
DeltaGrad: Rapid retraining of machine learning models

Yinjun Wu1 Edgar Dobriban2 Susan B. Davidson 1

1Department of Computer and Information Science

University of Pennsylvania

2Department of Statistics

University of Pennsylvania

ICML, 2020

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 1 / 28

What we are trying to solve

Training data learning algorithm ML models

Retrain from scratch

Incremental update??

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 2 / 28

What we are trying to solve

Training data learning algorithm ML models

Retrain from scratch

Incremental update??

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 2 / 28

What we are trying to solve

Training data learning algorithm ML models

Retrain from scratch

Incremental update??

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 2 / 28

What we are trying to solve

Training data learning algorithm ML models

Retrain from scratch

Incremental update??

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 2 / 28

What we are trying to solve

Training data learning algorithm ML models

Retrain from scratch

Incremental update??

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 2 / 28

What we are trying to solve

Training data learning algorithm ML models

Retrain from scratch

Incremental update??

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 2 / 28

What we are trying to solve

Training data learning algorithm ML models

Retrain from scratch

Incremental update??

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 2 / 28

What we are trying to solve

Training data learning algorithm ML models

Retrain from scratch

Incremental update??

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 2 / 28

Applications

GPDR issues, Privacy

Data valuation, Shapley value [GZ19]

Deletion diagnostics, Robustness

Bias reduction

Uncertainty quanti�cation, etc . . .

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 3 / 28

Applications

GPDR issues, Privacy

Data valuation, Shapley value [GZ19]

Deletion diagnostics, Robustness

Bias reduction

Uncertainty quanti�cation, etc . . .

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 3 / 28

Applications

GPDR issues, Privacy

Data valuation, Shapley value [GZ19]

Deletion diagnostics, Robustness

Bias reduction

Uncertainty quanti�cation, etc . . .

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 3 / 28

Applications

GPDR issues, Privacy

Data valuation, Shapley value [GZ19]

Deletion diagnostics, Robustness

Bias reduction

Uncertainty quanti�cation, etc . . .

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 3 / 28

Applications

GPDR issues, Privacy

Data valuation, Shapley value [GZ19]

Deletion diagnostics, Robustness

Bias reduction

Uncertainty quanti�cation, etc . . .

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 3 / 28

Outline

1 State of the art

2 DeltaGrad

3 Theoretical results

4 Empirical evaluations

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 4 / 28

Outline

1 State of the art

2 DeltaGrad

3 Theoretical results

4 Empirical evaluations

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 5 / 28

State of the art

Most prior works target incrementally updating some speci�c ML
models after the deletion of a small number of training samples:

Linear regression and Logistic regression [WTD20][GGHvdM19]
K-means [GGVZ19]
etc..

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 6 / 28

State of the art

Most prior works target incrementally updating some speci�c ML
models after the deletion of a small number of training samples:

Linear regression and Logistic regression [WTD20][GGHvdM19]
K-means [GGVZ19]
etc..

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 6 / 28

Challenges

Can we incrementally update general ML models trained by GD/SGD?

wt+1 ← wt − ηt
B

∑
i∈Bt ∇Fi (wt)

This is di�cult due to �dense computational dependencies� [Sch]

Approximation may be essential for incremental updates [GGVZ19]

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 7 / 28

Challenges

Can we incrementally update general ML models trained by GD/SGD?

wt+1 ← wt − ηt
B

∑
i∈Bt ∇Fi (wt)

This is di�cult due to �dense computational dependencies� [Sch]

Approximation may be essential for incremental updates [GGVZ19]

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 7 / 28

Challenges

Can we incrementally update general ML models trained by GD/SGD?

wt+1 ← wt − ηt
B

∑
i∈Bt ∇Fi (wt)

This is di�cult due to �dense computational dependencies� [Sch]

Approximation may be essential for incremental updates [GGVZ19]

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 7 / 28

Outline

1 State of the art

2 DeltaGrad

3 Theoretical results

4 Empirical evaluations

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 8 / 28

Starting from Gradient Descent (GD)

Given the following objective function:

F (w) =
1

n

n∑
i=1

Fi (w)

GD update rules before and after deletion (R : a set of deleted training
samples, |R| � n):

wt+1 ← wt −
ηt
n

n∑
i=1

∇Fi (wt)

wU
t+1 ← wU

t − ηt
n−r

∑
i 6∈R ∇Fi

(
wU

t

)
wU

t+1 ← wU
t −

ηt
n − r

∑
i 6∈R
∇Fi

(
wU

t

)
= wU

t −
ηt

n − r
[

n∑
i=1

∇Fi
(
wU

t

)
−
∑
i∈R
∇Fi

(
wU

t

)
]

∆

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 9 / 28

Starting from Gradient Descent (GD)

Given the following objective function:

F (w) =
1

n

n∑
i=1

Fi (w)

GD update rules before and after deletion (R : a set of deleted training
samples, |R| � n):

wt+1 ← wt −
ηt
n

n∑
i=1

∇Fi (wt)

wU
t+1 ← wU

t − ηt
n−r

∑
i 6∈R ∇Fi

(
wU

t

)
wU

t+1 ← wU
t −

ηt
n − r

∑
i 6∈R
∇Fi

(
wU

t

)
= wU

t −
ηt

n − r
[

n∑
i=1

∇Fi
(
wU

t

)
−
∑
i∈R
∇Fi

(
wU

t

)
]

∆

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 9 / 28

Starting from Gradient Descent (GD)

Given the following objective function:

F (w) =
1

n

n∑
i=1

Fi (w)

GD update rules before and after deletion (R : a set of deleted training
samples, |R| � n):

wt+1 ← wt −
ηt
n

n∑
i=1

∇Fi (wt)

wU
t+1 ← wU

t − ηt
n−r

∑
i 6∈R ∇Fi

(
wU

t

)
wU

t+1 ← wU
t −

ηt
n − r

∑
i 6∈R
∇Fi

(
wU

t

)
= wU

t −
ηt

n − r
[

n∑
i=1

∇Fi
(
wU

t

)
−
∑
i∈R
∇Fi

(
wU

t

)
]

∆

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 9 / 28

Starting from Gradient Descent (GD)

Given the following objective function:

F (w) =
1

n

n∑
i=1

Fi (w)

GD update rules before and after deletion (R : a set of deleted training
samples, |R| � n):

wt+1 ← wt −
ηt
n

n∑
i=1

∇Fi (wt)

wU
t+1 ← wU

t − ηt
n−r

∑
i 6∈R ∇Fi

(
wU

t

)
wU

t+1 ← wU
t −

ηt
n − r

∑
i 6∈R
∇Fi

(
wU

t

)
= wU

t −
ηt

n − r
[

n∑
i=1

∇Fi
(
wU

t

)
−
∑
i∈R
∇Fi

(
wU

t

)
]

∆

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 9 / 28

Starting from Gradient Descent (GD)

Given the following objective function:

F (w) =
1

n

n∑
i=1

Fi (w)

GD update rules before and after deletion (R : a set of deleted training
samples, |R| � n):

wt+1 ← wt −
ηt
n

n∑
i=1

∇Fi (wt)

wU
t+1 ← wU

t − ηt
n−r

∑
i 6∈R ∇Fi

(
wU

t

)
wU

t+1 ← wU
t −

ηt
n − r

∑
i 6∈R
∇Fi

(
wU

t

)
= wU

t −
ηt

n − r
[

n∑
i=1

∇Fi
(
wU

t

)
−
∑
i∈R
∇Fi

(
wU

t

)
]

∆

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 9 / 28

Starting from Gradient Descent (GD)

Given the following objective function:

F (w) =
1

n

n∑
i=1

Fi (w)

GD update rules before and after deletion (R : a set of deleted training
samples, |R| � n):

wt+1 ← wt −
ηt
n

n∑
i=1

∇Fi (wt)

wU
t+1 ← wU

t − ηt
n−r

∑
i 6∈R ∇Fi

(
wU

t

)
wU

t+1 ← wU
t −

ηt
n − r

∑
i 6∈R
∇Fi

(
wU

t

)
= wU

t −
ηt

n − r
[

n∑
i=1

∇Fi
(
wU

t

)
−
∑
i∈R
∇Fi

(
wU

t

)
]

∆

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 9 / 28

Thoughts

E�ectively, we need to compute the GD/SGD path after a small
perturbation of the data

We can think of this as taking a small change "delta" of Gradient
Descent, hence the name DeltaGrad

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 10 / 28

Some observations

By denoting 1
n

∑n
i=1∇Fi (w) = ∇F (w), according to the Cauchy

mean value theorem (H(w) is the Hessian matrix at w):

∇F (wU
t)−∇F (wt) = Ht(w

U
t −wt)

where Ht =
∫ 1
0
H
(
wt + x

(
wU

t −wt

))
dx

However, explicitly maintaining and evaluating the Hessian matrix is
expensive!

Classical optimization methods for e�ciently approximating Ht , e.g.
L-BFGS algorithm
[MS79, Noc80, BNS94, BLNZ95, ZBLN97, NW06, MR15]

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 11 / 28

Some observations

By denoting 1
n

∑n
i=1∇Fi (w) = ∇F (w), according to the Cauchy

mean value theorem (H(w) is the Hessian matrix at w):

∇F (wU
t)−∇F (wt) = Ht(w

U
t −wt)

where Ht =
∫ 1
0
H
(
wt + x

(
wU

t −wt

))
dx

However, explicitly maintaining and evaluating the Hessian matrix is
expensive!

Classical optimization methods for e�ciently approximating Ht , e.g.
L-BFGS algorithm
[MS79, Noc80, BNS94, BLNZ95, ZBLN97, NW06, MR15]

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 11 / 28

Some observations

By denoting 1
n

∑n
i=1∇Fi (w) = ∇F (w), according to the Cauchy

mean value theorem (H(w) is the Hessian matrix at w):

∇F (wU
t)−∇F (wt) = Ht(w

U
t −wt)

where Ht =
∫ 1
0
H
(
wt + x

(
wU

t −wt

))
dx

However, explicitly maintaining and evaluating the Hessian matrix is
expensive!

Classical optimization methods for e�ciently approximating Ht , e.g.
L-BFGS algorithm
[MS79, Noc80, BNS94, BLNZ95, ZBLN97, NW06, MR15]

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 11 / 28

Brief review of the L-BFGS algorithm

In the L-BFGS algorithm, the gradients are incrementally updated at
each step:

∇F (wt+1)−∇F (wt) = Bt(wt+1 −wt)

where Bt approximates Ht =
∫ 1
0
H (wt + x (wt+1 −wt)) dx

By denoting st = wt+1 −wt and ∇F (wt+1)−∇F (wt) = yt :

(Bt)v = g((yt−1, yt−2, . . . , yt−m), (st−1, st−2, . . . , st−m), v)

where v is an arbitrary vector, m is a small integer and g is a function
de�ned by the L-BFGS algorithm.

Then:

∇F (wt+1)−∇F (wt) ≈ Bt(wt+1 −wt)

= g((yt−1, yt−2, . . . , yt−m), (st−1, st−2, . . . , st−m),wt+1 −wt)

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 12 / 28

Brief review of the L-BFGS algorithm

In the L-BFGS algorithm, the gradients are incrementally updated at
each step:

∇F (wt+1)−∇F (wt) = Bt(wt+1 −wt)

where Bt approximates Ht =
∫ 1
0
H (wt + x (wt+1 −wt)) dx

By denoting st = wt+1 −wt and ∇F (wt+1)−∇F (wt) = yt :

(Bt)v = g((yt−1, yt−2, . . . , yt−m), (st−1, st−2, . . . , st−m), v)

where v is an arbitrary vector, m is a small integer and g is a function
de�ned by the L-BFGS algorithm.

Then:

∇F (wt+1)−∇F (wt) ≈ Bt(wt+1 −wt)

= g((yt−1, yt−2, . . . , yt−m), (st−1, st−2, . . . , st−m),wt+1 −wt)

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 12 / 28

Brief review of the L-BFGS algorithm

In the L-BFGS algorithm, the gradients are incrementally updated at
each step:

∇F (wt+1)−∇F (wt) = Bt(wt+1 −wt)

where Bt approximates Ht =
∫ 1
0
H (wt + x (wt+1 −wt)) dx

By denoting st = wt+1 −wt and ∇F (wt+1)−∇F (wt) = yt :

(Bt)v = g((yt−1, yt−2, . . . , yt−m), (st−1, st−2, . . . , st−m), v)

where v is an arbitrary vector, m is a small integer and g is a function
de�ned by the L-BFGS algorithm.

Then:

∇F (wt+1)−∇F (wt) ≈ Bt(wt+1 −wt)

= g((yt−1, yt−2, . . . , yt−m), (st−1, st−2, . . . , st−m),wt+1 −wt)

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 12 / 28

From L-BFGS algorithm to our case

∇F (wt+1)−∇F (wt) ≈ Bt(wt+1 − wt)

Bt ≈ Ht

=

∫ 1

0

H (wt + x (wt+1 − wt)) dx

st = wt+1 − wt

yt = ∇F (wt+1)−∇F (wt)

∇F (wU
t)−∇F (wt) ≈ Bt(w

U
t − wt)

Bt ≈ Ht

=

∫ 1

0

H
(
wt + x

(
wU

t − wt

))
dx

st = wU
t − wt

yt = ∇F (w
U
t)−∇F (wt)

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 13 / 28

From L-BFGS algorithm to our case

∇F (wt+1)−∇F (wt) ≈ Bt(wt+1 − wt)

Bt ≈ Ht

=

∫ 1

0

H (wt + x (wt+1 − wt)) dx

st = wt+1 − wt

yt = ∇F (wt+1)−∇F (wt)

∇F (wU
t)−∇F (wt) ≈ Bt(w

U
t − wt)

Bt ≈ Ht

=

∫ 1

0

H
(
wt + x

(
wU

t − wt

))
dx

st = wU
t − wt

yt = ∇F (w
U
t)−∇F (wt)

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 13 / 28

From the L-BFGS algorithm to our case - cont.

By utilizing the L-BFGS algorithm:

Bt(w
U
t − wt) = g((yt−1, yt−2, . . . , yt−m), (st−1, st−2, . . . , st−m),w

U
t − wt)

⇒ ∇F (wU
t) ≈ ∇F (wt) + Bt(w

U
t − wt)

By using wI as approximated wU :

∇F (wI
t) = ∇F (wt) + Bt(w

I
t − wt)

Go back to the Gradient Descent update rule:

wI
t+1 ≈ wI

t −
ηt

n − |R| [
n∑

i=1

∇Fi

(
wI

t

)
−
∑
i∈R

∇Fi

(
wI

t

)
]

= wI
t −

ηt
n − |R| [n∇F (w

I
t)−

∑
i∈R

∇Fi (w
I
t)]

= wI
t −

ηt
n − |R|

{
n[∇F (wt) + Bt(w

I
t − wt)]−

∑
i∈R

∇Fi (w
I
t)

}

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 14 / 28

From the L-BFGS algorithm to our case - cont.

By utilizing the L-BFGS algorithm:

Bt(w
U
t − wt) = g((yt−1, yt−2, . . . , yt−m), (st−1, st−2, . . . , st−m),w

U
t − wt)

⇒ ∇F (wU
t) ≈ ∇F (wt) + Bt(w

U
t − wt)

By using wI as approximated wU :

∇F (wI
t) = ∇F (wt) + Bt(w

I
t − wt)

Go back to the Gradient Descent update rule:

wI
t+1 ≈ wI

t −
ηt

n − |R| [
n∑

i=1

∇Fi

(
wI

t

)
−
∑
i∈R

∇Fi

(
wI

t

)
]

= wI
t −

ηt
n − |R| [n∇F (w

I
t)−

∑
i∈R

∇Fi (w
I
t)]

= wI
t −

ηt
n − |R|

{
n[∇F (wt) + Bt(w

I
t − wt)]−

∑
i∈R

∇Fi (w
I
t)

}

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 14 / 28

From the L-BFGS algorithm to our case - cont.

By utilizing the L-BFGS algorithm:

Bt(w
U
t − wt) = g((yt−1, yt−2, . . . , yt−m), (st−1, st−2, . . . , st−m),w

U
t − wt)

⇒ ∇F (wU
t) ≈ ∇F (wt) + Bt(w

U
t − wt)

By using wI as approximated wU :

∇F (wI
t) = ∇F (wt) + Bt(w

I
t − wt)

Go back to the Gradient Descent update rule:

wI
t+1 ≈ wI

t −
ηt

n − |R| [
n∑

i=1

∇Fi

(
wI

t

)
−
∑
i∈R

∇Fi

(
wI

t

)
]

= wI
t −

ηt
n − |R| [n∇F (w

I
t)−

∑
i∈R

∇Fi (w
I
t)]

= wI
t −

ηt
n − |R|

{
n[∇F (wt) + Bt(w

I
t − wt)]−

∑
i∈R

∇Fi (w
I
t)

}

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 14 / 28

A remaining problem

0

∇F (wI
0)

wI
0

1

∇F (wI
1)

wI
1

2

∇F (wI
2)

wI
2

. . .

. . .

. . .

t

∇F (wI
t)

wI
t

t + 1

∇F (wI
t+1)

wI
t+1

. . .

. . .

. . .

Iterations

Gradient Descent

L-BFGS formula

‖wI
1 − wU

1‖‖wI
2 − wU

2‖ ‖wI
t − wU

t‖ ‖wI
t+1 − wU

t+1‖ Error Bound

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 15 / 28

A remaining problem

0

∇F (wI
0)

wI
0

1

∇F (wI
1)

wI
1

2

∇F (wI
2)

wI
2

. . .

. . .

. . .

t

∇F (wI
t)

wI
t

t + 1

∇F (wI
t+1)

wI
t+1

. . .

. . .

. . .

Iterations

Gradient Descent

L-BFGS formula

‖wI
1 − wU

1‖‖wI
2 − wU

2‖ ‖wI
t − wU

t‖ ‖wI
t+1 − wU

t+1‖ Error Bound

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 15 / 28

A remaining problem

0

∇F (wI
0)

wI
0

1

∇F (wI
1)

wI
1

2

∇F (wI
2)

wI
2

. . .

. . .

. . .

t

∇F (wI
t)

wI
t

t + 1

∇F (wI
t+1)

wI
t+1

. . .

. . .

. . .

Iterations

Gradient Descent

L-BFGS formula

‖wI
1 − wU

1‖‖wI
2 − wU

2‖ ‖wI
t − wU

t‖ ‖wI
t+1 − wU

t+1‖ Error Bound

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 15 / 28

To control the errors

0

∇F (wI
0)

wI
0

1

∇F (wI
1)

wI
1

2

∇F (wI
2)

wI
2

. . .

. . .

. . .

t

∇F (wI
t)

wI
t

t + 1

∇F (wI
t+1)

wI
t+1

. . .

. . .

. . .

Iterations

Gradient Descent

L-BFGS formula
Explicit gradient evaluations

1 in the �rst few iterations

2 periodically

‖wI
1 − wU

1‖‖wI
2 − wU

2‖ ‖wI
t − wU

t‖ ‖wI
t+1 − wU

t+1‖ Error Bound

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 16 / 28

To control the errors

0

∇F (wI
0)

wI
0

1

∇F (wI
1)

wI
1

2

∇F (wI
2)

wI
2

. . .

. . .

. . .

t

∇F (wI
t)

wI
t

t + 1

∇F (wI
t+1)

wI
t+1

. . .

. . .

. . .

Iterations

Gradient Descent

L-BFGS formula
Explicit gradient evaluations

1 in the �rst few iterations

2 periodically

‖wI
1 − wU

1‖‖wI
2 − wU

2‖ ‖wI
t − wU

t‖ ‖wI
t+1 − wU

t+1‖ Error Bound

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 16 / 28

To control the errors

0

∇F (wI
0)

wI
0

1

∇F (wI
1)

wI
1

2

∇F (wI
2)

wI
2

. . .

. . .

. . .

t

∇F (wI
t)

wI
t

t + 1

∇F (wI
t+1)

wI
t+1

. . .

. . .

. . .

Iterations

Gradient Descent

L-BFGS formula
Explicit gradient evaluations

1 in the �rst few iterations

2 periodically

‖wI
1 − wU

1‖‖wI
2 − wU

2‖ ‖wI
t − wU

t‖ ‖wI
t+1 − wU

t+1‖ Error Bound

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 16 / 28

Extra bene�t of DeltaGrad

Gradient Descent update rule after minor deletions:

wU
t+1 ← wU

t −
ηt

n − |R|
∑
i 6∈R

∇Fi (w
U
t)

= wU
t −

ηt
n − |R| [n∇F (w

U
t)−

∑
i∈R

∇Fi (w
U
t)]

Can enable minor additions on training

dataset by replacing - with +

Evaluate the gradients

on the added samples

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 17 / 28

Extra bene�t of DeltaGrad

Gradient Descent update rule after minor deletions:

wU
t+1 ← wU

t −
ηt

n − |R|
∑
i 6∈R

∇Fi (w
U
t)

= wU
t −

ηt
n − |R| [n∇F (w

U
t)−

∑
i∈R

∇Fi (w
U
t)]

Can enable minor additions on training

dataset by replacing - with +

Evaluate the gradients

on the added samples

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 17 / 28

Extra bene�t of DeltaGrad

Gradient Descent update rule after minor deletions:

wU
t+1 ← wU

t −
ηt

n − |R|
∑
i 6∈R

∇Fi (w
U
t)

= wU
t −

ηt
n − |R| [n∇F (w

U
t)−

∑
i∈R

∇Fi (w
U
t)]

Can enable minor additions on training

dataset by replacing - with +

Evaluate the gradients

on the added samples

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 17 / 28

Outline

1 State of the art

2 DeltaGrad

3 Theoretical results

4 Empirical evaluations

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 18 / 28

Theoretical results on gradient descent

Theorem (Bound between true and incrementally updated iterates)

By assuming that the objective function F (w) = 1
n

∑n
i=1 Fi (w) is strongly

convex, for a large enough iteration counter t, the result wI
t of DeltaGrad

approximates the correct iteration values wU
t at the rate

‖wU
t −wI

t‖ = o

(
|R|
n

)
.

So ‖wU
t −wI

t‖ is of a lower order than |R|/n (which is the "baseline error

rate" of the original weights wt , i.e. ‖wt −wU
t‖ = O(|R|n)).

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 19 / 28

Theoretical results on stochastic gradient descent

Theorem (Bound between true and incrementally updated iterates
(SGD))

By assuming that the objective function F (w) = 1
n

∑n
i=1 Fi (w) is strongly

convex, for a large enough iteration counter t and a mini-batch size B , the

result wI
t of DeltaGrad approximates the correct iteration values wU

t at

the rate

‖wU
t −wI

t‖ = o

(
|R|
n

+
1

B1/4

)
.

with high probability.

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 20 / 28

Outline

1 State of the art

2 DeltaGrad

3 Theoretical results

4 Empirical evaluations

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 21 / 28

Experimental setup

Datasets: Various standard benchmark datasets

Using logistic regression model with L2 regression

Compare DeltaGrad with the baseline approach, i.e. the approach of
retraining from scratch (BaseL)

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 22 / 28

Experimental results

Varying the number of removed/added samples
Delete/Add rate: the number of removed/added
samples VS the entire training dataset size

One deletion or addi-
tion with a subset of
samples once

Time to
update the
model

RCV1 (number of features = 47k,
minibatch = 16k, Iterations = 400)

Observations:
1 Up to 6x speed-ups

relative to BaseL

2 Error bound is negligible

Error bounds:
‖wU∗ − wI ∗‖:
Di�erence of
updated param-
eters with and
without approxi-
mation

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 23 / 28

Experimental results

Varying the number of removed/added samples
Delete/Add rate: the number of removed/added
samples VS the entire training dataset size

One deletion or addi-
tion with a subset of
samples once

Time to
update the
model

RCV1 (number of features = 47k,
minibatch = 16k, Iterations = 400)

Observations:
1 Up to 6x speed-ups

relative to BaseL

2 Error bound is negligible

Error bounds:
‖wU∗ − wI ∗‖:
Di�erence of
updated param-
eters with and
without approxi-
mation

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 23 / 28

Experimental results

Varying the number of removed/added samples
Delete/Add rate: the number of removed/added
samples VS the entire training dataset size

One deletion or addi-
tion with a subset of
samples once

Time to
update the
model

RCV1 (number of features = 47k,
minibatch = 16k, Iterations = 400)

Observations:
1 Up to 6x speed-ups

relative to BaseL

2 Error bound is negligible

Error bounds:
‖wU∗ − wI ∗‖:
Di�erence of
updated param-
eters with and
without approxi-
mation

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 23 / 28

Experimental results

Varying the number of removed/added samples
Delete/Add rate: the number of removed/added
samples VS the entire training dataset size

One deletion or addi-
tion with a subset of
samples once

Time to
update the
model

RCV1 (number of features = 47k,
minibatch = 16k, Iterations = 400)

Observations:
1 Up to 6x speed-ups

relative to BaseL

2 Error bound is negligible

Error bounds:
‖wU∗ − wI ∗‖:
Di�erence of
updated param-
eters with and
without approxi-
mation

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 23 / 28

Experimental results

Varying the number of removed/added samples
Delete/Add rate: the number of removed/added
samples VS the entire training dataset size

One deletion or addi-
tion with a subset of
samples once

Time to
update the
model

RCV1 (number of features = 47k,
minibatch = 16k, Iterations = 400)

Observations:
1 Up to 6x speed-ups

relative to BaseL

2 Error bound is negligible

Error bounds:
‖wU∗ − wI ∗‖:
Di�erence of
updated param-
eters with and
without approxi-
mation

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 23 / 28

Experimental results

Varying the number of removed/added samples
Delete/Add rate: the number of removed/added
samples VS the entire training dataset size

One deletion or addi-
tion with a subset of
samples once

Time to
update the
model

RCV1 (number of features = 47k,
minibatch = 16k, Iterations = 400)

Observations:
1 Up to 6x speed-ups

relative to BaseL

2 Error bound is negligible

Error bounds:
‖wU∗ − wI ∗‖:
Di�erence of
updated param-
eters with and
without approxi-
mation

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 23 / 28

Wrap up and future work

We proposed a method DeltaGrad which can incrementally update
general strongly convex ML models.

Our code: https://github.com/thuwuyinjun/DeltaGrad

Future work: Relax the strong convexity assumption

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 24 / 28

https://github.com/thuwuyinjun/DeltaGrad

References I

Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu.

A limited memory algorithm for bound constrained optimization.

SIAM Journal on scienti�c computing, 16(5):1190�1208, 1995.

Richard H Byrd, Jorge Nocedal, and Robert B Schnabel.

Representations of quasi-newton matrices and their use in limited memory
methods.

Mathematical Programming, 63(1-3):129�156, 1994.

Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens van der Maaten.

Certi�ed data removal from machine learning models.

arXiv preprint arXiv:1911.03030, 2019.

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 25 / 28

References II

Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou.

Making ai forget you: Data deletion in machine learning.

In Advances in Neural Information Processing Systems, pages 3513�3526,
2019.

Amirata Ghorbani and James Zou.

Data shapley: Equitable valuation of data for machine learning.

In International Conference on Machine Learning, pages 2242�2251, 2019.

Aryan Mokhtari and Alejandro Ribeiro.

Global convergence of online limited memory bfgs.

The Journal of Machine Learning Research, 16(1):3151�3181, 2015.

Hermann Matthies and Gilbert Strang.

The solution of nonlinear �nite element equations.

International journal for numerical methods in engineering,
14(11):1613�1626, 1979.

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 26 / 28

References III

Jorge Nocedal.

Updating quasi-newton matrices with limited storage.

Mathematics of computation, 35(151):773�782, 1980.

Jorge Nocedal and Stephen Wright.

Numerical optimization.

Springer Science & Business Media, 2006.

Sebastian Schelter.

â��amnesiaâ��-a selection of machine learning models that can forget user
data very fast.

suicide, 8364(44035):46992.

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 27 / 28

References IV

Yinjun Wu, Val Tannen, and Susan B Davidson.

Priu: A provenance-based approach for incrementally updating regression
models.

In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, pages 447�462, 2020.

Ciyou Zhu, Richard H Byrd, Peihuang Lu, and Jorge Nocedal.

Algorithm 778: L-bfgs-b: Fortran subroutines for large-scale
bound-constrained optimization.

ACM Transactions on Mathematical Software (TOMS), 23(4):550�560,
1997.

Wu, Dobriban, Davidson (UPenn) DeltaGrad ICML, 2020 28 / 28

	State of the art
	DeltaGrad
	Theoretical results
	Empirical evaluations

