My research develops foundations for cyber-physical systems (CPS) – primarily targeting healthcare and security applications. CPS represent a new era of safety-critical embedded systems that feature tight coupling between communication and computation used to control complex, uncertain, and potentially adverse physical plants. In critical infrastructures (e.g., healthcare, energy, transportation, manufacturing) existing robust design paradigms do not address the combination of challenges imposed by life-critical CPS: strict safety and performance requirements, constrained sensing and actuation capabilities, unreliable communication and computation platforms, and potentially malicious feedback information. In medical CPS, these challenges also include unidentifiable non-linear time-varying physiological processes that result in significant model uncertainty – an unfavorable scenario for safety assurance.

My work utilizes parameter-invariant (PAIN) designs [1–8] to address model uncertainty. For some objective (e.g. monitoring whether an event happened), rather than employing estimated models, PAIN designs remove the effect of unknown nuisance modeling variables from its solution. Theoretically, PAIN designs have constant true/false alarm rates regardless of model uncertainty. Practically, PAIN designs provide near-constant true/false alarm rates in medical and non-medical applications – a PAIN medical monitor implemented in an area hospital reliably alerts clinicians to a hard-to-diagnose life-threatening surgical condition, without requiring patient tuning.

My research focuses on specification-based design for safety-critical CPS, encompassing system design, analysis, and implementation. The long-term goal enables high-assurance CPS through new algorithm designs, which consider implementation constraints, such that the resulting real-world system facilitates analysis. Achieving this goal – especially in healthcare – requires system designs that conform to the platform resources while also providing predictable performance in spite of complex cyber-physical interactions. Quantifying the trade-offs between performance, safety, reliability, and security in the system designs requires new analysis tools and techniques. Validating system design assumptions requires real-world implementations that provide evidentiary support and enable identifying unforeseen challenges and future research.

My work bridges cyber-physical systems theory and its practical application. The importance of both theory and practice in my research agenda stems from my early work on wireless sensor networks [9, 10] and energy-efficient buildings [3]. In these applications, I developed theoretical solutions to resource-constrained problems and implemented the solutions in real-world testbeds. These implementations revealed, to me, that generating accurate models for CPS is difficult at best and economically infeasible at worst. This observation initiated my development of PAIN designs, which in turn motivated me to consider application domains with significant uncertainty to highlight utility. Hence, my ongoing and future research concerns engineering human health and cyber-physical security – wherein both theory and practice play important roles.

Engineering Human Health - Developing High-Assurance Medical CPS

Medicine’s evolution into an information- and technology-driven discipline stands to revolutionize human health. My vision of the next generation healthcare systems include advanced wearable medical diagnostics, nearly full automation of inpatient care, and accurate prediction of patient trends and outcomes. Towards this vision, my work aims to develop techniques for high-assurance medical CPS – targeting physiological monitoring and control systems. Specifically, this research contains two thrusts: monitoring life-critical physiological events, and the design and analysis of high-assurance medical control systems.

Research Thrust I: Monitoring Life-Critical Physiological Events. Clinical decision and support systems can alert overloaded clinicians to life-critical situations; however, these systems face fundamental challenges stemming from complex cyber-human interfaces and patient variability. Threshold-based alarming on vital signs have false alarm rates between 57% and 99% [2]. Restricted sensing and actuation capabilities coupled with complicated physiological dynamics, makes standard model-based monitoring impractical in many scenarios. Additionally, variability between patient physiologies and co-morbidities can prevent reliable data-driven design. Thus, this work targets monitor development for life-critical events that, by design, provides low false alarm rates across all patients.

Towards this goal, I have developed PAIN algorithms for surgical, critical, and outpatient care to monitor life-threatening events, namely to predict critical pulmonary shunts in infants [5], detect early-stage hypovolemia [6], and detect meals in type I diabetics [4]. In all applications, real-patient data evaluations of the PAIN monitors outperformed existing monitors while exhibiting near-constant and low false positive rates across all patients – without individualization. Notably, clinicians at the Children’s Hospital of Philadelphia (CHOP) currently use an implementation of the
shunt prediction monitor – a best paper finalist at ICCPS’15 – during infant lung lobectomy surgeries. These early results motivate my future research into physiological monitor design, analysis, and implementation.

As future work, I plan to integrate data-driven (machine learning) techniques into the PAIN design, while retaining its theoretical properties. Incorporating data-driven approaches will provide insight towards efficient extraction of critical physiological information from electronic health records using modified PAIN designs. Evaluating these designs requires support from analysis tools. As a first step towards analysis, I developed a physiological benchmark for surgical glucose control to evaluate potential tools [12].

Leveraging the design and analysis techniques, my vision for future implementations includes building/improving monitors for hard-to-predict critical conditions such as hypovolemia, sepsis, and opiate overdose. Additionally, I plan to recall my early work on wireless sensor networks [9, 10] to extend the physiological monitoring technology to wearable platforms. Outcomes of this work – beyond deployed monitors for surgical, critical, and outpatient care – will be theoretical foundations for general CPS monitoring and wearable examples for demonstration and outreach.

Research Thrust II: Design and Analysis of High-Assurance (Medical) Control Systems. Closed-loop patient care exists in very constrained contexts, such as cardiac implants, and relies on extensive tuning by a clinician before deployment. Increasing the presence of closed-loop medical technologies lightens the clinician’s workload – enabling improved doctor-patient interaction and high-level patient monitoring. However, designing and analyzing closed-loop systems including complex physiological dynamics presents a significant challenge to medical control. In this thrust, I build on the my early physiological monitoring work, discussed in the previous research thrust, to perform closed-loop physiological control.

Due to the convergent nature of physiological systems, many patient care scenarios involve first identifying a life-critical situation, then taking a prescribed clinical action. Thus, my vision for medical cyber-physical systems adopts a hierarchical architecture where a context-aware controller, likely incorporating PAIN technologies, supervises optimized control strategies (i.e. data-driven, adaptive, etc.), in real-time. However, system design and analysis challenges arise due to unknown physiological dynamics. Addressing these challenges requires algorithm designs that can provide performance guarantees despite physiological uncertainty, such as PAIN designs. Based on the solution’s theoretical capabilities, other CPS domains will be considered (energy-efficient buildings and robotics) to broaden the impact of this work and reveal new research directions.

Practical medical applications will be investigated to evaluate the efficacy of the theoretical results. Likely candidates include diabetic glucose control (outpatient) and ventilator weaning (intensive care) based on the imposed challenges and accessibility to data. A high-fidelity FDA-accepted model and simulator exists for the diabetic glucose control, providing a unique bridge between theory and practice to study high-assurance closed-loop systems. Ventilator weaning – the process of taking a patient off mechanical ventilation – has clinical guidelines and primarily interacts with the cardio-pulmonary system for which I have previous experience. To integrate multiple devices into a single testbed, I plan to develop an open-access Integrated Clinical Environment (ICE) compliant testbed for networked medical systems, leveraging my CHOP implementation experiences.

Cyber-Physical Security - Defenses for Cyber-Physical Exploits

New system security vulnerabilities arise when malicious attackers exploit the physical environment – not protected by cybersecurity defenses – to execute an attack (e.g. GPS spoofing). Although small disturbance attenuation is a centerpiece of all robust systems, safety claims become invalid when model and measurement deviations violate the design assumptions. I envision future secure embedded solutions that defend the cyber-physical surface through co-design and systems integration allowing cyber defenses to leverage physical design features to yield unprecedented resilience. Towards this future, my research aims to design secure cyber-physical systems with minimal environmental (physical) assumptions that tests the boundary of cyber-physical security.

Research Thrust III: Context-Aware Attack-Resilient Control. While most security-related research focuses on cybersecurity, recent events demonstrate that attacks on the control environment (e.g. sensors, actuators, and communication media) can be equally disruptive. Attack-resilient control strategies have emerged as a viable solutions in restricted contexts. This work aims to enable wide-spread application of attack-resilient strategies in broad contexts.

Towards this goal, we have designed multiple attack-resilient state estimation approaches, under different attacker capability assumptions, and implemented them on robotic platforms and in an American-built automobile [11, 14]. For analysis, we proved resilience for an attack-resilient state estimator with bounded modeling errors [13] – winning the best paper award at ICCPS’14 – and developed an attack-resilient assurance-case for its robotic implementation [15]. These results motivate my future cyber physical system security research.
Most approaches to secure cyber-physical control utilize a nominal model of the physical world for the purposes of comparing predicted and actual measurements. The reliance on a nominal model results in restrictive operating conditions requiring supplemental sensing systems to validate model assumptions. This can introduce additional attack surfaces and increases the system complexity – prime conditions for malicious exploits. To address this issue, my future work aims to design attack-resilient control strategies that expand the operational envelope by requiring minimal model assumptions. My vision includes an attack monitor that can detect malicious sensors over a broad range of operating conditions. When an attack is detected, a safe mode controller takes over with restricted operating capabilities. Through this project, I anticipate extensions to distributed networked systems where only a local model is known. These results will be evaluated on ground and air robotic platforms initially, and applied to healthcare systems when mature.

Funding Potential:
My proposed research agenda on engineering human health and security has several funding sources. NSF funding potential presents through the CAREER award as well as CPS and SCH programs. Security and soldier health funding has been available through DARPA and ONR. Additionally, utilizing my clinical relationships, my work can be partially funded through NIH, particularly BISTI and an initial K grant.

References