classification error of DNNs

used in real-world applications; in fact, several robustness issues

with DNNs have been discovered (e.g., adversarial examples [29]).

As an alternative way of assuring the safety of systems using

DNNs, researchers have focused on analyzing the trained DNNs
used in specific systems [6–8, 15, 35, 36]. While analytic proofs of

input/output properties are hard to obtain due to the complexity

of DNNs (namely, they are universal function approximators [13]),

prior work has shown it is possible to formally verify properties

about DNNs by adapting existing satisfiability modulo theory (SMT)

solvers [8, 15] and mixed-integer linear program (MILP) optimiz-

ers [7]. In particular, these techniques can verify linear properties

about the DNN’s output given linear constraints on the inputs.

These approaches exploit the piecewise-linear nature of the rec-

tified linear units (ReLUs) used in many DNNs and scale well by

encoding the DNN as an input to efficient SMT/MILP solvers. As

a result, existing tools can be used on reasonably sized DNNs, i.e.,

DNNs with several layers and a few hundred neurons per layer.

Although the SMT- and MILP-based approaches work well for

the verification of properties of the DNN itself, these techniques

cannot be straightforwardly extended to closed-loop systems using

DNNs as controllers. Specifically, the non-linear dynamics of a

typical CPS plant cannot be captured by these frameworks except

for special cases such as discrete-time linear systems. While it is

in theory possible to also approximate the plant dynamics with a

ReLU-based DNN and verify properties about it, it is not clear how

to relate properties of the approximating system to properties of the
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actual plant. As a result, it is challenging to use existing techniques

to reason about the safety of the overall system.

To overcome this limitation, we investigate an alternative ap-

proach, named Verisig, that allows us to verify properties of the

closed-loop system. In particular, we consider CPS using sigmoid-

based DNNs instead of ReLU-based ones and use the fact that the

sigmoid is the solution to a quadratic differential equation. This

allows us to transform the DNN into an equivalent hybrid system

such that a DNN with L layers and N neurons per layer can be

represented as a hybrid system with L + 1 modes and 2N states. In

turn, we compose the DNN’s hybrid system with the plant’s and

verify properties of the composed system’s reachable space by using

existing reachability tools such as dReach [17] and Flow* [4]. We

emphasize that this paper is not only the first to verify properties

about closed-loop systems with DNN controllers, but also the first
to consider sigmoid-based DNN verification using hybrid systems.

To analyze the feasibility of the proposed approach, we show

that DNN reachability (i.e., checking whether the DNN’s outputs lie

in some set given constraints on the inputs) can be transformed into

a real-arithmetic property with transcendental functions, which is

decidable if Schanuel’s conjecture is true [34]. We also prove that

reachability is decidable for DNNs with one hidden layer, given

interval constraints on the inputs. Finally, by casting the problem in

the dReach framework, we also show that reachability is δ -decidable
for general DNNs [10].

To evaluate the applicability of Verisig, we consider two case

studies, one from reinforcement learning (RL) and onewhere a DNN

is used to approximate an MPC with safety guarantees. DNNs are

increasingly being used in both of these domains, so it is essential to

be able to verify properties of interest about the closed-loop system.

We trained a DNN for a benchmark RL task, Mountain Car, and ver-

ified that the DNN will achieve its control task (i.e., drive an under-

powered car up a hill) within the problem constraints. In the MPC

approximation setting, we used an existing technique to approxi-

mate an MPC with a DNN [26] and verified that a DNN-controlled

quadrotor will reach its goal without colliding into obstacles.

Finally, we evaluate the scalability of Verisig as used with Flow*

by training DNNs of increasing size on the Mountain Car prob-

lem. For each DNN, we record the time it takes to compute the

output reachable set. For comparison purposes, we implemented

a piecewise-linear approach to approximate each sigmoid as sug-

gested in prior work [7]; in this setting, the problem is cast as

an MILP program that can be solved by an MILP optimizer such

as Gurobi [24]. We observe that, at similar levels of approxima-

tion, the MILP-based approach is faster than Verisig+Flow* for

small DNNs and DNNs with few layers. However, the MILP-based

approach’s runtimes increase exponentially for deeper networks

whereas Verisig+Flow* scales linearly with the number of layers

since the same computation is run in each mode (each layer). This

is another positive feature of our technique since deeper networks

are known to learn more efficiently than shallow ones [25, 32].

In summary, this paper has three contributions: 1) we develop an

approach to transform a DNN into a hybrid system, which allows

us to cast the closed-loop system verification problem into a hybrid

system verification problem; 2) we show that the DNN reachability

problem is decidable for DNNs with one hidden layer and decidable

Figure 1: Illustration of the closed-loop system considered
in this paper. The plant model is given as a standard hybrid
system, whereas the controller is a DNN. The problem is to
verify a property of the closed-loop system.

for general DNNs if Schanuel’s conjecture holds; 3) we evaluate both

the applicability and scalability of Verisig using two case studies.

The rest of this paper is organized as follows. Section 2 states

the problem addressed in this work. Section 3 analyzes the decid-

ability of the verification problem, and Section 4 describes Verisig.

Sections 5 and 6 present the case study evaluations in terms of ap-

plicability and scalability. Section 7 provides concluding remarks.

2 PROBLEM FORMULATION
This section formulates the problem considered in this paper. We

consider a closed-loop system, as shown in Figure 1, with states

x , measurements y, and a controller h. The states and measure-

ments are formalized in the next subsection, followed by the (DNN)

controller description and the problem statement itself, i.e., the

verification of a property ϕ about the closed-loop system.

2.1 Plant Model
We assume the plant dynamics are given as a hybrid system. A

hybrid system’s state space consists of a finite set of discrete modes

and a finite number of continuous variables [18]. Within each mode,

continuous variables evolve according to known differential equa-

tions; we focus specifically on differential equations with respect to

time. Furthermore, each mode contains a set of invariants that hold

true while the system is in that mode. Transitions between modes

are controlled by guards, which represent conditions on the con-

tinuous variables. Finally, continuous variables can be reset during

each mode transition. The formal definition is provided below.

Definition 1 (Hybrid System). A hybrid system with inputs u
and outputs y is a tuple H = (X ,X0, F ,E, I ,G,R,д) where

• X = XD ×XC is the state space with XD = {q1, . . . ,qm } and
XC a manifold;

• X0 ⊆ X is the set of initial states;
• F : X −→ TXC assigns to each discrete mode q ∈ XD a vector
field fq , i.e., Ûxc = fq (xc ,u) in mode q;

• E ⊆ XD × XD is the set of mode transitions;
• I : XD −→ 2

XC assigns to q ∈ XD an invariant of the form
I (q) ⊆ XC ;
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• G : E −→ 2
XC assigns to each edge e = (q1,q2) a guard

U ⊆ I (q1);
• R : E −→ 2

XC assigns to each edge e = (q1,q2) a reset
V ⊆ I (q2);

• д : X −→ Rp is the observation model such that y = д(x).

2.2 DNN Controller Model
As mentioned in Section 1, the controller is implemented by a DNN.

To simplify the presentation, we assume the DNN is a feedforward

neural network. However, the proposed technique applies to all

common classes such as convolutional, residual or recurrent DNNs.

A DNN controller maps measurements y to control inputs u
and can be defined as a function h as follows: h : Rp → Rq . As
illustrated in Figure 1, a typical DNN has a layered architecture and

can be represented as a composition of its L layers:

h(y) = hL ◦ hL−1 ◦ · · · ◦ h1(y),
where each hidden layer hi , i ∈ {1, . . . ,L− 1}, has an element-wise

(with each element called a neuron) non-linear activation function:

hi (y) = a(Wiy + bi ).
Each hi is parameterized by a weight matrixWi and an offset vector

bi . The most common types of activation functions are

• ReLU: a(y) := ReLU (y) = max{0,y},
• sigmoid: a(y) := σ (y) = 1

1+e−y ,

• hyperbolic tangent: a(y) := tanh(y) = ey−e−y
ey+e−y .

As argued in the introduction, and different from most existing

works that assume ReLU activation functions, this work considers

sigmoid and tanh activation functions (which also fall in the broad

class of sigmoidal functions). Finally, the last layer hL is linear:
1

hL(y) =WLy + bL ,

which is parameterized by a matrixWL and a vector bL .
During training, the parameters (W1,b1, . . . ,WL ,bL) are learned

through an optimization algorithm (e.g., stochastic gradient de-

scent [11]) used on a training set. In this paper, we assume the DNN

is already trained, i.e., all parameters are known and fixed.

2.3 Problem Statement
Given the plant model and the DNN controller model described in

this section, we identify two verification problems. The first one is

the reachability problem for the DNN itself.

Problem 1. Let h be a DNN as described in Section 2.2. The DNN
verification problem, expressed as propertyϕdnn, is to verify a property
ψdnn on the DNN’s outputs u given constraints ξdnn on the inputs y:

ϕdnn(y,u) ≡ (ξdnn(y) ∧ h(y) = u) ⇒ ψdnn(u). (1)

Problem 2 is to verify a property of the closed-loop system.

Problem 2. Let S = h | | HP be the composition of a DNN controller
h (Section 2.2) and a plant P , modeled with a hybrid system HP
(Section 2.1). Given a property ξ on the initial states X0 of P , the
problem, expressed as property ϕ, is to verify a property ψ of the
reachable states of P :

ϕ(X0,x(t)) ≡ ξ (X0) ⇒ ψ (x(t)), ∀t ≥ 0. (2)

1
The last layer is by convention a linear layer, although it could also have a non-linear

activation, as shown in the Mountain Car case study.

Our approach to Problem 1, namely transforming the DNN into

an equivalent hybrid system, also presents a solution to Problem 2

since we can compose the DNN’s hybrid system with the plant’s

and can use existing hybrid system verification tools.

Approach. We approach Problem 1 by transforming h into an
equivalent hybrid system Hh such that if x0 is an initial condition of
Hh , then the only reachable state is h(x0). Problem 2 is addressed by
verifying properties about the composed hybrid system Hh | | HP .

3 ON THE DECIDABILITY OF
SIGMOID-BASED DNN REACHABILITY

Before describing our approach to the problems stated in Section 2, a

natural question to ask is whether these problems are decidable. The

answer is not obvious due to the non-linear nature of the sigmoid.

This section shows that if the DNN’s inputs and outputs are given

as a real-arithmetic property, then reachability can be stated as a

real-arithmetic property with transcendental functions, which is

decidable if Schanuel’s conjecture is true [34]. Furthermore, we

prove decidability for the case of DNNs with a single hidden layer,

under mild assumptions on the DNN parameters. Finally, we argue

that by casting the DNN verification problem into a hybrid system

verification problem, we obtain a δ -decidable problem [10].
2

3.1 DNNs with multiple hidden layers
As formalized in Section 2, the reachability property of a DNN h
with inputs y and outputs u has the general form:

ϕ(y,u) ≡ (ξ (y) ∧ h(y) = u) ⇒ ψ (u), (3)

where ξ andψ are given properties on the real numbers. Verifying

properties on the real numbers is undecidable in general. A notable

exception is first-order logic formulas over (R, <,+,−, ·, 0, 1), i.e.,
the language where < is the relation, +, -, and · are functions, and
0 and 1 are the constants [31]; we denote such formulas by R-
formulas. Intuitively, R-formulas are first-order logic statements

where the constraints are polynomial functions of the variables

with integer coefficients. Example R-formulas are ∀x ∀y : xy >
0,∃x : x2 − 2 = 0, and ∃w : xw2 + yw + z = 0.

Another relevant language is (R, <,+,−, ·, exp, 0, 1), which also

includes exponentiation; we denote these formulas byRexp-formulas.

Although it is an open question whether verifying Rexp-formulas is

decidable, it is known that decidability is connected to Schanuel’s

conjecture [34]. Schanuel’s conjecture concerns the transcendence

degree of certain field extensions of the rational numbers and, if

true, would imply that verifying Rexp-formulas is decidable [34].

We focus on the case where ξ andψ are R-formulas. The expo-

nentiation in the sigmoid means thatϕ, however, is not a R-formula.

We show below thatϕ is in fact anRexp-formula, which implies that

DNN reachability is decidable if Schanuel’s conjecture is true [34].

Proposition 3.1. Let h : Rp → Rq be a sigmoid-based DNN with
L − 1 hidden layers (with N neurons each) and rational parameters.
The property ϕ(y,u) ≡ (ξ (y) ∧ h(y) = u) ⇒ ψ (u), where ξ andψ are
R-formulas, is an Rexp-formula.

2
Note that the results presented in this section hold for DNNs with sigmoid activation

functions, but similar results can be shown for tanh.
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Proof. Sinceψ is anR-formula, it suffices to show thatϕ0(y,u) ≡
ξ (y) ∧ h(y) = u can be expressed as an Rexp-formula. Note that

ϕ0(y,u) ≡ ξ (y) ∧ h1
1
=

1

1 + exp{−(w1

1
)⊤y − b1

1
}
∧ . . .

∧ hN
1
=

1

1 + exp{−(wN
1
)⊤y − bN

1
}
∧ . . .

∧ h1L−1 =
1

1 + exp{−(w1

L−1)⊤hL−2 − b1L−1}
∧ . . .

∧ hNL−1 =
1

1 + exp{−(wN
L−1)⊤hL−2 − bNL−1}

∧ u =WL[h1L−1, . . . ,h
N
L−1]

⊤ + bL ,

where (w j
i )
⊤
is row j ofWi , and hl = [h1l , . . . ,h

N
l ]⊤, l ∈ {1, . . . ,L−

1}. The last constraint, call it p(u), is already an R-formula. Let

[Wi ]jk = pijk/q
i
jk , with pijk and qijk > 0 integers, and let d0 =

q1
11
q1
12
· · ·qL−1Np . To remove fractions from the exponents, we add

extra variables zi and v
j
i and arrive at an equivalent property ϕZ,

which is an Rexp-formula since all denominators are Rexp-formulas:

ϕZ(y,u) ≡ ξ (y) ∧ z0d0 = y ∧ h1
1
=

1

1 + exp{−(r1
1
)⊤z0 −v1

1
}
∧ . . .

∧ hN
1
=

1

1 + exp{−(rN
1
)⊤z0 −vN

1
}
∧v1

1
= b1

1
∧ · · · ∧vN

1
= bN

1
∧ . . .

∧ zL−2d0 = hL−2 ∧ h1L−1 =
1

1 + exp{−(r1L−1)⊤zL−2 −v
1

L−1}
∧ . . .

∧ hNL−1 =
1

1 + exp{−(rNL−1)⊤zL−2 −v
N
L−1}

∧v1L−1 = b
1

L−1 ∧ · · · ∧vNL−1 = b
N
L−1 ∧ p(u),

where r
j
i = w

j
id0 are vectors of integers; v

j
i = b

j
i are R-formulas

since b
j
i are rational. □

Corollary 3.2 ([34]). If Schanuel’s conjecture holds, then veri-
fying the property ϕ(y,u) ≡ (ξ (y) ∧ h(y) = u) ⇒ ψ (u) is decidable
under the conditions stated in Proposition 3.1.

Remark. Note that by transforming the DNN into an equivalent
hybrid system (as described in Section 4), we show that DNN reacha-
bility is δ -decidable as well [10]. Intuitively, δ -decidability means that
relaxing all constraints by a rational δ results in a decidable problem;
as shown in prior work [10], reachability is δ -decidable for hybrid
systems with dynamics given by Type 2 computable functions. Since
the sigmoid is a Type 2 computable function, we have strong evidence
to believe that the proposed technique is a promising approach.

3.2 DNNs with a single hidden layer
Regardless of whether Schanuel’s conjecture holds, we can show

that DNN reachability is decidable for DNNs with a single hidden

layer. In particular, assuming interval bounds are given for each

input, it is possible to transform the reachability property into an

R-formula, thus showing that verifying reachability is decidable.

Theorem 3.3. Let h : Rp → Rq be a sigmoid-based DNN with one
hidden layer (with N neurons), i.e., h(x) =W2(σ (W1x +b1))+b2. Let

[W1]i j = pi j/qi j be all rational and let d0 = q11q12 · · ·qNp . Consider
the property

ϕ(y,u) ≡ (∃y ∈ Iy ∧ u = h(y)) ⇒ ψ (u),

where y = [y1, . . . ,yp ]⊤ ∈ Rp , u = [u1, . . . ,uq ]⊤ ∈ Rq , ψ is an
R-formula, and Iy = [α1, β1] × · · · × [αp , βq ] ⊆ Rp , i..e., the Carte-
sian product of p one-dimensional intervals. Then verifying ϕ(y,u)
is decidable if eb

i
1 , eα j /d0 , and eβj /d0 are rational numbers for all

i ∈ {1, . . . ,N } and j ∈ {1, . . . ,p} (bi
1
is element i of vector b1).

Proof. The proof technique borrows ideas from [18]. It suffices

to show that ϕ(y,u) is an R-formula. Since ψ (u) is an R-formula,

we focus on the remaining part of ϕ(y,u), call it ϕ0(y,u). Then

ϕ0(y,u) ≡ ∃y ∈ Iy ∧ h1
1
=

1

1 + exp{−(w1

1
)⊤y − b1

1
}
∧ . . .

∧ hN
1
=

1

1 + exp{−(wN
1
)⊤y − bN

1
}
∧ u =W2[h11, . . . ,h

N
1
]⊤ + b2,

where (wi
1
)⊤ is row i ofW1. Note that the last constraint in ϕ0(y,u),

call it p(u), is an R-formula. To remove fractions from the exponen-

tials, we change the limits of y. Consider the property

ϕZ(y,u) ≡ ∃y ∈ IZy ∧ h1
1
=

1

1 + exp{−(r1
1
)⊤y − b1

1
}
∧ . . .

∧ hN
1
=

1

1 + exp{−(rN
1
)⊤y − bN

1
}
∧ p(u),

where IZy = [α1/d0, β1/d0]×· · ·×[αp/d0, βp/d0] and each r i
1
= d0w

i
1

is a vector of integers. Note that ϕ0(y,u) ≡ ϕZ(y,u), since a change
of variables z = y/d0 implies that z ∈ IZy iff y ∈ Iy . To remove expo-

nentials from the constraints, we use their monotonicity property

and transform ϕZ(x ,y) into an equivalent property ϕe (x ,y):

ϕe (y,u) ≡ ∃y ∈ Iey ∧ h1
1
=

1

1 + y
r 1
11

1
· · ·y

r 1
1p
p exp{−b1

1
}
∧ . . .

∧ hN
1
=

1

1 + y
rN
11

1
· · ·y

rN
1p
p exp{−bN

1
}
∧ p(u),

where Iey = [e−β1/d0 , e−α1/d0 ] × · · · × [e−βp/d0 , e−αp/d0 ], and r i
1j is

element j of r i
1
. To see that ϕe (y,u) ≡ ϕZ(y,u), take any y ∈ IZy and

note that exp{−r i
1jyj } = z

r i
1j
j , with zj = e−yj ; thus, z ∈ Iex .

The final step transforms the propertyϕe (y,u) into an equivalent
property ν (y,u) to eliminate negative integers r i

1j in the exponents:

ν (y,u) ≡ ∃y ∈ Iey ∃z ∈ Ie−y y1z1 = 1 ∧ · · · ∧ ypzp = 1

∧ h1
1
=

1

1 +
∏
j ∈I+

1

y
r 1
1j
j

∏
j ∈I−

1

z
−r 1

1j
j exp{−b1

1
}
∧ . . .

∧ hN
1
=

1

1 +
∏
j ∈I+N

y
rN
1j
j

∏
j ∈I−

N

z
−rN

1j
j exp{−bN

1
}
∧ p(u),

where Ie−y = [eα1/d0 , eβ1/d0 ] × · · · × [eαp/d0 , eβp/d0 ], I+i = {k |
r i
1k ≥ 0}, and I−

i = {k | r i
1k < 0}. Note that ϕe (y,u) ≡ ν (y,u)

since for r i
1j < 0, the constraint zjyj = 1 implies y

r i
1j
j = z

−r i
1j

j .

4



Thus, if eb
j
1 , eαi /d0 , and eβi /d0 are rational for all i ∈ {1, . . . ,p},

j ∈ {1, . . . ,N }, one can show that ν (y,u) is an R-formula by multi-

plying all hi
1
constraints by their denominators. All denominators

are positive since yi and zi are constrained to be positive. □

The single-hidden-layer assumption in Theorem 3.3 is not too

restrictive since DNNs with one hidden layer are still universal

approximators. At the same time, the technique used to prove The-

orem 3.3 cannot be applied to multiple hidden layers since the DNN

becomes an Rexp-formula in that case. Note that it might be pos-

sible to show more general versions of Theorem 3.3 by relaxing

the interval constraints or the real-arithmetic constraints. Finally,

note that the assumption on the DNN’s weights is mild since a

DNN’s weights can be altered in such a way that they are arbitrar-

ily close to the original weights while also satisfying the theorem’s

requirements.

4 DNN REACHABILITY USING HYBRID
SYSTEMS

Having analyzed the decidability of DNN reachability in Section 3,

in this section we investigate an approach to computing the DNN’s

reachable set. In particular, we transform the DNN into an equiva-

lent hybrid system, which allows us to use existing hybrid system

reachability tools such as Flow*. Sections 4.1 and 4.2 explain the

transformation technique, and Section 4.3 provides an illustrative

example. Finally, Section 4.4 discusses existing hybrid system reach-

ability tools. Note that this section focuses on the case of sigmoid

activations; the treatment of tanh activations is almost identical –

the differences are noted in the relevant places in the section.

4.1 Sigmoids as solutions to differential
equations

The main observation that allows us to transform a DNN into an

equivalent hybrid system is the fact that the sigmoid derivative can

be expressed in terms of the sigmoid itself:
3

dσ

dx
(x) = σ (x)(1 − σ (x)). (4)

Thus, the sigmoid can be treated as a quadratic dynamical system.

Since we would like to know the possible values of the sigmoid

for a given set of inputs, we introduce a “time” variable t that is
multiplied by the inputs. In particular, consider the proxy function

д(t ,x) = σ (tx) = 1

1 + e−xt
, (5)

such that д(1,x) = σ (x) and, by the chain rule,

∂д

∂t
(t ,x) = Ûд(t ,x) = xд(t ,x)(1 − д(t ,x)). (6)

Thus, by tracing the dynamics of д until time t = 1, we obtain

exactly the value of σ (x); the initial condition is д(0,x) = 0.5, as

can be verified from (5). Since each neuron in a sigmoid-based DNN

is a sigmoid function, we can use the proxy function д to transform
the entire DNN into a hybrid system, as described next.

3
The corresponding differential equation for tanh is (d tanh/dx )(x ) = 1 − tanh

2(x ).

4.2 Deep Neural Networks as Hybrid Systems
Given the proxy function д described in Section 4.1, we now show

how to transform a DNN into a hybrid system. LetNi be the number

of neurons in hidden layer hi and let hi j denote neuron j in hi , i.e.,

hi j (x) = σ ((w j
i )
⊤x + b ji ), (7)

where (w j
i )
⊤
is row j ofWi and b

j
i is element j of bi . Given hi j , the

corresponding proxy function дi j is defined as follows:

дi j (t ,x) = σ (t · ((w j
i )
⊤x + b ji )) =

1

1 + exp{−t · ((w j
i )⊤x + b

j
i )}
,

where, once again, дi j (1,x) = hi j (x). Note that, by the chain rule,

∂дi j

∂t
(t ,x) = Ûдi j (t ,x) = ((w j

i )
⊤x + b ji )дi j (t ,x)(1 − дi j (t ,x)). (8)

Thus, for a given x , the value of hidden layer hi (x) can be obtained

by tracing all дi j (t ,x) until t = 1 (initialized at дi j (0,x) = 0.5).

This suggests that each hidden layer can be represented as a set of

differential equations Ûдi j (t ,x), where дi j can be considered a state.

With the above intuition inmind, we now show how to transform

the DNN into an equivalent hybrid system. To simplify notation, we

assume N = Ni for all i ∈ {1, . . . ,L − 1}; we also assume the DNN

has only one output. The proposed approach can be extended to

the more general case by adding more states in the hybrid system.

The hybrid system has one mode for each DNN layer. To en-

sure the hybrid system is equivalent to the DNN, in each mode

we trace дi j (t ,x) until t = 1 by using the differential equations

Ûдi j (t ,x) in (8). Thus, we use N continuous states, xP
1
, . . . ,xPN , to

represent the proxy variables for each layer; when in mode i , each
xPj , j ∈ {1, . . . ,N }, represents neuronhi j in the DNN.We also intro-

duce N additional continuous states (one per neuron), xL
1
, . . . ,xLN ,

to keep track of the linear functions within each neuron. The xLi
states are necessary because the inputs to each neuron are functions

of the xPi states reached in the previous mode.

The hybrid system description is formalized in Proposition 4.1.

The extra mode q0 is used to reset the xPi states to 0.5 and the x Ji
states to their corresponding values inq1. The two extra states, t and
u, are used to store the “time” and the DNN’s output, respectively.

Note that ⊙ denotes Hadamard (element-wise) product.

Proposition 4.1. Let h : Rp → R1 be a sigmoid-based DNN with
L − 1 hidden layers (with N neurons each) and a linear last layer
with one output. The image under h of a given set Iy is exactly the
reachable set for u in mode qL of the following hybrid system:

• Continuous states: xP = [xP
1
, . . . ,xPN ]⊤,x J = [x J

1
, . . . ,x JN ]⊤,

u, t ;
• Discrete states (modes): q0,q1, . . . ,qL ;
• Initial states: xP ∈ Iy , x J = 0,u = 0, t = 0;
• Flow:
– F (q0) = [ ÛxP = 0, Ûx J = 0, Ûu = 0, Ût = 1];
– F (qi ) = [ ÛxP = x J ⊙ xP ⊙ (1−xP ), Ûx J = 0, Ûu = 0, Ût = 1] for
i ∈ {1, . . . ,L − 1};

– F (qL) = [ ÛxP = 0, Ûx J = 0, Ûu = 0, Ût = 0];
• Transitions: E = {(q0,q1), . . . , (qL−1,qL)};
• Invariants:
– I (q0) = {t ≤ 0};
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(a) Example DNN. (b) Equivalent hybrid system.

Figure 2: Small example illustrating the transformation from a DNN to a hybrid system.

– I (qi ) = {t ≤ 1} for i ∈ {1, . . . ,L − 1};
– I (qL) = {t ≤ 0};

• Guards:
– G(q0,q1) = {t = 0};
– G(qi ,qi+1) = {t = 1} for i ∈ {1, . . . ,L − 1};

• Resets:
– R(qi ,qi+1) = {xP = 0.5,x J =W ixP + bi , t = 0}
for i ∈ {0, . . . ,L − 2};

– R(qL−1,qL) = {u =W LxP + bL}.

Proof. First note that the reachable set of xP in mode q1 at time

t = 1 is exactly the image of Iy under h1, the first hidden layer.

This is true because at t = 1, xP takes the value of the sigmoid

function. Applying this argument inductively, the reachable set of

xP in mode qL−1 at time t = 1 is exactly the image of Iy under

hL−1 ◦ · · · ◦ h1. Finally, u is a linear function of xP with the same

parameters as the last linear layer of h. Thus, the reachable set for
u in mode qL is the image of Iy under hL ◦ · · · ◦ h1 = h. □

4.3 Illustrative Example
To illustrate the transformation process from a DNN to a hybrid

system, this subsection presents a small example, shown in Figure 2.

The two-layer DNN is transformed into an equivalent three-mode

hybrid system. Since all the weights are positive and the sigmoids

are monotonically increasing, the maximum value for the DNN’s

output u is achieved at the maximum values of the inputs, whereas

the minimum value for u is achieved at the minimum values of the

inputs, i.e., u ≥ 3σ (0.3 · 2 + 0.2 · 1 + 0.1) + 5σ (0.1 · 2 + 0.5 · 1 + 0.2)
and u ≤ 3σ (0.3 · 3 + 0.2 · 2 + 0.1) + 5σ (0.1 · 3 + 0.5 · 2 + 0.2). The
same conclusion can be reached about state u in the hybrid system.

4.4 Hybrid System Verification Tools
Depending on the hybrid system model and the desired precision,

there are multiple tools one might use. In the case of linear hybrid

systems, there are powerful tools that scale up to a few thousand

states [9]. For non-linear systems, reachability is undecidable in

general, except for specific subclasses [2, 18]. Despite this negative

result, multiple reachability methods have been developed that have

proven useful in specific scenarios. In particular, Flow* [4] works

by constructing flowpipe overapproximations of the dynamics in

each mode using Taylor Models; although Flow* provides no decid-

ability claims, it scales well in practical applications. Alternatively,

dReach [17] provides δ -decidability guarantees for dynamics de-

scribed by Type 2 computable functions; at the same time, dReach

is not as scalable and could handle more than a few dozen vari-

ables in the examples tried in this paper. Finally, one can also use

SMT solvers such as z3 [22]; yet, SMT solvers are not optimized for

non-linear arithmetic and do not scale well either.

In this paper, we use Flow* due to its scalability; as shown in the

evaluation, it efficiently handles systems with a few hundred states,

i.e., DNNs with a few hundred neurons per layer. Furthermore, the

mildly non-linear nature of the sigmoid dynamics suggests that the

approximations used in Flow* are sufficiently precise so as to verify

interesting properties. This is illustrated in the case studies as well

as in the scalability evaluation in Section 6.

Finally, note that all existing tools have been developed for large

classes of hybrid systems and do not exploit the specific properties

of the sigmoid dynamics, e.g., they are monotonic and polynomial.

For example, in some cases it is possible to symbolically compute the

reachable set of monotone systems [5], although directly applying

this approach to our setting does not work due to the large state

space. Thus, developing a specialized sigmoid reachability tool is

bound to greatly improve scalability and precision; since this paper

is a proof of concept, developing such a tool is left for future work.

5 CASE STUDY APPLICATIONS
This section presents two case studies in order to illustrate possi-

ble use cases for the proposed verification approach. These case

studies were chosen in domains where DNNs are used extensively

as controllers, with weak worst-case guarantees about the trained

network. This means it is essential to verify properties about these

closed-loop systems in order to assure their functionality. The first

case study, presented in Section 5.1, is Mountain Car, a benchmark

problem in RL. Section 5.2 presents the second case study in which

a DNN is used to approximate an MPC with safety guarantees.

5.1 Mountain Car: A Reinforcement Learning
Case Study

This subsection illustrates how Verisig could be used to verify

properties on a benchmark RL problem, namely Mountain Car
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Figure 3: Mountain Car problem [23]. The car needs to drive
up the left hill first in order to gather enough momentum
and reach its goal on the right.

(MC). In (MC), an under-powered car must drive up a steep hill, as

shown in Figure 3. Since the car does not have enough power to

simply accelerate up the hill, it needs to drive up the opposite hill

first in order to gather enough momentum to reach its goal. The

learning task is to learn a controller that takes as input the car’s

position and velocity and outputs an acceleration command. The

car has the following discrete-time dynamics:

pk+1 = pk +vk

vk+1 = vk + 0.0015uk − 0.0025 ∗ cos(3pk ),

where uk is the controller’s input, and pk and vk are the car’s

position and velocity, respectively, with p0 chosen uniformly at

random from [−0.6,−0.4] andv0 = 0. Note thatvk is constrained to

be within [−0.07, 0.07] andpk is constrained to be within [−1.2, 0.6],
thereby introducing (hybrid) mode switches when these constraints

are violated. We consider the continuous version of the problem

such that uk is a real number between -1 and 1.

During training, the learning algorithm tries different control

actions and observes a reward. The reward associated with a control

action uk is −0.1u2k , i.e., larger control inputs are penalized more

so as to avoid a “bang-bang” strategy. A reward of 100 is received

when the car reaches its goal. The goal of the training algorithm is

to maximize the car’s reward. The training stage typically occurs

over multiple episodes (if not solved, an episode is terminated after

1000 steps) such that various behaviors can be observed. MC is

considered “solved” if, during testing, the car goes up the hill with

an average reward of at least 90 over 100 consecutive trials.

Using Verisig, one can strengthen the definition of a “solved” task

and verify that the car will go up the hill with a reward of at least

90 starting from any initial condition. To illustrate this, we trained

a DNN controller for MC in OpenAI Gym [23], a toolkit for devel-

oping and comparing algorithms on benchmark RL problems. We

utilized a standard actor/critic approach for deep RL problems [19].

This is a two-DNN setting in which one DNN (the critic) learns

the reward function, whereas the other one (the actor) learns the

control. Once training is finished, the actor is deployed as the DNN

controller for the closed-loop system. We trained a two-hidden-

layer sigmoid-based DNN with 16 neurons per layer; the last layer

has a tanh activation function in order to scale the output to be

between -1 and 1. Note that larger networks were also trained in

order to evaluate scalability, as discussed in Section 6.

Initial condition Verified Reward # steps Time

[-0.41, -0.40] Yes >= 90 <= 100 1336s

[-0.415, -0.41] Yes >= 90 <= 100 1424s

[-0.42, -0.415] Yes >= 90 <= 100 812s

[-0.43, -0.42] Yes >= 90 <= 100 852s

[-0.45, -0.43] Yes >= 90 <= 100 886s

[-0.48, -0.45] Yes >= 90 <= 100 744s

[-0.50, -0.48] Yes >= 90 <= 100 465s

[-0.53, -0.50] Yes >= 90 <= 100 694s

[-0.55, -0.53] Yes >= 90 <= 100 670s

[-0.57, -0.55] Yes >= 90 <= 100 763s

[-0.58, -0.57] Yes >= 90 <= 109 793s

[-0.59, -0.58] Yes >= 90 <= 112 1307s

[-0.6, -0.59] No N/A N/A N/A

Table 1: Verisig+Flow* verification times (in seconds) for dif-
ferent initial conditions of MC. The third column shows the
verified lower bound of reward. The fourth column shows
the verified upper bound of the number of dynamics steps.
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Figure 4: Verisig+Flow* approximation sets over time.

To verify that the car will go up the hill with a reward of at

least 90, we transform the DNN into an equivalent hybrid system

using Verisig and compose it with the car’s hybrid system. We use

Verisig+Flow* to verify the desired property on the composed sys-

tem, given any initial position in [-0.6, -0.4]. Note that we split the

initial condition into subsets and verify the property for each subset

separately. This is necessary because the DNN takes very different

actions from different initial conditions, e.g., large negative inputs

when the car is started from the leftmost position and small nega-

tive inputs for larger initial conditions. This variability introduces

uncertainty in the dynamics and causes large approximation errors.

Table 1 presents the verification times for each subset. Most

properties are verified within 10-15 minutes; the properties at either

end of the initial set take longer to verify due to branching in the

car’s hybrid system as caused by the car reaching the minimum

allowed position. For most initial conditions, we verify that the car

will go up the hill with a reward of at least 90 and in at most 100

dynamics steps. Interestingly, after failing to verify the property for

the subset [-0.6, -0.59], we found a counter-example when starting

the car from p0 = −0.6: the final reward was 88. This suggests that
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Figure 5: Overview of the quadrotor case study, as projected
to the (x ,y)-plane. The quadrotor’s goal is to follow its plan-
ner in order to reach the goal at the top (star) without collid-
ing into obstacles (red circles).Wehave verified that, starting
fromany statewithin the shown set of initial conditions, the
quadrotor will not deviate from its plan bymore than 0.32m
(and hence will not collide into any obstacles).

Verisig is not only useful for verifying properties of interest but it

can also be used to identify areas for which these properties do not

hold. In the case of MC, this information can be used to retrain the

DNN by starting more episodes from [-0.6, -0.59] since the likely

reason the DNN does not perform well from that initial set is that

not many episodes were started from there during training.

Finally, we illustrate the progression of the approximation sets

created by Flow*. Figure 4 shows a two-dimensional projection of

the approximation sets over time (for the case p0 ∈ [−0.5,−0.48]),
with the DNN control inputs plotted on the x-axis and the car’s

position on the y-axis. Initially, the uncertainty is fairly small and

remains so until the car goes up the left hill and starts going quickly

downhill. At that point, the uncertainty increases but it remains

within the tolerance necessary to verify the desired property.

5.2 Using DNNs to Approximate MPCs with
Safety Guarantees

To further evaluate the applicability of Verisig, we also consider a

case study in which a DNN is used to approximate an MPC with

safety guarantees. DNNs are used to approximate controllers for

several reasons: 1) the MPC computation is not feasible at run-

time [12]; 2) storing the original controller (e.g., as a lookup table)

requires too muchmemory [14]; 3) performing reachability analysis

by discretizing the state space is infeasible for high-dimensional

systems [26]. We focus on the latter scenario in which the aim is to

develop a DNN controller with safety guarantees.

As described in prior work [26], it is possible to train a DNN

approximating an MPC in the case of control-affine systems whose

goal is to follow a piecewise-linear plan. In this case, the optimal

controller is “bang-bang”, i.e., it is effectively a classifier mapping a

Initial condition on (prx ,pry ) Property Time

[−0.05,−0.025] × [−0.05,−0.025] ∥r3∥∞ ≤ 0.32m 2766s

[−0.025, 0] × [−0.05,−0.025] ∥r3∥∞ ≤ 0.32m 2136s

[0, 0.025] × [−0.05,−0.025] ∥r3∥∞ ≤ 0.32m 2515s

[0.025, 0.05] × [−0.05,−0.025] ∥r3∥∞ ≤ 0.32m 897s

[−0.05,−0.025] × [−0.025, 0] ∥r3∥∞ ≤ 0.32m 1837s

[−0.025, 0] × [−0.025, 0] ∥r3∥∞ ≤ 0.32m 1127s

[0, 0.025] × [−0.025, 0] ∥r3∥∞ ≤ 0.32m 1593s

[0.025, 0.05] × [−0.025, 0] ∥r3∥∞ ≤ 0.32m 894s

[−0.05,−0.025] × [0, 0.025] ∥r3∥∞ ≤ 0.32m 1376s

[−0.025, 0] × [0, 0.025] ∥r3∥∞ ≤ 0.32m 953s

[0, 0.025] × [0, 0.025] ∥r3∥∞ ≤ 0.32m 1038s

[0.025, 0.05] × [0, 0.025] ∥r3∥∞ ≤ 0.32m 647s

[−0.05,−0.025] × [0.025, 0.05] ∥r3∥∞ ≤ 0.32m 3534s

[−0.025, 0] × [0.025, 0.05] ∥r3∥∞ ≤ 0.32m 2491s

[0, 0.025] × [0.025, 0.05] ∥r3∥∞ ≤ 0.32m 2142s

[0.025, 0.05] × [0.025, 0.05] ∥r3∥∞ ≤ 0.32m 1090s

Table 2: Verisig+Flow* verification times (in seconds) for
different initial conditions of the quadrotor case study. All
properties were verified. Note that r3 = [prx ,pry ,prz ].

system state to one of finitely many control actions. Given a trained

DNN, one can simulate the closed-loop system over a horizon T
with a worst-case (i.e., most difficult to follow) plan – the largest

deviation from this plan (which also follows a “bang-bang” strategy)

is a worst-case guarantee for the deviation from any other plan

over horizon T . Thus, we obtain safety guarantees for the system

assuming that it is always started from the same initial condition.

In this case study, we consider a six-dimensional control-affine

model for a quadrotor controlled by a DNN and verify that the

quadrotor, as started from a set of initial conditions, will reach

its goal without colliding into nearby obstacles. Specifically, the

quadrotor follows a path planner, given as a piecewise-linear system,

and tries to stay as close to the planner as possible. The setup, as

projected to the (x ,y)-plane, is shown in Figure 5. The quadrotor

and planner dynamics models are as follows:

Ûq :=



Ûpqx
Ûpqy
Ûpqz
Ûvqx
Ûvqy
Ûvqz


=



v
q
x
v
q
y
v
q
z

дtanθ
−дtanϕ
τ − д


, Ûp :=



Ûppx
Ûppy
Ûppz
Ûvpx
Ûvpy
Ûvpz


=



bx
by
bz
0

0

0


, (9)

where p
q
x ,p

q
y ,p

q
z and p

p
x ,p

p
y ,p

p
z are the quadrotor and planner’s

positions, respectively; v
q
x ,v

q
y ,v

q
z and v

p
x ,v

p
y ,v

p
z are the quadro-

tor and planner’s velocities, respectively; θ , ϕ and τ are control

inputs (for pitch, roll and thrust); д = 9.81m/s2 is gravity; bx ,by ,bz
are piecewise constant. The control inputs have constraints ϕ,θ ∈
[−0.1, 0.1] and τ ∈ [7.81, 11.81]; the planner velocities have con-
straints bx ,by ,bz ∈ [−0.25, 0.25]. The controller’s goal is to ensure

the quadrotor is as close to the planner as possible, i.e., stabilize the

system of relative states r := [prx ,pry ,prz ,vrx ,vry ,vrz ]⊤ = q − p.

To train a DNN controller for the model in (9), we follow the

approach described in prior work [26]. We sample multiple points

from the state space over a horizonT and train a sequence of DNNs,
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Figure 6: Comparison between the verification times of Verisig+Flow* (V+F) and the MILP-based approach with Gurobi (M+G)
for DNNs of increasing size. In each figure, the number of neurons is fixed and number of layers varies from two to 10.

one for each dynamics step (as discretized using the Runge-Kutta

method). Once two consecutive DNNs have similar training error,

we interrupt training and pick the last DNN as the final controller.

The DNN takes a relative state as input and outputs one of eight

possible actions (the “bang-bang” strategy implies there are two

options per control action). We trained a two-hidden layer tanh-

based DNN, with 20 neurons per layer and a linear last layer.

Given the trained DNN controller, we verify a safety property

for the the setup whose (x ,y)-plane projection is shown in Fig-

ure 5. Specifically, the quadrotor is started from an initial condition

(prx (0),pry (0)) ∈ [−0.05,−0.05] × [−0.05,−0.05] (the other states are
initialized at 0) and needs to stay within 0.32m from the planner in

order to reach its goal without colliding into obstacles. Similar to

the MC case study, we split the initial condition into smaller subsets

and verify the property for each subset.

The verification times of Verisig+Flow* for each subset are shown

in Table 2. Most cases take less than 30 minutes to verify, which is

acceptable for an offline computation. Note that this verification

task is harder than MC not because of the larger dimension of the

state space but because of the discrete DNN outputs. This means

that Verisig+Flow* needs to enumerate and verify all possible paths

from the initial set. This process is computationally expensive since

the number of paths could grow exponentially with the length of

the scenario (set to 30 steps in this case study). One approach to

reduce the computation time would be to use the Markov prop-

erty of dynamical systems and skip states that have been verified

previously. We plan to explore this idea as part of future work.

In summary, this section shows that Verisig can verify both safety

and liveness properties in different and challenging domains. The

plant models can be nonlinear systems specified in either discrete

or continuous time. The next section shows that Verisig+Flow* also

scales well to larger DNNs and is competitive with other approaches

for verification of DNN properties in isolation.

6 COMPARISONWITH OTHER DNN
VERIFICATION TECHNIQUES

This section complements the Verisig evaluation in Section 5 by

analyzing the scalability of the proposed approach. We train DNNs

of increasing size on the MC problem and compare the verification

times against the times produced by another suggested approach to

the verification of sigmoid-based DNNs, namely one using a MILP

formulation of the problem [7]. We verify properties about DNNs

only (without considering the closed-loop system), since existing

approaches cannot be used to argue about the closed-loop system.

As noted in the introduction, the two main classes of DNN veri-

fication techniques that have been developed so far are SMT- and

MILP-based approaches to the verification of ReLU-based DNNs.

Since both of these techniques were developed for piecewise-linear

activation functions, neither of them can be directly applied to

sigmoid-based DNNs. Yet, it is possible to extend them to sigmoids

by bounding the sigmoid from above and below by piecewise-linear

functions. In particular, we implement the MILP-based approach

for comparison purposes since it can also be used to reason about

the reachability of a DNN, similar to Verisig+Flow*.

The encoding of each sigmoid-based neuron into an MILP prob-

lem is described in detail in [7]. It makes use of the so called Big M

method [33], where conservative upper and lower bounds are de-

rived for each neuron using interval analysis. The encoding uses a

binary variable for each linear piece of the approximating function

such that when that variable is equal to 1, the inputs are within

the bounds of that linear piece (all binary variables have to sum up

to 1 in order to enforce that the inputs are within the bounds of

exactly one linear piece). Thus, the MILP contains as many binary

variables per neuron as there are linear pieces in the approximating

function. Finally, one can use Gurobi to solve theMILP and compute

a reachable set of the outputs given constraints on the inputs.

To compare the scalability of the two approaches, we trained

multiple DNNs on the MC problem by varying the number of layers

from two to ten and the number of neurons per layer from 16 to 128.

A DNN is assumed to be “trained” if most tested episodes result in

a reward of at least 90 – since this is a scalability comparison only,

no closed-loop properties were verified. For each trained DNN, we

record the time to compute the reachable set of control actions

for input constraints p0 ∈ [−0.52,−0.5] and v0 = 0 using both

Verisig+Flow* and the MILP-based approach. For fair comparison,

the two techniques were tuned to have similar approximation error;

thus, we used roughly 100 linear pieces to approximate the sigmoid.

The comparison is shown in Figure 6. The MILP-based approach

is faster for small networks and for large networks with few layers.

As the number of layers is increased, however, the MILP-based

approach’s runtimes increase exponentially due to the increasing

number of binary variables in the MILP. Verisig+Flow*, on the

other hand, scales linearly with the number of layers since the
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same computation is run for each layer (i.e., in each mode). This

means that Verisig+Flow* can verify properties about fairly deep

networks; this fact is noteworthy since deeper networks have been

shown to learn more efficiently than shallow ones [25, 32].

Another interesting aspect of the behavior of the MILP-based

approach can be seen in Figure 6c. The verification time for the nine-

layer DNN is much faster than for the eight-layer one, probably

due to Gurobi exploiting a corner case in that specific MILP. This

suggests that the fast verification times of the MILP-based approach

should be treated with caution as it is not knownwhich example can

trigger a worst-case behavior. In conclusion, Verisig+Flow* scales

linearly and predictably with the number of layers and can be used

in a wide range of closed-loop systems with DNN controllers.

7 CONCLUSION AND FUTUREWORK
This paper presented Verisig, a hybrid system approach to verifying

safety properties of closed-loop systems using sigmoid-based DNNs

as controllers. We showed that the verification problem is decidable

for DNNs with one hidden layer and decidable for general DNNs if

Schanuel’s conjecture is true. The proposed technique uses the fact

that the sigmoid is a solution to a quadratic differential equation,

which allows us to transform the DNN into an equivalent hybrid

system. Given this transformation, we cast the DNN verification

problem into a hybrid system verification problem, which can be

solved by existing reachability tools such as Flow*. We evaluated

both the applicability and scalability of Verisig+Flow* using two

case studies, one from reinforcement learning and one where the

DNN was used to approximate an MPC with safety guarantees.

The novelty of the proposed approach suggests multiple avenues

for future work. First of all, it would be interesting to investigate

whether one could use sigmoid-based DNNs to approximate DNNs

with other activation functions (with analytically bounded error).

This would enable us to verify properties about arbitrary DNNs

and would greatly expand the application domain of Verisig.

A second research direction is to exploit the specific properties

of the sigmoid dynamics, namely the fact that they are monotone

and quadratic, in order to speed up the verification computation.

Although the proposed technique is already scalable to a large

class of applications, it still makes use of Flow*, which is a general-

purpose tool that was developed for a large class of hybrid systems.

That is why, developing a specialized sigmoid verification toolmight

bring significant benefits in terms of scalability and precision.

Finally, although the coarse approximation used in Flow* might

be seen as a limitation, no experiments we have run have shown

large approximation errors. This suggests that the Flow* approx-

imation may be well suited for sigmoid dynamics. Exploring this

phenomenon further and bounding the approximation error in-

curred by Flow* is also an intriguing direction for future work.
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