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Abstract: Medical Cyber-Physical Systems (MCPS) hold the promise of reducing human errors
and optimizing healthcare by delivering new ways to monitor, diagnose and treat patients through
integrated clinical environments (ICE). Despite the benefits provided by MCPS, many of the ICE
medical devices have not been designed to satisfy cybersecurity requirements and, consequently,
are vulnerable to recent attacks. Nowadays, ransomware attacks account for 85% of all malware in
healthcare, and more than 70% of attacks confirmed data disclosure. With the goal of improving this
situation, the main contribution of this paper is an automatic, intelligent and real-time system to
detect, classify, and mitigate ransomware in ICE. The proposed solution is fully integrated with the
ICE++ architecture, our previous work, and makes use of Machine Learning (ML) techniques to detect
and classify the spreading phase of ransomware attacks affecting ICE. Additionally, Network Function
Virtualization (NFV) and Software Defined Networking (SDN)paradigms are considered to mitigate
the ransomware spreading by isolating and replacing infected devices. Different experiments returned
a precision/recall of 92.32%/99.97% in anomaly detection, an accuracy of 99.99% in ransomware
classification, and promising detection and mitigation times. Finally, different labelled ransomware
datasets in ICE have been created and made publicly available.

Keywords: integrated clinical environments; medical cyber-physical systems; cybersecurity;
anomaly detection; ransomware classification; network function virtualization; software-defined
networking

1. Introduction

The increasing resilience to antibiotics, an ageing population, the epidemic obesity, or the impact
of pollution are factors that increase the difficult for hospitals and care centres to effectively care for
patients globally. Hospitals are constantly incorporating technological innovations to face these aspects
and improve the quality of the healthcare provided within their borders in the hospital rooms of the
future. In this context, new paradigms such as the Internet of Medical Things (IoMT) [1], and Medical
Cyber-Physical Systems (MCPS) [2] hold the promise to deliver radical new ways to monitor, diagnose
and treat patients through interconnected medical devices with embedded computing systems and
networking capabilities.
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MCPS refer to safety-critical interconnected medical systems that analyse patients’ vital signs
gathered from medical devices, infer the state of the patient’s health, and initiate treatments issuing
information to doctors or directly to medical actuators. This disruptive vision has the potential
to enable in a cost-efficient way the next-generation of healthcare, which requires systems able to
interoperate efficiently, safely, and securely [3]. In this context, the use of interconnected patient-centric
medical devices in operating rooms or intensive care units will contribute to reduce human errors and
optimize healthcare treatments.

With the goal of making possible the MCPS vision, the ASTM F2761 standard [4] proposes
a patient-centric architecture for Integrated Clinical Environments (ICE) that enables the open
coordination and interoperability of heterogeneous medical devices and applications. Despite the
benefits provided by MCPS and ICE, many of their medical devices and systems incorporating
embedded computing and networking capabilities have not been designed to satisfy security
requirements and, consequently, are vulnerable to recent attacks [5]. The situation aggravates when
medical devices are interconnected to hospital Internet-enabled computer systems. A few years ago,
Symantec [6] revealed that more than half of reported outbreaks extended beyond a single medical
device, and more than a third of them had experienced a virus or other malware on medical devices,
even using protection mechanisms such as firewalls, anti-viruses, or virtual local area networks
(VLANs). The Ponemon Institute surveyed in 2016 that 64% of organizations reported a successful
attack targeting medical files (9% more than the previous year) and nearly 90% of the attacks to
healthcare organizations provoked data breaches [7]. More recently, a Verizon data breach report
of 2018 [8] stated that ransomware (malware that encrypts the file system and requests a ransom to
decrypt it) accounts for 85% of all malware in healthcare, and more than 70% of attacks confirmed data
disclosure. In this context, in January 2018, the Hancock Health Hospital (US) paid attackers $55,000
to unlock systems following a ransomware infection [9]. Previous outbreaks, such as the infamous
NotPetya and WannaCry cases in 2017, also affected hospitals worldwide and allegedly forced some of
them (16 in the case of the British NHS) to shut down services, send patients to other hospitals and
even postpone scheduled surgeries [10].

As it has been demonstrated, ransomware attacks present a critical cybersecurity problem affecting
the healthcare discipline. Below, we highlight some of the most important open challenges oriented to
the detection and mitigation of ransomware affecting integrated clinical environments [11]:

• Existing protection mechanisms like anti-viruses, intrusion detection systems (IDS), or firewalls
are not suitable to detect cyberattacks performed by novel or unseen ransomware. It is due
to the fact that their functioning relies on having metadata like, for example, signatures of
known cyberattacks.

• Not all the traffic patterns generated by ransomware and malware are distinguishable from the
normal traffic patterns generated by medical devices and systems with networking capabilities.
In this sense, both a malware encrypting a shared folder and an application compressing the
same files have a similar traffic pattern. Similarly, normal changes in the clinical environment
can be misinterpreted as attacks if the detection mechanisms do not adapt properly. In addition,
malware developers are increasingly using encrypted traffic to avoid payload inspection.

• Achieving an acceptable balance between detection and false alarm rates is a difficult task. A high
false alarm rate can be rather frustrating for the administrator and a low detection rate can make
the system ineffective.

In this context, Machine Learning (ML) techniques [11] based on the detection of abnormal
patterns in the network communications can help to detect unseen ransomware when they spread
across the clinical networks or environments. Additionally, when the range of possible classes of
anomalies is known and an appropriate labelled training dataset is available, supervised classifiers
have obtained satisfactory detection accuracy. On the other hand, the combination of Mobile Edge
Computing (MEC) [12] with new technologies as Network Function Virtualization (NFV) and Software
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Defined Networking (SDN) [13] enables the flexible, cost-efficient, and automatic management of
security mechanisms that can allow mitigating the ransomware attacks in ICE.

In order to improve the previous challenges, the main contribution of this article is the design,
implementation and validation of an automatic and intelligent system to detect, classify, and mitigate
ransomware attacks affecting hospital rooms of the future equipped with ICE. The proposed solution
detects and classifies in real time both well-known and unseen ransomware attacks in ICE by analysing
the network flows generated during their spreading phase. In addition, once the ransomware has
been detected and classified, the proposed mechanism automatically mitigates it by using NVF/SDN
techniques to isolate and replace infected devices, avoiding the ransomware spreading across the
clinical network. Specifically, we isolate infected medical devices through the SDN paradigm as
well as replace their software controllers using NFV techniques. Both the detection and mitigation
mechanisms are fully integrated into our previous work, the ICE++ architecture [14]. The ICE++
architecture combines the MEC paradigm with the SDN and NFV techniques to deploy and control in
a flexible and efficient way the components making up the hospital room of the future.

Another relevant contribution of this article is a set of experiments that demonstrate the
effectiveness of our solution detecting some of the most recent and dangerous malware (namely,
WannaCry, Petya, BadRabbit and PowerGhost). In this sense, the selected techniques for both anomaly
detection (One-Class Support Vector Machine) and ransomware classification (Naive Bayes) obtained
a high precision with known and unseen ransomware samples. Additional experiments demonstrated
the viability of the proposed solution in terms of time. In the worst case, our solution detected and
mitigated a ransomware attack in less than 30 s, which is an acceptable time because the fastest
ransomware required more than 1 min to spread and infect ICE devices. Additionally, as a final
contribution, during these experiments, a publicly available labelled dataset was created containing
the traffic capture and the resulting netflows from our ICE configuration for both clean and ransomware
propagation traffic [15]. In conclusion, the main novelties of our solution are the combination of an
anomaly detector and a classifier to improve the detection of ransomware in a clinical environment,
the use of multiple flows to compute features and the use of SDN/NFV for mitigation.

The remainder of the paper is structured as follows. Section 2 discusses some related work
on security challenges of ICE solutions. Section 3 shows the relevance of ransomware attacks in
the hospital rooms of the future equipped with integrated and interconnected medical devices and
systems. Section 4 depicts the design details of the proposed detection, classification and mitigation
mechanisms. Section 5 shows a summary of the components forming the ICE++ architecture and its
integration with our solution. Section 6 shows the experiments performed to demonstrate the viability
of our solution. Finally, conclusions and future work are drawn in Section 7.

2. Related Work

This section gives an overview of the cybersecurity concerns found in the current state of ICE and
MCPS solutions. Historically, medical devices have been developed as stand-alone systems without
communication capabilities. However, the MCPS vision is emerging to provide interoperability,
safety, and security to clinical environments. In this context, key characteristics in the search for
appropriate technology, regulations, and ecosystems to ICE are highlighted in [16]. Nowadays,
OpenICE [17] is a commonly adopted implementation of the ICE framework. OpenICE is a distributed
patient-centric architecture that implements the components defined by the ICE framework. On one
hand, the equipment interfaces can run on computers with limited resources (e.g., BeagleBone
Black, Raspberry Pi, etc.), which are physically attached to medical devices to provide network
capabilities [18]. On the other hand, the communications between the interfaces and the supervisor are
managed by the external DDS middleware [19], which covers partially the cybersecurity of OpenICE.

In the literature, there are different solutions oriented to analyse and mitigate the security and
privacy issues of healthcare and MCPS [20]. In this context, one of the most recent works is presented
in [21], where the authors review the major security techniques available in the state of the art and
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study their applicability and utility for the design of MCPS. After that, the authors define an abstract
architecture for MCPS to demonstrate various threats. In [22], a prototype is developed to protect
the communications of solutions based on the ICE framework through the security mechanisms
provided by the Object Management Group (OMG) Data Distribution Service (DDS) standard [19].
Specifically, the DDS middleware adds support for authentication, authorization, access control,
confidentiality, integrity and non-repudiation of the exchanged information. After several experiments,
the authors state that transport-level security (TLS) solutions may not provide sufficient resilience
against insider attacks, while DDS potentially addresses or mitigates disturb, eavesdrop, and denial
of service (DoS) attacks. Despite the important outputs of this proposal, it is not clear how DDS is
able to mitigate DoS attacks. Another work, oriented to protect the security and privacy of solutions
based on ICE, is proposed in [23]. The authors of this work propose a cloud-based secure logger
that receives the information sensed by ICE interfaces attached to medical devices. The proposed
logger relies on standard encryption mechanisms to maintain a secure communication channel even
on an untrusted network and operating system. This solution is effective against replay, injection,
and eavesdropping attacks. However, any behaviour that does not lead to message alteration is not
detected. In [24], it is designed and implemented an authentication framework for ICE-compliant
interoperable medical systems. The proposed framework is composed of three layers, allowing it to
fit in the variety of authentication requirements coming from different ICE entities and networking
middlewares. The performed experiments demonstrate that the proposed authentication framework
protects OpenICE against device replacement and impersonation attacks.

In addition to the previous security mechanisms proposed in ICE, in the literature, we can
find solutions in heterogeneous scenarios that leverage SDN to detect/mitigate ransomware attacks,
some of them using different ML techniques for detection purposes. However, to the best of our
knowledge, none of them has integrated the combination SDN/NFV with the ICE standard to be able
to replace infected elements such as ICE Equipment Interfaces or ICE Supervisor in a few seconds.
Moreover, the detection of the ransomware spreading in ICE with encrypted traffic has not been
addressed yet.

Among the ransomware mitigation solutions based on SDN, Ref. [25] uses SDN redirection
capabilities together with a blacklist of proxy servers to check if the infected device is trying to connect
to one of them to obtain the public encryption key. The mitigation consists of establishing a flow
filter to impede this communication and, thus, the encryption of the files. The main drawback of
this proposal is that it needs to keep a blacklist of proxy servers updated. These servers must be
identified by means of behavioural analysis of known malware, thus making it impossible to detect
new campaigns. When compared with our solution, our goal is not to prevent the encryption of
the files. We attempt to detect the ransomware spreading by using the characteristic traffic patterns
generated during that stage. Additionally, our mitigation procedure restores the ICE system to a
clean state.

Another relevant and recent paper related to SDN and ransomware is [26]. In this work,
the authors use deep packet inspection to identify HTTP POST messages, defining as feature vector
the lengths of each three consecutive HTTP POST messages. Then, a classifier is trained by computing
both the centroid of the feature vectors belonging to each ransomware class, and a maximal distance to
be considered from that class. They obtain an false positive ratio (FPR) of about 4% using this method.
The main difference with our proposal is that the latter one does not inspect the payload, thus being
suitable even with encrypted traffic. Additionally, our combination of anomaly detector and classifier
reaches an FPR of less than 1%. Unfortunately, these results are not comparable due to the context of
each solution.

In [27], the authors recognise that malware developers are increasingly using encrypted traffic to
avoid payload inspection. Therefore, they propose using SDN to obtain flows and compute a feature
vector made up of a combination of interarrival times, packet ratios and burst lengths. They train a
random forest to detect the traffic exchanged between the infected device and the Command & Control
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(C&C) server, obtaining around 10% of FPR. Our solution aggregates the flows belonging to a given
time window, thus obtaining more expressive features. Although our FPR is virtually zero, the results
are not comparable due to the different contexts.

Regarding other types of malware, the authors of [28] proposed a system able to detect it using
machine learning classifiers. They focused on analysing the network traffic and selected four categories
of features: basic information, content based, time based and connection based. To perform the system
evaluation, the authors used two different datasets, concluding that Bayes network and random
forest classifiers produced more accurate outputs than other ML solutions like multilayer perceptron.
Similarly, in [29], deep learning techniques are proposed to detect botnet attacks by analysing network
flow patterns from real botnet traffic captures. This is carried out in the context of a MEC oriented
system based on NFV/SDN that provides a dynamic management of the resources involved in the
detection process. Another solution was presented in [30], where the authors performed an ML
analysis of ransomware affecting the MS Windows operating system. They considered the network
traffic to achieve an acceptable detection rate. A dataset created from conversation-based network
traffic features was used to achieve a true positive detection rate of 97% using the Decision Tree (J48)
classifier. The proposal presented in [31] also was focused on ransomware detection. Unlike the
previous solutions, this approach extracted relevant features from the API call history produced
by ransomware attacks. These features were used along with a Support Vector Machine (SVM) to
detect unknown ransomware. The authors demonstrated a correct detection ratio by considering
276 ransomware samples in a Sandbox. The authors of [32] developed a network intrusion detection
model based on big data and netflows. In addition, six feature selection algorithms were combined
to achieve a better accuracy in terms of classification. On the other hand, in [33], a methodology for
trusted detection of ransomware in a private cloud is presented. The authors considered volatile
memory dumps of virtual machines to create features. The results showed that the proposed system
was able to detect anomalous states of a virtual machine, as well as the presence of both known and
unknown ransomware. Table 1 compares our solution with the most relevant ones of the state of the
art by considering different criteria.

Table 1. Comparison of our work with other relevant proposals.

Reference Target Context Input Technique Traffic Mitigation

[25] Ransomware C&C Connections IP Header Blacklist Cypher SDN
[26] Ransomware C&C Connections HTTP length Classifier Plain SDN
[27] Ransomware C&C Connections Netflows Classifier Cypher –
[28] Malware Mobile HTTP & Netflows Classifier Plain –
[30] Malware Network Netflows Classifier Cypher –
[31] Ransomware App execution Syscalls Classifier Cypher –
[32] Ransomware Network Netflows Classifier Cypher –
Our

solution Ransomware
Integrated Clinic

Environment Netflows
Anomaly &
Classifier Cypher SDN/NFV

C&C: Command and Control; SDN: Software Defined Networking; NFV: Network Function Virtualization.

The previous solutions improve in a proactive and reactive way the cybersecurity challenges of
clinical and heterogeneous environments. However, they do not consider the real-time and autonomic
detection and mitigation of ransomware during its spreading phase. Additionally, these solutions are
not integrated into an adaptive and flexible management architecture, which is able to manage the
security mechanisms according to the contextual information (for example, when the ICE system is
under a given attack). To the best of our knowledge, this paper proposes the first solution combining
ML techniques to detect and classify ransomware as well as the use of NFV/SDN techniques combined
with MCPS to provide a flexible management of the ICE resources in real time and on-demand.
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3. Ransomware in the Hospital Rooms of the Future

This section presents a clinical scenario that shows real issues caused by a ransomware attack
affecting hospital rooms of the future. For the sake of clarity, we focus the explanation on the behaviour
of the WannaCry ransomware family. However, it is important to note that the solution proposed
in this paper is generic enough to detect and mitigate other families of ransomware, as it has been
demonstrated in Section 6.

3.1. The Hospital Room of the Future

With the goal of facilitating the interoperability of the elements comprising the hospital rooms
of the future and making possible the MCPS vision, the ASTM F2761 standard [4] proposes a
patient-centric architecture for ICE that enables the open coordination of heterogeneous medical
devices and applications. Among the proposed components of the ICE framework, the most relevant
are the ICE Equipment Interfaces, which are attached to medical devices to enable their networking
capabilities; the ICE Supervisor, focused on hosting medical applications that receive and control the
patients’ vital signs; the ICE Network Controller, in charge of enabling the communications between
the supervisor and the ICE equipment interfaces, as well as handling and maintaining the discovery
of medical devices and their information; the Data Logger, focused on troubleshooting and forensic
analysis; and External Interface, which enables the communication with external hospital resources
such as Electronic Health Records (EHR). Figure 1 shows the elements composing the ICE framework
and their communications.

ICE Supervisor

External Interface
ICE Network 

Controller
Data Logger

ICE Equipment 
Interface

ICE Equipment 
Interface

ICE Equipment 
Interface

Medical Device

Medical Device Other Equipment

ICE Framework

Patient

Clinician/Operator

Figure 1. Elements composing the integrated clinical environment (ICE) framework.

3.2. WannaCry Ransomware Infecting and Spreading across the Hospital Room of the Future

Over the last few years, ransomware has gained relevance as a devastating method of cybercrime
in healthcare environments. Locky [26], SamSam [34] and, more recently, WannaCry [35] and
Petya [36] are well-known families of ransomware that have affected hospitals worldwide and
allegedly forced some of them to shutdown services, send patients to other hospitals and even
postpone scheduled surgeries.
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To contextualize, ransomware is a type of malware that encrypts the files of infected devices
(affecting the availability of data and/or device) and requests a ransom to decrypt the files and avoid
information losses. Recent ransomware attempts to exploit system vulnerabilities to spread out rapidly
through the networks and affect as many devices or machines as possible. This propagation process
is much more harmful when the number of systems is significantly larger. Nowadays, there are
several families of ransomware with important differences in terms of encryption and spreading
behaviours. One of the most recent and malicious families is WannaCry. This ransomware spreads
automatically across the network by exploiting a vulnerability in the MS Windows based Server
Message Block (SMBv1). Despite this vulnerability having already been fixed by Microsoft, it is critical
to have mechanisms able to detect unseen or known ransomware exploiting well-known or undetected
vulnerabilities. Otherwise, hospital rooms of the future equipped with a large number of interconnected
medical devices and computational systems will suffer ransomware attacks, affecting the patients’
safety and privacy.

As an example and to illustrate the ransomware impact in the hospital room of the future,
we consider that the ICE Supervisor becomes infected by WannaCry. As it has been demonstrated at
the beginning of this section, this situation is not unreal and it can happen due to plugging external
devices with malicious or infected files, social engineering, weaponized files, or phishing. Once the
ICE Supervisor is infected, WannaCry attempts to connect to a predefined domain. If the site was
registered, the ransomware is not executed, acting as a killswitch. In contrast, if the connection fails,
the ransomware starts with the following two phases:

• Spreading phase: The WannaCry ransomware attempts to spread itself across the hospital network
to infect vulnerable medical devices and computers. For that goal, WannaCry uses EternalBlue,
an exploit developed by the National Security Agency (NSA) that attacks a vulnerability of the
MS Windows based Server Message Block (SMBv1) protocol. After a successful exploitation,
the DoublePulsar payload is sent to run remote code and infect the medical devices and computers
connected to the ICE network.

• Encryption phase: It can be performed before, in parallel, or after the spreading phase (depending
on the ransomware version and family). During this phase, the medical database as well as
other data files are encrypted. Once the process is completed, WannaCry asks for a ransom to
decrypt the medical database. Ransomware belonging to the WannaCry family generates and
saves a new RSA key pair, which is used to encrypt the medical database and the target data files.
Once the previous files are encrypted, WannaCry deletes the original ones, and communicates
with an Onion server using a Tor server to transfer the encryption keys. When the ransom is
paid, WannaCry obtains the decrypted RSA private key from the Onion server and decrypts the
ransomed files.

As it has been explained in Section 2, current ICE security solutions do not have capabilities
to detect and mitigate the spreading phase of WannaCry or other ransomware, which supposes a
critical cybersecurity issue. During the process of detecting ransomware, it is mandatory to have an
efficient mechanism to monitor and analyse in real time the network traffic and identify anomaly
communications between the medical devices connected to the ICE network. Additionally, it is also
critical to have an autonomic mechanism able to react and mitigate ransomware attacks once the
infection has started. This mechanism should be able to perform different tasks like stopping the
spreading phase by dropping infected network packets, and replacing the infected software. To reach
both detection and mitigation capabilities, a solution like the proposed in this paper is required.

4. Design of Our System to Detect, Classify and Mitigate Ransomware in ICE

This section presents the design details of our intelligent and automatic solution to detect,
classify and mitigate ransomware attacks in hospital rooms of the future. Having in mind the clinical
scenario defined in Section 3, the aim of our approach is twofold. On the one hand, we want to
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detect anomalies or novelties in the network traffic patterns produced by ransomware spreading
across hospital rooms of the future equipped with ICE. To this purpose, a semi-supervised anomaly
detection method is especially well suited to detect unknown ransomware, when network traffic
generated during its propagation phase is sufficiently different from normal traffic patterns. On the
other hand, we want to provide some feedback to the administrator about the nature of the propagating
ransomware. Therefore, a probabilistic supervised ransomware classifier can give some identification
support to our anomaly detection system. The main reason for using ML techniques instead of
heuristics or indicators of compromise is the ability of the former to both extract complex patterns
from the data and generalise to unseen samples. This ability is essential to find hidden patterns in
statistical features computed from flows.

The following subsections, together with Figure 2, show the modules, components and life-cycle
of our solution. In addition, below we provide an overview of the main modules making up the
proposed system.

1. The Monitoring module is in charge of acquiring in real time the network traffic generated by
medical devices and systems belonging to ICE, calculating network flows, grouping them in a
time sliding window and computing a feature vector from each group or batch of flows.

2. The Offline Model Generation module, in contrast to the rest of modules, requires human
supervision. It is only executed during the system bootstrapping, or when it is required to update
the existing ML models due to the detection of a new ransomware. This module receives feature
vectors for a given period of time (usually a few hours), generates a dataset suitable for the
training process, selects the proper ML algorithms to detect and classify ransomware in ICE, and
trains those algorithms.

3. The Analyser module receives the trained ML models from the previous module and uses them
to evaluate in real time the current feature vectors. The anomaly detection method will identify
traffic pattern novelties (potentially coming from ransomware attacks), whereas the classifier will
label the traffic coming from known ransomware.

4. The Decision & Reaction module combines the evaluations of the two ML models to estimate
the risk of having an active ransomware attack. For that, it uses rules, predefined by the system
administrator, to decide in real-time proper mitigation actions like, for example, the isolation and
replacement of infected medical devices, or the retraining of ML models.

1 Flow Exporter

6A Anomaly
Detection

6B Ransomware
Classification

2 Flow Collector

3 Dataset 
Generation

4 ML Techniques 
Selection

5 Model Training

Retrain

Dataset

ML Techniques

EvaluationFeature
vector

Netflow

7 Rule-based
Decision Module

8 Reaction 
Notification

Decision

Monitoring

Analyser

Decision & Reaction

Off-line Model Generation

ML Models

Mitigation

Data
Control

Figure 2. Design of the proposed solution to detect, classify and mitigate ransomware in ICE.

4.1. Monitoring: Generating Network Flow Features in ICE

This is the first module of our system and focuses on monitoring in real time and continuously
network packets exchanged between the medical devices and databases of ICE. After that, network
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packets are processed and translated to network flows. The main reason for using network flows is
because some pieces of clinical data travel encrypted, even certain ransomware cyphers its spreading
traffic, which makes it useless to inspect the network packets. In this point, it is important to consider
that we define a network flow as all the traffic exchanged in both directions, during a given connection
sharing the same values of source IP, destination IP, source port, destination port and protocol.

4.1.1. Flow Exporter

The Flow Exporter (step 1 in Figure 2) is a component of the monitoring module that captures the
network traffic and generates a record for each flow in starting time order, containing statistical data
about its associated traffic. We use the Network flow format (Netflow), which is a well-known flow
format created by Cisco and has become a standard in the industry. Our specific flow record format
differs slightly from the usual bidirectional Netflow record by including the ARP protocol (only the
meaningful fields have been used in this case). Table 2 lists the fields considered by our proposal.

Due to the definition of network flow, there can be a large number of packets belonging to the
same flow, e.g., when doctors read a big file stored in the medical database, or when UDP packets
with patients’ vital signs are exchanged between medical devices (ICE Equipment Interfaces) and the
medical application (ICE Supervisor). In these cases, our flow collector is configured to generate a
new network flow periodically (triggered by a timeout that prevents a large flow from appearing only
once), which would affect the performance and detection time of our solution (see Section 6). In our
system, the timeout is determined by the Flow Collector configuration in order to guarantee that each
large flow is included in the Flow Collector computations during its whole life.

Table 2. Flow record fields obtained from the traffic captured.

• Start time
• Flow duration (s)
• Protocol (UDP/TCP/ARP)
• Source IP
• Destination IP
• Source port
• Destination port
• Direction
• State

• Total packets
• Source packets
• Total bytes
• Source bytes
• Total load (bits/s)
• Source load (bits/s)
• Source inter-packet arrival time (msec)
• Destination inter-packet arrival time (msec)

4.1.2. Flow Collector

The Flow Collector (step 2 in Figure 2) is the other component of the monitoring module.
It retrieves (and optionally stores) the Netflows calculated by the flow exporter and computes
feature vectors from them. Since a single Netflow record is too simple and only provides few
features, we propose the use of sliding windows of Netflows. Every time a new Netflow is acquired,
an aggregation process is triggered to create a vector of aggregated features using the set of flow
records obtained for the last 10 s (justified in Section 6), plus some additional features extracted from
the last flow. Figure 3 illustrates the feature generation procedure for our time window of 10 s and
the list of computed features is described in Table 3. These features are intended to measure a wide
variety of traffic pattern parameters. These parameters are considered relevant to model both the
normal traffic of ICE and the particular traffic perturbations that ransomware spreading produces.
In this manner, our feature vector contains context features (computed from the window of flows) and
local features (computed from the last flow). Among the context features, some of them are computed
from the flows sharing the same protocol (TCP/UDP/ARP) in a given sliding window and others are
computed from the sliding window flows that share the same protocol and direction. Direction can
be internal/external (both source and destination IPs belong to the ICE or are external to the ICE) or
incoming/outgoing (external IP started a flow towards an internal IP and vice versa).
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Table 3. TCP/UDP features computed from the network flows.

TCP/UDP ×
All Directions 2

TCP/UDP ×
Total Features ARP Last Flow 1 Internal/External Features

Incoming/Outgoing 3

11 1 2 8 Number of flows.
8 8 % of flows.
18 2 16 Mean and stddev of the flow durations.
18 2 16 Mean and stddev of time between two consecutive flows.
8 8 Number of different destination IPs.
8 8 Entropy of destination IPs.
60 12 48 Sum, max, min, mean, stddev and median of total packets.
60 12 48 Sum, max, min, mean, stddev and median of source packets.
60 12 48 Sum, max, min, mean, stddev and median of total bytes.
60 12 48 Sum, max, min, mean, stddev and median of source bytes.
60 12 48 Sum, max, min, mean, stddev and median of total load.
60 12 48 Sum, max, min, mean, stddev and median of source load.
16 16 % of source/destination ports >1024.
16 16 % of source/destination ports <1025.
16 16 Number of different source and destination ports.
16 16 Entropy of source and destination ports.
1 1 Number of different destination IPs.
1 1 Entropy of destination IP.
1 1 Median of the duration.
3 3 Protocol used (TCP, UDP, ARP).
4 4 State (INT, RST, FIN, CON).
2 2 Source or destination port <1024.
1 1 Destination port.
4 4 Direction(incoming, outgoing, internal, external).

8 8
Total packets, source packets, total bytes, source bytes, load, source load, source
mean interpacket arrival time and destination mean interpacket arrival time.

520 Total features computed.
1 Extracted from the last flow; 2 Computed per protocol; 3 Computed per pair (protocol, direction).
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Figure 3. Feature computation. Every time a new flow arrives, the flows received during the last
10 s are used to compute the aggregated features. The feature vector is created by assembling these
aggregated features plus some additional ones obtained from this last flow. The feature is labelled as
anomalous only if the last flow is anomalous.

The functionalities of both the flow exporter and collector have been deployed in the Monitor
component of the ICE++ architecture (illustrated in Section 5).

4.2. Offline Model Generation: Selecting and Training ML Models

This module encompasses the whole process of model generation as a fundamental initial stage
to provide the Analyser with a pair of well-suited ML models to detect and classify known and unseen
ransomware attacks in our hospital room of the future (step 3 of Figure 2). In contrast with the other
modules, it is not performed in real time and needs human supervision to process the following
steps: obtaining a clean labelled dataset that models the behaviour of the ICE with a subset of most
discriminative features, selecting a pair of proper ML techniques (anomaly detection and classifier)
and finally training them with the previous dataset. The following subsections together with Figure 4
show in detail the processes making up the module.

3.1 Data Cleaning

3.3A Anomaly 
Feature Selection

3.3B Classifier
Feature Selection

3.2A Anomaly
Labelling

4A Anomaly Detector
Method Selection

5A Anomaly Detector
 Training

3.2B Classifier 
Labelling

4B Classifier
Method Selection

5B Classifier Training

Retrain

Data
Control3 Dataset Generation

4 ML Techniques Selection

5 Model Training

Feature 
vector

Anomaly Detection Model Classification Model

Figure 4. Design of the Offline Model Generation module to detect and classify ransomware in ICE.
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4.2.1. Dataset Generation

The main goal of the Dataset Generation component (step 3 in Figure 4) is to create a suitable
group of feature vector datasets: one dataset generated with normal traffic acquired from a clean ICE
to train the anomaly detector, and as many datasets with infected ICE traffic as different ransomware
samples we want to classify, in order to train the supervised classifier.

The initial set of features (detailed in Table 3) provided by the flow collector is created with the
aim of providing an extensive set of predictors which could be subsequently refined by means of
feature selection techniques. Since some of the feature vectors can include invalid, constant, or highly
correlated features, the datasets have to be cleansed to repair/discard wrong feature values and
remove all the features with zero variance (constant). As an illustration, NaN values or empty ports
are converted into zero, and if a feature has a constant value, the feature is discarded. Additionally,
certain features need to be transformed to improve their value distribution, e.g., applying a log function
to equalize domain ranges and make the histogram more Gaussian. This Data Cleaning process is
carried out in step 3.1 of Figure 4.

The next step (3.2) is to label the datasets according to its purpose, and to divide them into
training, validation and test. This is clearly necessary in the case of our supervised classification
method. On the other hand, for the anomaly detection method, there is no need of an explicit labelling
for the training. However, in this case, it is required an explicit labelling to evaluate the performance
of both the detector and the classifier. More specifically, the anomaly detector needs a binary label
(normal/anomaly), whereas the classifier needs as many labels as classes. Figure 3 illustrates that the
label of each feature vector is determined by the last flow used to compute it. Therefore, the feature
vector associated with a given flow is made up of both data from this flow and statistical data obtained
from a set of previous flows, thus providing additional traffic context. As a consequence, the label of a
feature vector is the label of its last flow, that is, the traffic class to which the flow belongs.

Subsequently, a first feature selection is done by computing the Pearson’s correlation coefficient
for each pair of components in the feature vector. This correlation matrix of the dataset allows us to
identify sets of highly-correlated features and keep just one feature of each set. This procedure is done
in both 3.3A and 3.3B steps. An additional feature selection stage could reduce significantly the number
of features of the datasets. However, this phase is not carried out on the datasets used with the anomaly
detection methods. The main reason is that a more aggressive feature selection procedure based on
the already-known ransomware classes could discard features useful for detecting future anomalies.
This additional feature selection is only carried out on the dataset for the supervised ransomware
classifier (3.3A). To this end, we use a Random Forest (RF) [37] supervised classifier. This algorithm
has the property of computing an information score for each feature during the training, which can be
used to obtain a subset of the most informative features. Every feature with an importance score below
a given threshold can be discarded.

4.2.2. ML Technique Selection

This component is in charge of determining the most suitable detection and classification
techniques for ICE in terms of performance (steps 4.A and 4.B). For that goal, below we show the
variety of initial methods considered for both classification and anomaly detection.

• Anomaly detection techniques

– One-class Support Vector Machine (OC-SVM), [38]
– Local Outlier Factor (LOF), [39]
– Isolation Forest (IF), [40]

• Probabilistic classification techniques [41]

– Neural Network (NN),
– Naive Bayes (NB),
– Random Forest (RF).
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Regarding the anomaly detection (step 4.A), our system uses the OC-SVM technique. OC-SVM
belongs to the class of boundary-based classification algorithms. The training process of this method
consists of finding a function which defines a boundary surrounding the normal traffic patterns of
our ICE. This function returns a positive value for points belonging to the inner area defined by
the boundary, and a negative value for outsiders. The anomalous traffic pattern generated by the
ransomware propagation ought to fall in the negative side.

On the other hand, with regard to the probabilistic classification techniques (step 4.B), the goal
is to determine to what extent they can deal with ransomware sharing key spreading aspects with
the samples used in training. In this sense, probabilistic classification methods, whose output is an
estimation of the likelihood of the vector belonging to each class that can help to reach this goal.
Even if an input vector does not belong to any known class, the probability distribution provided
by the algorithm can give some useful information to the system administrator about the behaviour
of the potential malware. In this sense, the proposed system uses Naive Bayes because it provided
the best probability estimation of the belonging of the new samples to the class with the most similar
traffic pattern. Section 6 presents some experiments and explanations that justify the selection of both
anomaly detection and classifier techniques.

4.2.3. Model Training

Once the best ML techniques have been selected, this component is in charge of re-training the
ML techniques (anomaly detection and classification) with the whole dataset (not only the training
subset) in order to obtain a model that takes advantage of all the samples available. These processes
are performed by steps 5.A and 5.B of Figure 4, the resulting models being sent to the Analyser module.

In the anomaly detection model case (step 5.A), an automatic retraining process can be triggered
if the configuration of the ICE changes significantly (e.g., installation of new devices or activation of
new services/protocols). On the other hand, the supervised classifier needs a human-driven dataset
generation process to be updated.

4.3. Analyser: Detecting Anomalies and Classifying Ransomware Attacks in ICE

The Analyser is the module that evaluates in real time each incoming feature vector from the
medical devices and systems of ICE by means of previously trained models (anomaly detector and
classifier). The output of the anomaly detection (step 6A of Figure 2) is twofold: a score of the anomaly
degree of the sample, and a binary prediction as anomalous or normal according to a standard threshold
of 0.5. On the other hand, the classifier (step 6B), has also two outputs: an estimation of the probability
of belonging to the normal traffic and an array with an estimation of the probability of belonging to
each ransomware class. The outputs of both methods are sent to the Decision & Reaction module which
will interpret the results and will react in consequence to mitigate the potential ransomware attack.

4.4. Decision and Reaction: Mitigating Ransomware Attacks

This module automatically makes decisions and notifies different components to react and
mitigate the spreading phase of ransomware infecting our ICE. It is made up of the following two
modules: the Rule-based Decision and the Reaction and Notification.

4.4.1. Rule-Based Decision

The Rule-based Decision component (step 7) allows the system administrator to predefine rules
that control in real time and on-demand the mitigation reactions. These rules consist of two lists of
predicates: the antecedent and the consequent. If all the predicates of the antecedent part take the
Boolean value true, all predicates in the consequent part are evaluated. The antecedent considers
conditions related to the Analyser outputs and the consequent indicates the action taken over the
datasets, NFV or SDN paradigms to mitigate the ransomware.
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In the context of our hospital rooms of the future equipped with ICE, we define three types of
mitigation rules: Control plane, Data plane and Hybrids.

• Control plane rules are used to manage the different components and modules making up the
control plane of the ICE++ architecture. Among the potential actions taken by these policies,
we highlight the retraining of ML models when unseen ransomware strains are detected, the set-up
of new time windows, or the management of the architecture hardware resources. As an example,
the next rule retrains the Anomaly Detector ML model when a new medical device is integrated
into ICE. In this particular situation, the rule indicates that the anomaly detector needs to be
retrained if it has detected an anomaly and the classifier considers that it is more likely that the
vector belongs to normal traffic:

Anomaly(v) & [PN(v)−max(PR(v)) > epsilon]→ Anomaly detector retrain,

where v is the feature vector evaluated by the two models; Anomaly(v) is the boolean output of
the anomaly detection module for that input; epsilon is a threshold defined by the administrator;
the ransomware classifier output is represented by PR(v) and PN(v), PN(v) being the estimated
likelihood of being a normal behaviour, and PR(v) the array containing the likelihood estimation
for each trained ransomware class.

• Data plane rules are oriented to control the medical devices, systems, EHR, and medical
applications of ICE. Potential reactions could be the isolation of infected medical devices or
systems, the replacement of medical controllers, or the communication management. As an
example, the next rule indicates that a medical device must be isolated and replaced if an anomaly
has been detected and the classifier certainly believes that the vector belongs to one of the known
ransomware. In other words, the ICE is experiencing a propagation stage of a ransomware
sufficiently similar to one of the known samples:

Anomaly(v) & [max(PR(v))− PN(v) > epsilon] &

[max(PR(v))− submax(PR(v))] > lambda→MD Isolation & Replacement,

where submax() returns the element immediately below the maximum, lambda is a threshold
defined by the administrator and represents the certainty about the predicted ransomware,
and MD is the infected medical device.

• Hybrid rules are a combination of the two previous families. The consequence of these rules
implies changes in both control (ICE++ Architecture) and data hospital rooms of the future devices
and systems. The next rule shows an example where it is required to isolate and replace a medical
device as well as retrain the classifier model. In this case, the Anomaly Detector says that there
is an anomaly and the Classifier is not able to establish a classification with enough guarantees.
This situation is provoked by an attack conducted by an unseen ransomware, which behaviour is
not similar to any of the well-known ones:

Anomaly(v) & [max(PR(v))− PN(v) ≤ epsilon] &

[max(PR(v))− submax(PR(v))] ≤ lambda→

MD Isolation & Replacement & Classifier model retrain.

4.4.2. Reaction and Notification

The Reaction and Notification component (step 8) is in charge of interacting with two different
modules. On the one hand, it interacts with the Offline Model Generation module when it is required to
retrain a given ML module. On the other hand, it interacts with the Orchestrator module (see Figure 5)
to schedule the enforcement of the decided mitigation actions when a ransomware has been detected.



Sensors 2019, 19, 1114 15 of 31

Finally, this module also creates and maintains a log where the different reaction decisions are stored
for analysis purposes. The components indicated by the steps 7 and 8 have been deployed in the
Decision and Reaction module of the ICE++ Architecture (see Section 5).

5. ICE++ Architecture

This section describes the ICE++ architecture, and how it integrates the modules making up the
proposed solution to detect, classify, and mitigate ransomware in ICE (explained in Section 4). In other
words, in this section, we will see how the anomaly detection and classification techniques depicted in
Figure 2 are used by our architecture to detect ransomware attacks affecting the elements of Figure 1.

ICE++ combines the MEC, SDN, and ETSI NFV [42] proposals to enable the flexible, efficient,
and automatic management of the elements composing the ICE standard. Figure 5 depicts the layers
and actors of ICE++ as well as how the ICE elements are provided. These elements are depicted in
boxes with striped background to show clearly how the ICE++ architecture interacts with the existing
ICE framework. The internal communications between the ICE elements are not depicted for better
understanding (they are shown in Figure 1).
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Figure 5. ICE++ architecture oriented to the Mobile Edge Computing (MEC) paradigm.

5.1. Mobile Edge System Level

Mobile edge system level management is in the upper level of our architecture and it is focused on
defining and managing the behaviour of the ICE components. For that, this level is made up of the
Operation Support System (OSS) and the ICE System Management. The OSS deals with the logic of the
ICE system. This element provides the system administrator with an interface to define the rules
controlling the architecture behaviour. On the other hand, the rules are provided to the ICE system
management in order to identify concrete actions and orchestrate their enforcement.

The ICE system management is composed of the next elements: Monitoring, Analyser, Decision
and Reaction, and Orchestrator. They are in charge of detecting and mitigating ransomware attacks
in ICE. Section 4 depicts in detail our design for the first three components, and the orchestrator is
explained in this section. In a nutshell, the monitoring component gathers in real time the network
packets, generates network flows and finally feature vectors. These vectors are sent to the analyser,
which uses ML techniques (anomaly detection and classification) to decide if there is some ransomware
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affecting the ICE. Once detected the ransomware, the decision and reaction component decides
the proper countermeasure to mitigate the attack according to predefined rules. Among the set of
potential countermeasures, we highlight the flexible and efficient deployment, configuration, relocation,
and dismantlement of:

• ME applications: ICE components (interfaces, supervisors, or applications) to replace infected
systems of the hospital room of the future.

• ME services: For example, an ME service could be in charge of assuring the level of security
of the ICE elements. In particular, it could establish specific authentication mechanisms to ICE
applications or determine a particular security protocol (e.g., TLS) between the ICE elements.

• Network infrastructure: For example, virtual SDN-based networks to isolate infected ICE
components. Another alternative could be the automatic management of the network
communication to block ransomware attacks.

Finally, the Orchestrator is responsible for scheduling and triggering the previous
countermeasures as well as maintaining an overall view of ICE status (ME hosts, available resources,
and network topology).

5.2. Mobile Edge Host Level

This level focuses on running the mitigation countermeasures (ME applications, services,
and virtualized infrastructure) in ICE. This level is composed of two elements: the Mobile edge host and
the Mobile edge host level management.

On the one hand, the ME host provides ICE with compute, storage, and services for running
ME applications. To reach it, this entity contains Mobile edge applications, a Mobile edge platform, and a
Virtualization infrastructure. ME applications could be instantiated as the ICE element defined by the
ICE framework as well as some applications oriented to improve the security of the clinical scenario.
Applications run as virtual machines (VM) and containers on top of the virtualization infrastructure
allocated at the edge of the network. This fact provides our solution with the flexibility, efficiency,
and low latency required by ICE. The virtualization infrastructure can use the hardware resources
of computers, BeagleBones Black, or even medical devices, depending on the scenario configuration.
ME applications interact with the ME platform to consume and provide services. Specifically, the ME
platform is a set of essential services required to run ME applications on a particular virtualization
infrastructure. These services can be specific for given applications or even shared among some of
them. Examples of services could be secure communication protocols (like Transport Layer Security)
or traffic rules control.

On the other hand, the ME host level management is composed of two elements: the Mobile
edge platform manager and the Virtualization infrastructure manager. The ME platform manager is
responsible for managing the life cycle of applications, including informing the ME orchestrator
of relevant application related events. The Virtualization Infrastructure Manager is responsible for
allocating, managing and releasing virtualized (compute, storage and networking) resources of the
virtualization infrastructure, as well as collecting and reporting performance and fault information
about the virtualized resources.

5.3. Networks Level

Finally, the Networks level is the lowest one and it contains two elements: the Networks and the
Networks management. Networks contain the physical infrastructure required to provide connectivity
between the different ME applications. The Networks management contains the SDN Controller,
which is able to monitor and manage in real time and on-demand the communications of ME
applications.
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5.4. Actors Level

The actors composing the proposed architecture are: ICE Administrator, Clinicians & Operators,
and Patients. The ICE Administrator is responsible for defining the logic of the system in a high
level. The rules defined in Section 4 are examples that indicate when, how and where it is required
to react and mitigate a given ransomware attack. The clinicians and operators interact with the ME
applications (ICE applications, access points, etc.), for example, to obtain the patients’ vital signs or
the state of the active treatments. Finally, patients, whose vital signs are monitored by the medical
devices, can also interact with the ME applications to obtain medical and personal information like,
for example, Electronic Health Records (EHR).

5.5. Enforcing a Ransomware Mitigation in ICE

Once the main components of the architecture has been explained, this section shows how the
Orchestrator enforces the mitigation actions taken by the second rule defined in Section 4.

Regarding the enforcement of the rule in charge of replacing and isolating the infected medical
device, the Orchestrator receives the notification and interacts with the virtualization infrastructure
manager (VIM) to create the new ICE Equipment Interface in the available hardware located in
our hospital room of the future (step 1 of Figure 6). Once the VIM receives the request, it checks
the available virtual and physical resources and creates a new Virtual Machine or Docker with the
ICE Equipment interface in the existing infrastructure (step 2). The action is communicated to the
Orchestrator component (step 3), which updates the catalogues with the information of the new ICE
component. Once the new ICE Equipment Interface has been deployed, the Orchestrator interacts with
the mobile edge platform manager (step 4) to provide the configuration of the virtual medical device
instantiated in the ICE Equipment Interface. Several parameters are established in this configuration
such as the IP address of the ICE Supervisor, the frequency of communication, etc. After that, the mobile
edge platform manager configures the ICE Equipment Interface. Finally, the status is notified to the
Orchestrator (steps 6 and 7).

Infrastructure (hw) 
 

VIM SDN ControllerOrchestrator

create ICE 
 Interface in hw1

ICE
Equipment
Interface create 

2
status: ok 3

configure ICE medical device4

configure switch flow table 8

9

Mobile edge
platform
manager

status: ok 7

configure 5

status: ok 6

status: ok 

Figure 6. Sequence diagram to mitigate a ransomware attack to a medical device.

Once the new medical device starts monitoring the patient’s vital signs, the Orchestrator enforces
the isolation of the infected device by filtering the network packets belonging to the spreading phase
of the ransomware attack. Here, it is important to mention that, depending on how critical the medical
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device function is, the next process can be made before of after its replacement (steps from 1 to 7).
In this point, the Orchestrator interacts with the SDN Controller to add a new rule in the flow tables of
the network switch and drop the packages belonging to the spreading phase of the ransomware (step 8).
Finally, the SDN controller confirms the Orchestrator that the flow tables have been modified with the
new rule (step 9). The time required to perform the deployment of a new ICE Equipment interface in
different hardware resources has been calculated in Section 6 through different experiments. On the
other hand, the time to isolate the infected device (steps 8 and 9) is negligible (ms) in our context.

6. Experiments

This section presents a pool of experiments focused on demonstrating the viability of our
intelligent and automatic solution in charge of detecting, classifying and mitigating ransomware
attacks in hospital rooms of the future.

There are two main aspects that should be considered to measure the viability of our proposal:
how good our system is at detecting ransomware threats and how effective our system is at mitigating
a ransomware propagation. The detection aspect is tightly related to the discriminative power of the
trained ML algorithms. On the other hand, the mitigation aspect is related to both the time needed to
detect the propagation and the ability to mitigate the ransomware before it manages to infect other
medical devices and systems. To measure both aspects, firstly we have designed and deployed a
realistic scenario where a hospital room of the future equipped with ICE is infected with different
ransomware. After that, we performed some experiments to measure the detection and classification
precision as well as the time required to mitigate the ransomware. The experiments were carried out
on OpenICE, the open source implementation of the ASTM F2761 (ICE) [4], proposed by the MD
PnP Medical Device Interoperability Program of the Massachusetts General Hospital Department of
Anesthesia, Critical Care, and Pain Medicine. Their work on safe interoperability spans the entire
healthcare provision, and the ICE standard is strongly influencing the trajectory of medical device
interoperability in the U.S. All of this support guarantees its applicability.

6.1. Deployment and Configuration of Our Hospital Room of the Future

This section describes the design, deployment and initial set-up of our hospital room of the future
to obtain a suitable dataset that allows us to perform some experiments. These experiments are aimed
to measure the performance of the detection/classification methods as well as the time required to
detect and mitigate different ransomware attacks. The designed scenario has the following elements:

• Five medical devices able to acquire different vital signs of patients and apply treatments.
The medical devices are simulated using ICE Equipment Interfaces of the OpenICE v1.0.0 [17]
software and each one of them runs on top of different machines with networking capabilities.
The five machines have different operating systems for the sake of diversity. Specifically,
we combine one MS Windows 7, vulnerable to different ransomware families explained below in
detail, with four patched machines (two MS Windows 10, and two Ubuntu 16.04).

• One clinical database storing medical data such as EHR. The database is distributed across the
machines with MS Windows. Additionally, there is a clinical information system in charge of
reading and writing the database content through the SMBv1 protocol of Microsoft.

• One closed-loop application [43] implemented by the ICE Supervisor of the OpenICE software.
The medical application runs on a dedicated machine with a vulnerable MS Windows 7 and
it is able to acquire medical data from the medical devices and the database, analyse the data,
and suggest medical treatments over medical devices.

• The Monitoring module of the ICE++ architecture. This module has been deployed on a dedicated
machine with Ubuntu 16.04 that receives all the ICE network traffic. To implement the flow
exporter, we have used Argus v3.0.8.1 [44], which is one of the most popular tools for network
flow acquisition. On the other hand, the flow collector component has been designed and
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implemented by us using the Python language. The flow collector uses NumPy to compute
efficiently the feature vectors from the stream of flows provided by the flow exporter.

• The Analyser module of the ICE++ architecture has been deployed in a dedicated machine with
Ubuntu 16.04. The Anomaly Detection module uses Scikit-learn v0.20.0, which provides efficient
implementations of the three evaluated ML methods. Similarly, the Ransomware Classification
module, based on Naive Bayes, has been implemented also in Scikit-learn.

• The Decision and Reaction components of ICE++ runs on another Ubuntu 16.04 machine and
we have used SWRL (Semantic Web Rule Language) [45] to define the management rules and
SPARQL [46] queries to obtain the rules decision.

• One SDN-enabled router in charge of managing the communications of the previous elements
through a private network. In addition, the router also enables some external communication
through the Internet to allow doctors and caregivers to control remotely specific components of
the clinical scenario.

The previous elements were fully virtualized in a physical server where OpenStack [47] and
OpenDaylight [48] run. We used OpenStack as VIM (view Figure 5) to deploy and instantiate the
virtual machines hosting the ICE Equipment Interfaces, ICE Supervisor, database and the components
of the ICE++ architecture. On the other hand, we used OpenDaylight as SDN Controller to control
the router of our network topology. We used a VNFM as mobile edge platform manager and Open
Baton [49] as orchestrator to schedule the decision made by the ICE++ architecture and communicate
with the previous elements.

Once our scenario was designed and deployed, the next step was to test our detection and
mitigation solution in this scenario. To this end, we decided to select four of the most dangerous and
recent malware affecting clinical environments. Specifically, three ransomware strains (WannaCry,
Petya and BadRabbit) and one cryptomining malware (PowerGhost). Once selected, we used two
of them (WannaCry and Petya) to train our solution, and the other two to test its generalization
power. WannaCry [35] is a well-known ransomware and its behaviour was deeply described in
Section 3.2. Petya [36] also spreads itself by exploiting the EternalBlue vulnerability, but it deploys a
more sophisticated two-stage attack. When a device is infected, Petya attempts to infect the vulnerable
devices in the same network and stores a micro-kernel in the MBR of the main disk. After that,
it reboots the computer and starts encrypting the whole hard drive. Similarly to Petya, BadRabbit [50],
uses a two-stage mechanism, but it leverages a similar vulnerability of SMBv1 called EternalRomance.
Finally, PowerGhost [51] is a cryptocurrency miner that uses fileless techniques. Unlike ransomware,
the goal of a cryptominer is to remain hidden in the target system mining cryptocurrencies. However,
despite the fact that it is not a ransomware, we decided to select it because it also exploits EternalBlue
vulnerability to spread itself across the network.

Once the ransomware selection was performed, the next step was to create suitable datasets to
later measure the performance of our detection and classification solution. For that, we captured six
hours of clean network traffic from our hospital room of the future equipped with ICE. Then, we cloned
four times our scenario. The ICE Supervisor machine of each scenario was infected with a different
ransomware (WannaCry, Petya, BadRabbit and PowerGhost). The traffic generated in each ICE scenario
during the ransomware spreading phase was captured in a different dataset. In the end, we had five
datasets, one with the clean traffic dataset and four with the ransomware traffic. These datasets are one
of the relevant contributions of this paper and they can be downloaded in [15]. The amount of traffic
captured was different in each dataset because it was determined by the behaviour of the ransomware
spreading phase during the 30 min of traffic acquisition (enough time to infect all the vulnerable
devices). After that, the five datasets were sent to our flow exporter to be converted into netflows.
These netflows were properly labelled and sent to our flow collector. This component computed the
five final feature vector datasets: one for the clean traffic, and one for each of the four ransomware
samples. In our proposal, the feature vectors are computed from a slicing flow window and are labelled
according to the last flow included in the window; therefore, the size of this window is one of the
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hyper-parameters of our system that had to be tuned. To include this variable, the vector generation
had to be performed for six window sizes (5, 10, 20, 30, 60 and 120 s) per each ransomware, generating
a total of 24 datasets.

Finally, it is well-known that some anomaly detection techniques do not work efficiently with
large amounts of samples. Therefore, to avoid this restriction from affecting the technique selection
process, we made up each dataset by taking all the anomalous samples (50,537) plus 100,000 randomly
extracted clean samples (approximately twice the anomalous set size), keeping the original order.
In this way, we also reduce the imbalance of the dataset significantly. Each dataset was then partitioned
into three contiguous subsets: training (80%), validation (10%) and test (10%). Usually, each subset
of this partitioning is created by a random selection from the original dataset; however, in our case,
the high correlation between close vectors made the contiguous split more appropriate. The resulting
datasets were subsequently cleaned, and an unsupervised feature selection, consisting of dropping
highly correlated features, was carried out as explained in Section 4.2.1.

6.2. Anomaly Detection Technique Selection

This section performs an experiment to select the most appropriate anomaly detection method.
Considering the five datasets acquired and explained in the previous section and the three potential
anomaly detection methods listed in Section 4.2.2, our goal was to determine which method provided
the best performance for our hospital room of the future.

The first step was to select a set of representative anomaly detection techniques: OC-SVM, LOF
and IF. Each one of these algorithms detects anomalies by attempting a different strategy. OC-SVM
is a boundary-based technique and its description can be found in Section 4.2.2. LOF, in turn, is a
density-based scheme for anomaly detection. For each point, a Local Outlier Factor is computed as
the average of the ratio of the local density around the point and the local density of its k-nearest
neighbours. Finally, IF is based on the concept of isolation tree, which is a randomly generated binary
tree where the instances are recursively partitioned. In these trees, an anomaly needs less partitions
to become isolated. When a forest of random isolation trees collectively produce shorter paths for a
particular point, it is likely to be anomalous.

Every ML training procedure requires a feature engineering stage. In semi-supervised anomaly
detection methods, only unsupervised feature selection procedures can be used (e.g., PCA). Otherwise,
the feature selection process would be biased by the set of known ransomware, and it might discard
features useful in future scenarios. This is the main reason why we did not select a subset of features
by using our labelled dataset.

In order to calculate which of the previous three algorithms has the best detection performance,
a metric of such performance should be defined. Given that anomalies are supposed to be rare,
the accuracy is not considered a representative performance metric. In anomaly contexts, precision,
recall and F1-score give more information about the detection performance of a model. To define these
metrics, some concepts should be previously defined:

• True Positive (TP): Number of anomalies correctly detected.
• True Negative (TN): Number of normal samples correctly classified as normal.
• False Positive (FP): Number of normal samples incorrectly detected as anomalies.
• False Negative (FN): Number of anomalies incorrectly classified as normal.

Below, we show the metrics proposed to measure the anomaly detection technique performance.
F1-score is the harmonic average of precision and recall. Its result is closer to the lowest of the two
values; therefore, it includes information about how balanced precision and recall are. In anomaly
detection problems, both precision and recall are important. A low precision score tells us that
we are generating a large number of false positives, and a low recall indicates that we are missing
many anomalies:
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• Precision, indicates what percent of the predicted anomalies were actual anomalies,

Precision =
TP

TP + FP
,

• Recall or sensitivity, defines what percent of actual anomalies where predicted,

Recall =
TP

TP + FN
,

• F1-score, shows the trade-off between the precision and recall regarding the anomaly class,

F1-score = 2× Precision× Recall
Precision + Recall

,

• False Positive Rate (FPR),

FPR =
FP

FP + TN
.

A key aspect of the training of every ML algorithm is the hyper-parameters optimization.
Specifically, in our clinical environment, there are two sets of hyper-parameters: one of them associated
with the anomaly detection model, and the other related to the classification model. In both cases,
a set of hyper-parameters was selected to be tuned. Then, a grid search in the hyper-parameter
space was carried out in order to figure out which configuration achieved the best performance.
With regard to our anomaly detection algorithm, a list of the considered hyper-parameters can be
found in Table 4. Every configuration of them was used to train our three algorithms with the clean
traffic dataset. The fitted model was then validated with both the ransomware and clean validation
datasets. An interesting advantage of using features based on statistical information of the flows in a
time window is that the connection of a new device with a network traffic pattern similar to the rest
does not have an impact on the detection performance.

Table 4. Hyper-parameters tuned in the selection process of the the anomaly detection technique.

Hyper-Parameter List/Range of Values

Flow Collector window (s) [5, 10, 20, 30, 60, 120]
OC-SVM nu [0.0001, 0.0005, 0.001, 0.005, 0.01]

gamma [0.0001, 0.0005, 0.001, 0.005, 0.01]
LOF neighbours [10, 20, 30, 50]

leaf size [10, 20, 30, 40]
contamination [0.1, 0.05, 0.01, 0.005]

IF estimators [100, 200, 300]

OC-SVM: One-Class Support Vector Machine; LOF: Local Outlier Factor; IF: Isolation Forest.

The performance results are summarized in Figure 7, where the best performance achieved
by each anomaly detection method for each sliding flow window size is plotted. Figure 7 shows
that OC-SVM obtains the maximum F1-score (0.9596), while the corresponding precision, recall and
FPR values can be found in Table 5. This maximum is reached at a window size of 10 s. However,
at this stage, the optimum flow sliding window size cannot be determined because it also depends on
the ransomware classifier. Due to its satisfactory performance and stability with respect to the flow
windows size, OC-SVM was the selected anomaly detection method to be used in our integrated clinical
environment. Conversely, LOF was discarded due to its erratic behaviour. LOF has an extremely
different performance depending on the flow window size. Due to the fact that our system shares
the same sliding flow window between the anomaly detector and the ransomware classifier, a stable
method is desirable. Finally, IF shows a really stable behaviour, but it was overcome by OC-SVM for
each window size.
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Figure 7. Performance of the best anomaly detection method configuration for each window size in the
flow collector. The selected configuration for each method is the one that obtained the highest F1-score
among all the configurations that properly detected at least 50% of each ransomware.

Table 5. F1-Score, precision, recall and false positive ratio (FPR) values of OC-SVM for a sliding flow
window size of 10 s.

F1-Score Precision Recall FPR

0.9596 0.9232 0.9997 0.046

6.3. Ransomware Classifier Selection

Besides the anomaly detection method, our system also considers a ransomware classifier.
This section focuses on showing the experiments focused on selecting the most appropriate classifier
in terms of performance.

Three probabilistic well-known supervised classifiers were selected to be evaluated:
Neural Network, Naive Bayes and Random Forest. Following the same methodology and metrics
followed in the anomaly detector selection, the three algorithms were trained and validated.
The selection process with these models was performed using only three datasets: Clean, WannaCry
and Petya. The corresponding training and validation subsets were used to train the models in
the hyper-parameter tuning phase. A grid search in the hyper-parameters allowed us to find the
configuration providing the best performance for each model. The list of hyper-parameters considered
is showed in Table 6.

It should be noticed that there is a hyper-parameter called Feature Selection. Since our
classification dataset is properly labelled, we can do a more advanced feature selection by means of
a Random Forest (RF). Before the training procedure, an RF is trained to obtain an estimation of the
importance of each feature in the classification process. This importance score allows us to drop every
feature with an importance below a given threshold (as was also described in Section 4.2.1). In our
case, this threshold is considered one hyper-parameter and it is tuned with the rest. By increasing
this threshold, the number of selected features is reduced, influencing in the performance of the ML
algorithms. Then, the three models were evaluated with the validation subset of all the datasets (Clean,
WannaCry and Petya, used in the training phase, and BadRabbit and PowerGhost, unknown for the
classifier). The winner in the validation was the model with highest F1-score that, at least, detected
properly 50% of every category. Once the model was chosen, the real performance was obtained with
all the test subsets separately.
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Table 7 shows the performance of the aforementioned chosen models for each configuration of
hyper-parameters and ransomware with the test datasets. As a special case, the hyper-parameters
of the neural network related to the number and size of layers have been omitted due to limitation
of space. Given both a flow sliding window size and a threshold used in the feature selection
procedure, their corresponding row in the Table 7 lists the classification accuracy of the five test
datasets (Clear Traffic, WannaCry, Petya, BadRabbit and PowerGhost) for each of the three trained
models. Despite the unbalanced datasets, accuracy is in this case an appropriate metric because it was
computed separately for each class.

Table 6. Hyper-parameters tuned in the ransomware classifier selection process.

Hyper-Parameter List/Range of Values

Flow Collector window (s) [5, 10, 20, 30, 60, 120]
Feature Selection importance [0.001, 0.0005, 0.0002, 0.0001]
Neural Network First layer [8, 10, 16]

Second layer [0, 4, 6]
Gaussian Naive Bayes no parameters
Random Forest estimators [100, 200, 300]

As a conclusion of this experiment, we can state that, although the three evaluated algorithms
achieve excellent accuracy, Naive Bayes is the algorithm that reaches the best performance, precisely
with the flow window size of 10 s (highlighted in grey background in Table 7). This window size
coincides with the best-performing window size in the anomaly detection experiment. Interestingly,
the feature selection threshold has little or no impact in the results of the winner algorithm.
Additionally, Table 7 demonstrates the importance of this stage of grid search of hyper-parameters in
order to find a model that accurately classifies the two unseen ransomware samples. As an illustration,
the same winner Naive Bayes configuration trained with a flow window size of 120 s instead of 10 s
can hardly classify BadRabbit samples. Similarly, just changing the classification method with the same
window size and feature selection threshold can result in worse performance. For example, Random
Forest with the same window of 10 s and the same thresholds obtained significantly less performance
than Naive Bayes in Petya and BadRabbit classification.

Another interesting aspect of this experiment is that it has shown that BadRabbit has a pattern
traffic behaviour similar to Petya, since it was always identified as Petya ransomware. Similarly,
PowerGhost was always classified as WannaCry, indicating that their propagations are similar at
some extent.
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Table 7. Classification accuracy of each model for different configurations of hyper-parameters and ransomware. C: Clean, W: WannaCry, P: Petya, B:BadRabbit,
G: PowerGhost.

Window
Size

Feat. Sel.
Threshold

Neural Network Naive Bayes Random Forest

C W P B G C W P B G C W P B G

5 s

0.0001 0.9997 1.0000 1.0000 0.9773 0.9991 0.9870 1.0000 1.0000 0.9975 0.9999 1.0000 1.0000 1.0000 0.9798 0.9998
0.0002 0.9999 1.0000 1.0000 0.9748 0.9989 0.9871 1.0000 1.0000 0.9975 0.9999 1.0000 1.0000 1.0000 0.9798 0.9985
0.0005 0.9998 1.0000 1.0000 0.9572 0.9990 0.9900 1.0000 1.0000 0.9975 0.9999 1.0000 1.0000 1.0000 0.9899 0.9998
0.0010 1.0000 1.0000 0.9596 0.9723 0.9985 0.9839 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9924 1.0000

10 s

0.0001 0.9993 1.0000 1.0000 0.9923 1.0000 0.9900 1.0000 1.0000 1.0000 0.9999 0.9999 1.0000 0.9773 0.9846 0.9998
0.0002 0.9994 1.0000 1.0000 0.9949 0.9997 0.9903 1.0000 1.0000 1.0000 0.9999 0.9999 1.0000 0.9773 0.9871 0.9998
0.0005 0.9988 1.0000 1.0000 0.9949 0.9990 0.9897 1.0000 1.0000 1.0000 1.0000 0.9999 1.0000 0.9886 0.9949 0.9998
0.0010 0.9995 1.0000 1.0000 0.9974 0.9979 0.9840 1.0000 1.0000 1.0000 1.0000 0.9999 1.0000 0.9773 0.9923 1.0000

20 s

0.0001 1.0000 1.0000 0,9888 0.9811 1.0000 0.9970 1.0000 0.9875 0.9622 0.9999 1.0000 1.0000 0.9875 0.9703 0.9999
0.0002 1.0000 1.0000 1.0000 0.9703 1.0000 0.9985 1.0000 0.9750 0.9568 0.9999 1.0000 1.0000 1.0000 0.9730 0.9999
0.0005 1.0000 1.0000 1.0000 0.9919 1.0000 0.9961 1.0000 0.9875 0.9622 0.9999 1.0000 1.0000 0.9875 0.9730 0.9999
0.0010 1.0000 1.0000 1.0000 0.9784 0.9999 0,9933 1.0000 0.9875 1.0000 1.0000 1.0000 1.0000 0.9875 0.9784 0.9999

30 s

0.0001 0.9999 1.0000 1.0000 0.9945 0.9998 0.9986 1.0000 1.0000 0.9727 0.9999 1.0000 1.0000 1.0000 0.9863 0.9999
0.0002 1.0000 1.0000 0,9885 0.9809 0.9999 0,9988 1.0000 1.0000 0.9781 1.0000 1.0000 1.0000 1.0000 0.9809 0.9999
0.0005 1.0000 1.0000 0.9885 0.9809 0.9899 0.9992 1.0000 1.0000 0.9891 1.0000 1.0000 1.0000 1.0000 0.9836 0.9999
0.0010 1.0000 1.0000 0.9885 0.9836 0.9999 0.9961 1.0000 0.9873 0.9727 1.0000 1.0000 1.0000 1.0000 0.9781 0.9999

60 s

0.0001 1.0000 1.0000 0.9880 0.6296 0.9999 0.9986 1.0000 0.8784 0.6866 0.9999 1.0000 1.0000 0.9865 0.9601 0.9999
0.0002 1.0000 0.9996 1.0000 0.4986 0.9999 0.9993 1.0000 1.0000 0.0000 0.9999 1.0000 1.0000 0.9865 0.9573 0.9999
0.0005 1.0000 1.0000 1.0000 0.7949 0.9999 0.9996 1.0000 0.9324 0.3333 0.9999 1.0000 1.0000 1.0000 0.9601 0.9999
0.0010 1.0000 1.0000 0.9880 0.6296 0.9999 0.9986 1.0000 0.8784 0.6866 0.9999 1.0000 1.0000 0.9865 0.9601 0.9999

120 s

0.0001 0.9999 1.0000 1.0000 0.6034 0.9999 0.9996 1.0000 0.9855 0.0170 0.9999 1.0000 1.0000 1.0000 0.2975 0.9999
0.0002 1.0000 1.0000 1.0000 0.7054 0.9999 0.9997 1.0000 0.9855 0.0170 1.0000 1.0000 1.0000 1.0000 0.3569 0.9999
0.0005 1.0000 1.0000 1.0000 0.8895 0.9999 0.9999 1.0000 0.9855 0.0255 1.0000 1.0000 1.0000 1.0000 0.3173 0.9999
0.0010 1.0000 1.0000 1.0000 0.9490 0.9999 0.9989 1.0000 0.9855 0.3201 0.9999 1.0000 1.0000 1.0000 0.3484 0.9999
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6.4. Anomaly Detection and Classification Time

This section shows the experiments performed with the goal of measuring the time needed by
our solution to detect and classify ransomware affecting our hospital room of the future equipped with
ICE. Once both the anomaly detector (OC-SVM) and the classifier (Naive Bayes) are selected, another
critical aspect is to measure how much time these techniques need in order to evaluate, in real time,
a current feature vector and decide whether it is an anomaly or not. At this point, it is important to
remember that both processes (anomaly detection and classification) are performed in parallel and
their outputs are subsequently combined by the rules defined in Section 4.4.1.

Regarding the anomaly detection system deployed in the analyser module of our ICE++
architecture (Section 4.3), we measured the time consumed by the OC-SVM in performing
100 evaluations of different feature vectors. We obtained that OC-SVM required 0.006 s on average
to evaluate a unique feature vector. In a similar way, we performed another experiment involving
100 evaluations using the Naive Bayes algorithm, which was deployed also in the analyser component
of ICE++. The experiment returned that Naive Bayes required 0.022 s on average to classify an
individual feature vector. Since both processes are performed in parallel, we consider the longest
lapse as the time required to detect and classify a ransomware in our scenario. Finally, we had to add
the 10-s delay imposed by the timeout of the flow exporter, mainly due to the UDP flows. The main
conclusion of the experiment is that the detection and mitigation time (10.0221 s) is not only acceptable
but also insignificant when compared with the time required by the ransomware to spread around the
ICE network (see Section 6.6).

6.5. Mitigation Reaction Time

This section demonstrates the suitability of the proposed solution when a ransomware,
affecting our hospital room of the future equipped with ICE, needs to be mitigated. Specifically,
we have performed several experiments with the goal of measuring the time required by the ICE++
architecture to deploy, launch and configure an ME application with a new ICE Equipment Interface of
OpenICE that simulates a medical device (steps 2 and 5 of Figure 6).

To deploy and configure the ICE Equipment Interface, we used the following three different
configurations of hardware:

• Raspberry Pi 3 Model B with 1 GB of RAM and a Quad Core ARM Cortex-A53 CPU at 1.2 GHz
hosting openSUSE Leap 42.3 as an operating system;

• Personal computer with 16 GB of RAM and Quad Core Intel(R) CPU i7-3770 at 3.40 GHz.
The operating system is Ubuntu 16.04 LTS Desktop; and

• Server with 64 GB or RAM, a 36 Core Intel(R) Xeon(R) CPU E5-2697 v4 at 2.30 GHz, and Ubuntu
16.04 LTS Server as an operating system.

For each one of the previous hardware configurations, we developed and launched an OpenICE
instance using VM and containers. The first experiment focused on measuring the time required
to deploy the ICE Equipment Interface on top of different VMs. For that purpose, we followed the
next steps:

1. Creation of three VM with 1 GB of RAM, a single-core CPU, and 10 GB of hard disk, each one of
them using OpenStack.

2. Installation of three operating systems with different capabilities (openSUSE Leap 42.3,
Ubuntu 16.04 LTS Server, and MS Windows 7), each in its own VM.

3. Installation and configuration of the ICE Equipment Interface simulating a medical device, on top
of the previous operating systems.

4. Measurement of the time required to instantiate each previous VMs in each piece of
hardware equipment.

5. Measurement of the time required to launch and configure a simulated medical device in the ICE
Equipment Interface running on top of the hardware equipment.
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At this point, it is important to clarify that, due to the limited computational resources of the
Raspberry Pi 3, this device was not able to host virtual machines.

After performing the previous experiment with VMs, we carried out an additional experiment
with containers. Specifically, we deployed the ICE Equipment Interface of OpenICE in a Docker
that uses Java SE Runtime Environment 8 (library required by OpenICE) to execute the version 0.7.0
of OpenICE. After implementing and configuring the Docker, we measured the time required to
deploy and launch a simulated medical device of OpenICE. Table 8 shows the times obtained for the
deployment and initiation of the ICE Equipment Interface running on top of different virtualization
techniques and hardware configurations.

Table 8. Deployment time of a new ICE Equipment Interface with a virtual medical device.

Hardware Container
Deployment Virtual Machine Deployment

OpenICE
Instantiation and

Configuration

Details Java openSUSE
Leap 42.3 Ubuntu 16.04 MS Windows 7 ICE Equipment

Interface

Raspberry Pi 3 7.348 s - - - 8.537 s

Personal
Computer 0.460 s 6.731 s 7.164 s 13.446 s 2.802 s

Server 0.314 s 4.774 s 5.902 s 10.523 s 2.120 s

One of the main conclusions obtained after performing the previous experiments is that the
time required to deploy the ICE Equipment Interface is inversely proportional to the amount of
computational resources needed. However, it is important to keep a trade-off between resources
and economical cost. Therefore, the Raspberry Pi 3 is not suitable for real-time medical scenarios
where ransomware spreads quickly, and medical devices must be deployed considering critical time
restriction. In contrast, medical scenarios with other requirements in terms of latency can be perfectly
managed by the Raspberry Pi 3. Another conclusion we can extract from Table 8 is that the deployment
time is much lower using Dockers than with virtual machines. It makes sense because containers
are computationally lighter than VMs, since they do not need to boot their own operating system.
However, it is important to consider that, if the software to control the medical devices and services is
implemented in MS Windows, virtual machines are a better alternative because containers are oriented
to Linux operating systems. Furthermore, containers are also more exposed to attack vectors than
virtual machines are. Therefore, using containers requires to take actions to secure them, such as
reducing users’ privileges or running services as a non-root user.

6.6. Infection and Mitigation Time

This section demonstrates that our solution is able to detect and mitigate the previous families
of malware (WannaCry, Petya, BadRabbit and PowerGost) in an acceptable time. We consider as
acceptable any time lower than the required by the ransomware to spread across ICE and infect the
second medical device or machine.

Table 9 shows the best and worst detection and mitigation cases (in terms of time) for the four
selected ransomware samples. It is important to note that the time differences between these two
cases are influenced by the hardware and virtualization techniques used during the mitigation phase
(more details in Table 8). Specifically, we measured 15.885 s during the deployment and configuration
of a Docker in a Raspberry Pi 3. In contrast, when we deployed and configured the new ICE element
in the Server using Dockers, the measured time was 2.434 s. It should be also noted that the detection
and classification time is influenced by the 10-s timeout of the Flow Exporter.
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Table 9. Worst and best cases of ransomware detection and mitigation times.

Detection and Classification Mitigation Total

Worst case 10.022 s 15.885 s 23.468 s
Best case 10.022 s 2.434 s 10.456 s

Figure 8 plots a comparison between the calculated detection and mitigation times shown in
Table 9 and the times required by WannaCry, Petya, BadRabbit and PowerGost to infect our ICE.
To measure the infection time for each ransomware, we analysed the ICE network traffic (acquired by
the Monitoring component of our ICE++ Architecture), and identified the first network package sent
by the first and second infected devices. After that, we obtained their time stamps and calculated the
difference between them.
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Figure 8. Comparison between the times required by the detection, mitigation and infection phases of
ransomware. Detection and mitigation phases are running sequentially, whereas the infection phase
goes in parallel to the previous two.

As a conclusion, we have demonstrated that our intelligent and automatic solution is suitable for
detecting and mitigating the spreading phase of different ransomware families in real time. In this
context, the performed experiments provide promising results in terms of time and precision to avoid
different ransomware from spreading across the integrated clinical environments.

7. Conclusions and Future Work

This paper presents an automatic, intelligent and real-time system able to detect, classify,
and mitigate ransomware attacks in hospital rooms of the future. The proposed solution is fully
integrated with the ICE++ architecture, our previous work, and makes use of Machine Learning
techniques to detect and classify the spreading phase of ransomware attacks affecting ICE. Another
relevant contribution of this paper is the proposed mitigation mechanism, which considers NFV/SDN
paradigms to stop the spreading by isolating and replacing infected medical devices and systems.

On the other hand, a pool of experiments have demonstrated the suitability of our solution
detecting some of the most recent and dangerous malware (WannaCry, Petya, BadRabbit and
PowerGhost). The selected techniques, OC-SVM and Naive Bayes, have proved able to detect and
classify ransomware affecting ICE. OC-SVM obtained the 92.32% of precision and 99.97% of recall in
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anomaly detection, whereas Naive Bayes obtained a 99.99% of classification accuracy. Both of them
were evaluated with known and unseen ransomware samples. Additional experiments demonstrated
the viability of the proposed solution in terms of time. In the worst case, our solution detected and
mitigated a ransomware attack in 29.7 s, which is acceptable because the ransomware required at least
63.1 s to spread and infect other devices. Finally, different labelled ransomware datasets in ICE have
been created and made publicly available.

As the next step, we are already working on the evaluation of our proposal with new ransomware
families having more complex spreading behaviour patterns. In this context, the inclusion of new
anomaly detection and classification techniques will be required to maintain the accuracy level obtained
as output of this work. Additionally, we plan to extend our solution and analyse the encryption of
shared folders, where the ransomware traffic patterns could be seen as time series data and classified
by deep learning methods like Long Short-Term Memory neuronal networks (LSTM). We will also
include ML techniques to detect the infection/encryption ransomware stages by means of particular
system call patterns and internal processes executed on the medical devices. The combination of the
solution proposed in this paper (focused on detecting the ransomware spreading phase) together
with the analysis of the infection/encryption phase will improve the robustness and accuracy of
our detection system. Another line of work that we are considering is the automatic generation of
signatures and metadata to feed existing countermeasures such as IDS and anti-virus in real time and
avoiding massive ransomware from spreading.
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