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What we are

trying to

solve

Training data

4

8 c 0 E F
1fe Joo maritel  educationdefault housirg loan
2 56 housemaid married basicdy no no no
3 57 services married _ high.schoiunknown no no
4 37 services married high.schoino yes no
5 40 admin. married basicy no no no
5 56 services married high.schoino no yes
7 45 services maied basicSy unknown no no
8 59 admin, martied  profassioino no no
9 21 blue-collar married  unknown urknown no no
10 24 technician single  professiorno yes no
1 25 services single  high.schoino yes o
Lz 1 lue-collar
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What we are trying to solve
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Uncertainty quantification, etc ...
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State of the art

@ Most prior works target incrementally updating some specific ML
models after the deletion of a small number of training samples:
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State of the art

@ Most prior works target incrementally updating some specific ML
models after the deletion of a small number of training samples:
o Linear regression and Logistic regression [WTD20][GGHvdM19]
o K-means [GGVZ19]
e etc..
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Challenges

@ Can we incrementally update general ML models trained by GD/SGD?

Wt—|—1 — Wi — % Zier VF, (Wt)
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Wt—|—1 — Wi — % ZiGBt VF, (Wt)

e This is difficult due to “dense computational dependencies” [Sch]

Features & labels
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@ Approximation may be essential for incremental updates [GGVZ19]
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Starting from Gradient Descent (GD)

@ Given the following objective function:

Fw)= > Fi(w)
i=1
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Starting from Gradient Descent (GD)
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Thoughts

o Effectively, we need to compute the GD/SGD path after a small
perturbation of the data

@ We can think of this as taking a small change "delta" of Gradient
Descent, hence the name DeltaGrad
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Some observations

e By denoting 1 3°7 | VF; (w) = VF (w), according to the Cauchy
mean value theorem (H(w) is the Hessian matrix at w):

VF(wYy) — VF(we) = He(wY; —wy)

where H; = fol H (we + x (wYe — wy)) dx
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Some observations

e By denoting 1 3°7 | VF; (w) = VF (w), according to the Cauchy
mean value theorem (H(w) is the Hessian matrix at w):

VF(WUt) — VF(Wt) = Ht(WUt — Wt)
where H; = fol H (we + x (wYe — wy)) dx

@ However, explicitly maintaining and evaluating the Hessian matrix is
expensive!
e Classical optimization methods for efficiently approximating H;, e.g.
L-BFGS algorithm
[MS79, Noc80, BNS94, BLNZ95, ZBLN97, NW06, MR15]
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Brief review of the L-BFGS algorithm

@ In the L-BFGS algorithm, the gradients are incrementally updated at
each step:

VF(Wt+]_) — VF(Wt) = Bt(Wt+1 — Wt)

where B; approximates H; = fol H(we + x (W1 — wy)) dx
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Brief review of the L-BFGS algorithm

@ In the L-BFGS algorithm, the gradients are incrementally updated at
each step:

VF(Wt+]_) — VF(Wt) = Bt(Wt+1 — Wt)

where B; approximates H; = fol H(we + x (W1 — wy)) dx
e By denoting sy = w1 — w; and VF(weip1) — VF(w) =y
(Bt)v = g((ytflv Ye25--- 7Yt7m)7 (stfla St—2,... astfm)a V)

where v is an arbitrary vector, m is a small integer and g is a function
defined by the L-BFGS algorithm.

@ Then:

VF(Wt+]_) - VF(Wt) ~ Bt(Wt+1 - Wt)

=8((Yee1:Ye-2>- - Ye—m)s (St-1,5¢2, ... ,St—m), Wey1 — W¢)
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From L-BFGS algorithm to our case

VF(wer1) — VF(we) = Be(werr — wy)
B: ~ H;

1
= / H(w: + x (Wee1 — we)) dx
0

St = Wiyl — Wi

Y: = VF(Wei1) — VF(we)
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From L-BFGS algorithm to our case

VF(wer1) — VF(w:) & Be(wepr — wy) VF(WUf) — VF(w;) = Bt(WUf —wy)
B: ~ H; B: ~ H;
1 1 v
:/ H (we 4+ x (W1 — wy)) dx » :/ H(wt-l-x(w t—wt))dx
0 0
St = Wip1 — Wi St = WUt — W;
Y: = VF(Wep1) — VF(we) y, = VF(wY,) — VF(w,)
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From the L-BFGS algorithm to our case - cont.

@ By utilizing the L-BFGS algorithm:

Bt(WUf - wf) = g((yt717 Ye—2--- 7yt7m)7 (sf*17 St—2,. .. ,st—m), WUf - Wf)

= VF(wUt) ~ VF(w) + Bt(wut — W)
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From the L-BFGS algorithm to our case - cont.

@ By utilizing the L-BFGS algorithm:

Bt(WUf - wf) = g((yt717 Ye—2--- 7yt7m)7 (sf*17 St—2,. .. ,st—m), WUf - Wf)

= VF(WUt) ~ VF(w) + Bt(WUt — W)
o By using w’ as approximated wV:

VF(WIt) = VF(Wt) + Bt(wlt - Wt)
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From the L-BFGS algorithm to our case - cont.

@ By utilizing the L-BFGS algorithm:

Bt(WUf - wf) = g((yt 1 Yt—25- - 7yt7m)7 (sf*17 St—2,. .. ,St,m),WUt - Wf)
= VFwY:) ~ VF(w:) + Be(w"; — w;)

o By using w’ as approximated wV:
VF(w':) = VF(we) + Be(w'c — wy)

@ Go back to the Gradient Descent update rule:

|R‘ [Z VF (w'e) = S VA (w')]

ieER

1
Wt+1~W:

= w’t |R‘ [nVF(W t Z VFI'(WIf)]

i€ER

=w - - :”W {n[VF(wt) +B(we—w)] =) Vl—",—(w’t)}

iER
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A remaining problem

0 1 2 t t+1

>
Iterations

VF(w'o) VF(w'1) VF(w2) ... VFw's)  VF(W'1)

I
W o W1 W o W ¢+ W ti1
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A remaining problem
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| . I I >

Error Bound
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To control the errors

0 1 2 t t+1 >

Iterations

<
-
E\
NP
<
n
E\
<
.y
E\
N

VF(W t) VF(W t+1

PSRN N

Wo w1 w2 Wr+1

————>  Gradient Descent
—> L-BFGS formula
———3 Explicit gradient evaluations
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@ periodically
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Extra benefit of DeltaGrad

e Gradient Descent update rule after minor deletions:

WUH,l(—W t — R ZVF W t
| | 7
=W“t— |R| [nVFw') = > VF(wY))]
iER
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Extra benefit of DeltaGrad

e Gradient Descent update rule after minor deletions:

WUH,l(—W t — R ZVF W t
| | 7
:wUt— |R| [nVF(wY)) VFi(wY:)]
i€ER

Can enable minor additions on training
dataset by replacing - with +
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Extra benefit of DeltaGrad

e Gradient Descent update rule after minor deletions:

WUH»I(—Wt |R‘ZVFwt
iZR
—wY, — |R [nVF(wY:) VFiwY)] Evaluate the gradients
| i€R on the added samples

Can enable minor additions on training
dataset by replacing - with +
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Theoretical results on gradient descent

Theorem (Bound between true and incrementally updated iterates)

By assuming that the objective function F(w) = % S, Fi(w) is strongly
convex, for a large enough iteration counter t, the result w!; of DeltaGrad
approximates the correct iteration values wV, at the rate

R
nwt—wu—o('o
n

So |wV; — w!|| is of a lower order than |R|/n (which is the "baseline error

rate" of the original weights ws, ie. |w; — wY,| = O(1)).

v

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 19 / 28



Theoretical results on stochastic gradient descent

Theorem (Bound between true and incrementally updated iterates

(SGD))
By assuming that the objective function F(w) = L S"" | Fi(w) is strongly

n
convex, for a large enough iteration counter t and a mini-batch size B, the

result w'y of DeltaGrad approximates the correct iteration values wV, at

the rate R .
U _

with high probability.
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Experimental setup

o Datasets: Various standard benchmark datasets
@ Using logistic regression model with L2 regression

@ Compare DeltaGrad with the baseline approach, i.e. the approach of
retraining from scratch (Basel)
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Experimental results

RCV1 (number of features = 47k,
minibatch = 16k, Iterations = 400)
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Experimental results

RCV1 (number of features = 47k,

minibatch = 16k, Iterations = 400)
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Experimental results

One deletion or addi-
tion with a subset of
samples once
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Experimental results

One deletion or addi-
tion with a subset of
samples once

RCV1 (number of features = 47k,

ibatch = 16k, Iterations = 400)
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Experimental results

One deletion or addi-
tion with a subset of
samples once

RCV1 (number of features = 47k,

minibatch 6k, Iterations 00)
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Observations:
Varying the number of removed/added samples @ Up to 6x speed-ups
Delete/Add rate: the number of removed/added relative to Basel
samples VS the entire training dataset size @ Error bound is negligible
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Wrap up and future work

@ We proposed a method DeltaGrad which can incrementally update
general strongly convex ML models.

e Our code: https://github.com/thuwuyinjun/DeltaGrad
@ Future work: Relax the strong convexity assumption
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