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What we are trying to solve

Training data learning algorithm ML models

Retrain from scratch

Incremental update??

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 2 / 28



What we are trying to solve

Training data learning algorithm ML models

Retrain from scratch

Incremental update??

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 2 / 28



What we are trying to solve

Training data learning algorithm ML models

Retrain from scratch

Incremental update??

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 2 / 28



What we are trying to solve

Training data learning algorithm ML models

Retrain from scratch

Incremental update??

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 2 / 28



What we are trying to solve

Training data learning algorithm ML models

Retrain from scratch

Incremental update??

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 2 / 28



What we are trying to solve

Training data learning algorithm ML models

Retrain from scratch

Incremental update??

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 2 / 28



What we are trying to solve

Training data learning algorithm ML models

Retrain from scratch

Incremental update??

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 2 / 28



What we are trying to solve

Training data learning algorithm ML models

Retrain from scratch

Incremental update??

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 2 / 28



Applications

GPDR issues, Privacy

Data valuation, Shapley value [GZ19]

Deletion diagnostics, Robustness

Bias reduction

Uncertainty quanti�cation, etc . . .
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State of the art

Most prior works target incrementally updating some speci�c ML
models after the deletion of a small number of training samples:

Linear regression and Logistic regression [WTD20][GGHvdM19]
K-means [GGVZ19]
etc..
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Challenges

Can we incrementally update general ML models trained by GD/SGD?

wt+1 ← wt − ηt
B

∑
i∈Bt ∇Fi (wt)

This is di�cult due to �dense computational dependencies� [Sch]

Approximation may be essential for incremental updates [GGVZ19]
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Starting from Gradient Descent (GD)

Given the following objective function:

F (w) =
1

n

n∑
i=1

Fi (w)

GD update rules before and after deletion (R : a set of deleted training
samples, |R| � n):

wt+1 ← wt −
ηt
n

n∑
i=1

∇Fi (wt)

wU
t+1 ← wU

t − ηt
n−r

∑
i 6∈R ∇Fi

(
wU

t

)
wU

t+1 ← wU
t −

ηt
n − r

∑
i 6∈R
∇Fi

(
wU

t

)
= wU

t −
ηt

n − r
[

n∑
i=1

∇Fi
(
wU

t

)
−
∑
i∈R
∇Fi

(
wU

t

)
]

∆
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Thoughts

E�ectively, we need to compute the GD/SGD path after a small
perturbation of the data

We can think of this as taking a small change "delta" of Gradient
Descent, hence the name DeltaGrad
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Some observations

By denoting 1
n

∑n
i=1∇Fi (w) = ∇F (w), according to the Cauchy

mean value theorem (H(w) is the Hessian matrix at w):

∇F (wU
t)−∇F (wt) = Ht(w

U
t −wt)

where Ht =
∫ 1
0
H
(
wt + x

(
wU

t −wt

))
dx

However, explicitly maintaining and evaluating the Hessian matrix is
expensive!

Classical optimization methods for e�ciently approximating Ht , e.g.
L-BFGS algorithm
[MS79, Noc80, BNS94, BLNZ95, ZBLN97, NW06, MR15]
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Brief review of the L-BFGS algorithm

In the L-BFGS algorithm, the gradients are incrementally updated at
each step:

∇F (wt+1)−∇F (wt) = Bt(wt+1 −wt)

where Bt approximates Ht =
∫ 1
0
H (wt + x (wt+1 −wt)) dx

By denoting st = wt+1 −wt and ∇F (wt+1)−∇F (wt) = yt :

(Bt)v = g((yt−1, yt−2, . . . , yt−m), (st−1, st−2, . . . , st−m), v)

where v is an arbitrary vector, m is a small integer and g is a function
de�ned by the L-BFGS algorithm.

Then:

∇F (wt+1)−∇F (wt) ≈ Bt(wt+1 −wt)

= g((yt−1, yt−2, . . . , yt−m), (st−1, st−2, . . . , st−m),wt+1 −wt)
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From L-BFGS algorithm to our case

∇F (wt+1)−∇F (wt) ≈ Bt(wt+1 − wt)

Bt ≈ Ht

=

∫ 1

0

H (wt + x (wt+1 − wt)) dx

st = wt+1 − wt

yt = ∇F (wt+1)−∇F (wt)

∇F (wU
t)−∇F (wt) ≈ Bt(w

U
t − wt)

Bt ≈ Ht

=

∫ 1

0

H
(
wt + x

(
wU

t − wt

))
dx

st = wU
t − wt

yt = ∇F (w
U
t)−∇F (wt)
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From the L-BFGS algorithm to our case - cont.

By utilizing the L-BFGS algorithm:

Bt(w
U
t − wt) = g((yt−1, yt−2, . . . , yt−m), (st−1, st−2, . . . , st−m),w

U
t − wt)

⇒ ∇F (wU
t) ≈ ∇F (wt) + Bt(w

U
t − wt)

By using wI as approximated wU :

∇F (wI
t) = ∇F (wt) + Bt(w

I
t − wt)

Go back to the Gradient Descent update rule:

wI
t+1 ≈ wI

t −
ηt

n − |R| [
n∑

i=1

∇Fi

(
wI

t

)
−
∑
i∈R

∇Fi

(
wI

t

)
]

= wI
t −

ηt
n − |R| [n∇F (w

I
t)−

∑
i∈R

∇Fi (w
I
t)]

= wI
t −

ηt
n − |R|

{
n[∇F (wt) + Bt(w

I
t − wt)]−

∑
i∈R

∇Fi (w
I
t)

}

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 14 / 28



From the L-BFGS algorithm to our case - cont.

By utilizing the L-BFGS algorithm:

Bt(w
U
t − wt) = g((yt−1, yt−2, . . . , yt−m), (st−1, st−2, . . . , st−m),w

U
t − wt)

⇒ ∇F (wU
t) ≈ ∇F (wt) + Bt(w

U
t − wt)

By using wI as approximated wU :

∇F (wI
t) = ∇F (wt) + Bt(w

I
t − wt)

Go back to the Gradient Descent update rule:

wI
t+1 ≈ wI

t −
ηt

n − |R| [
n∑

i=1

∇Fi

(
wI

t

)
−
∑
i∈R

∇Fi

(
wI

t

)
]

= wI
t −

ηt
n − |R| [n∇F (w

I
t)−

∑
i∈R

∇Fi (w
I
t)]

= wI
t −

ηt
n − |R|

{
n[∇F (wt) + Bt(w

I
t − wt)]−

∑
i∈R

∇Fi (w
I
t)

}

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 14 / 28



From the L-BFGS algorithm to our case - cont.

By utilizing the L-BFGS algorithm:

Bt(w
U
t − wt) = g((yt−1, yt−2, . . . , yt−m), (st−1, st−2, . . . , st−m),w

U
t − wt)

⇒ ∇F (wU
t) ≈ ∇F (wt) + Bt(w

U
t − wt)

By using wI as approximated wU :

∇F (wI
t) = ∇F (wt) + Bt(w

I
t − wt)

Go back to the Gradient Descent update rule:

wI
t+1 ≈ wI

t −
ηt

n − |R| [
n∑

i=1

∇Fi

(
wI

t

)
−
∑
i∈R

∇Fi

(
wI

t

)
]

= wI
t −

ηt
n − |R| [n∇F (w

I
t)−

∑
i∈R

∇Fi (w
I
t)]

= wI
t −

ηt
n − |R|

{
n[∇F (wt) + Bt(w

I
t − wt)]−

∑
i∈R

∇Fi (w
I
t)

}

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 14 / 28



A remaining problem

0

∇F (wI
0)

wI
0

1

∇F (wI
1)

wI
1

2

∇F (wI
2)

wI
2

. . .

. . .

. . .

t

∇F (wI
t)

wI
t

t + 1

∇F (wI
t+1)

wI
t+1

. . .

. . .

. . .

Iterations

Gradient Descent

L-BFGS formula

‖wI
1 − wU

1‖‖wI
2 − wU

2‖ ‖wI
t − wU

t‖ ‖wI
t+1 − wU

t+1‖ Error Bound
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To control the errors

0
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L-BFGS formula
Explicit gradient evaluations

1 in the �rst few iterations

2 periodically
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Extra bene�t of DeltaGrad

Gradient Descent update rule after minor deletions:

wU
t+1 ← wU

t −
ηt

n − |R|
∑
i 6∈R

∇Fi (w
U
t)

= wU
t −

ηt
n − |R| [n∇F (w

U
t)−

∑
i∈R

∇Fi (w
U
t)]

Can enable minor additions on training

dataset by replacing - with +

Evaluate the gradients

on the added samples
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Theoretical results on gradient descent

Theorem (Bound between true and incrementally updated iterates)

By assuming that the objective function F (w) = 1
n

∑n
i=1 Fi (w) is strongly

convex, for a large enough iteration counter t, the result wI
t of DeltaGrad

approximates the correct iteration values wU
t at the rate

‖wU
t −wI

t‖ = o

(
|R|
n

)
.

So ‖wU
t −wI

t‖ is of a lower order than |R|/n (which is the "baseline error

rate" of the original weights wt , i.e. ‖wt −wU
t‖ = O( |R|n )).
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Theoretical results on stochastic gradient descent

Theorem (Bound between true and incrementally updated iterates
(SGD))

By assuming that the objective function F (w) = 1
n

∑n
i=1 Fi (w) is strongly

convex, for a large enough iteration counter t and a mini-batch size B , the

result wI
t of DeltaGrad approximates the correct iteration values wU

t at

the rate

‖wU
t −wI

t‖ = o

(
|R|
n

+
1

B1/4

)
.

with high probability.
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Experimental setup

Datasets: Various standard benchmark datasets

Using logistic regression model with L2 regression

Compare DeltaGrad with the baseline approach, i.e. the approach of
retraining from scratch (BaseL)

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 22 / 28



Experimental results

Varying the number of removed/added samples
Delete/Add rate: the number of removed/added
samples VS the entire training dataset size

One deletion or addi-
tion with a subset of
samples once

Time to
update the
model

RCV1 (number of features = 47k,
minibatch = 16k, Iterations = 400)

Observations:
1 Up to 6x speed-ups

relative to BaseL

2 Error bound is negligible

Error bounds:
‖wU∗ − wI ∗‖:
Di�erence of
updated param-
eters with and
without approxi-
mation
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Wrap up and future work

We proposed a method DeltaGrad which can incrementally update
general strongly convex ML models.

Our code: https://github.com/thuwuyinjun/DeltaGrad

Future work: Relax the strong convexity assumption

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 24 / 28
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