Fine-grained Provenance for Linear Algebra Operators

Zhepeng Yan Val Tannen Zachary Ives

University of Pennsylvania
Motivation

• Provenance is well-understood for relational data / queries.
 • E.g., view maintenance, delete propagation, computing trust, prob. db

• But increasingly analysts are performing more complex tasks:
 • Machine learning, data mining, image analysis, graph analytics

• Array data and matrix algebra are commonly used!
Motivation

• Provenance is well-understood for relational data / queries.
 • E.g., view maintenance, delete propagation, computing trust, prob. db

• But increasingly analysts are performing more complex tasks:
 • Machine learning, data mining, image analysis, graph analytics

• Array data and matrix algebra are commonly used!

• Question: How do we track provenance in this setting?
Inspiration: Provenance Semirings

• An algebra framework [Green et al. PODS’07] for
 • annotating tuples in a relation
 • propagating annotations through relational queries (SPJU and aggregation)

• Enables efficient delete propagation, view maintenance, etc
Semiring example: input data

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>PID</td>
<td>PValue</td>
<td>QID</td>
</tr>
<tr>
<td>101</td>
<td>11</td>
<td>2003</td>
</tr>
<tr>
<td>102</td>
<td>12</td>
<td>2004</td>
</tr>
<tr>
<td>2003</td>
<td>13</td>
<td>2005</td>
</tr>
<tr>
<td>2004</td>
<td>14</td>
<td>2006</td>
</tr>
<tr>
<td>2005</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Semiring example: query

\[S(\text{Value}) ::= P(x, \text{Value}), R(x, _)
\]
\[S(\text{Value}) ::= P(x, \text{Value}), Q(x, _)
\]
\[S(\text{Value}) ::= R(_, \text{Value})
\]
Semiring example: query

P

<table>
<thead>
<tr>
<th>PID</th>
<th>PValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>11</td>
</tr>
<tr>
<td>102</td>
<td>12</td>
</tr>
<tr>
<td>2003</td>
<td>13</td>
</tr>
<tr>
<td>2004</td>
<td>14</td>
</tr>
<tr>
<td>2005</td>
<td>15</td>
</tr>
<tr>
<td>2006</td>
<td>16</td>
</tr>
</tbody>
</table>

Q

<table>
<thead>
<tr>
<th>QID</th>
<th>QValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>0</td>
</tr>
<tr>
<td>2004</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>0</td>
</tr>
<tr>
<td>2006</td>
<td>0</td>
</tr>
</tbody>
</table>

R

<table>
<thead>
<tr>
<th>RID</th>
<th>RValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>13</td>
</tr>
<tr>
<td>102</td>
<td>14</td>
</tr>
<tr>
<td>5005</td>
<td>15</td>
</tr>
<tr>
<td>5006</td>
<td>16</td>
</tr>
<tr>
<td>5007</td>
<td>17</td>
</tr>
<tr>
<td>5008</td>
<td>18</td>
</tr>
<tr>
<td>5009</td>
<td>19</td>
</tr>
</tbody>
</table>

\[S(\text{Value}) :: \text{P}(x, \text{Value}), \text{R}(x, _). \]
\[S(\text{Value}) :: \text{P}(x, \text{Value}), \text{Q}(x, _). \]
\[S(\text{Value}) :: \text{R}(_, \text{Value}). \]
Semiring example: query

\[S(\text{Value}) \triangleq P(x, \text{Value}), R(x, _) \]
\[S(\text{Value}) \triangleq P(x, \text{Value}), Q(x, _) \]
\[S(\text{Value}) \triangleq R(_, \text{Value}) \]
Semiring example: query

<table>
<thead>
<tr>
<th>PID</th>
<th>PValue</th>
<th>QID</th>
<th>QValue</th>
<th>RID</th>
<th>RValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>11</td>
<td>2003</td>
<td>0</td>
<td>101</td>
<td>13</td>
</tr>
<tr>
<td>102</td>
<td>12</td>
<td>2004</td>
<td>0</td>
<td>102</td>
<td>14</td>
</tr>
<tr>
<td>2003</td>
<td>13</td>
<td>2005</td>
<td>0</td>
<td>5005</td>
<td>15</td>
</tr>
<tr>
<td>2004</td>
<td>14</td>
<td>2006</td>
<td>0</td>
<td>5006</td>
<td>16</td>
</tr>
<tr>
<td>2005</td>
<td>15</td>
<td></td>
<td></td>
<td>5007</td>
<td>17</td>
</tr>
<tr>
<td>2006</td>
<td>16</td>
<td></td>
<td></td>
<td>5008</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5009</td>
<td>19</td>
</tr>
</tbody>
</table>

\[
S(\text{Value}) :: P(x, \text{Value}), R(x, _)
\]

\[
S(\text{Value}) :: P(x, \text{Value}), Q(x, _)
\]

\[
S(\text{Value}) :: R(_, \text{Value})
\]
Semiring example: output tuples

\[
\begin{array}{|c|}
\hline
\text{Value} \\
11 \\
12 \\
13 \\
14 \\
15 \\
16 \\
17 \\
18 \\
19 \\
\hline
\end{array}
\]

\[
S(\text{Value}) ::= \text{P}(x, \text{Value}), \text{R}(x, _) \\
S(\text{Value}) ::= \text{P}(x, \text{Value}), \text{Q}(x, _) \\
S(\text{Value}) ::= \text{R}(_, \text{Value})
\]
Semiring example: annotated output

\[
\begin{array}{|c|c|}
\hline
\text{Value} & \text{Annotation} \\
\hline
11 & pr \\
12 & pr \\
13 & pq + r \\
14 & pq + r \\
15 & pq + r \\
16 & pq + r \\
17 & r \\
18 & r \\
19 & r \\
\hline
\end{array}
\]

\[
S(V) \quad S(V) \quad S(V) \quad S(V)
\]

\[
S(V) :: \ P(x, V) \quad R(x, _)
\]

\[
S(V) :: \ P(x, V) \quad Q(x, _)
\]

\[
S(V) :: \ R(_, V)
\]
Semiring example: delete propagation

What if we remove tuples from P?

Set $p = 0$!

<table>
<thead>
<tr>
<th>Value</th>
<th>Annotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>pr</td>
</tr>
<tr>
<td>12</td>
<td>pr</td>
</tr>
<tr>
<td>13</td>
<td>$pq + r$</td>
</tr>
<tr>
<td>14</td>
<td>$pq + r$</td>
</tr>
<tr>
<td>15</td>
<td>$pq + r$</td>
</tr>
<tr>
<td>16</td>
<td>$pq + r$</td>
</tr>
<tr>
<td>17</td>
<td>r</td>
</tr>
<tr>
<td>18</td>
<td>r</td>
</tr>
<tr>
<td>19</td>
<td>r</td>
</tr>
</tbody>
</table>
Semiring example: delete propagation

What if we remove tuples from \(P \)?

Set \(p = 0! \)
Semimodule example: aggregation

Query: $\text{SUM}(\text{Value})$

<table>
<thead>
<tr>
<th>Value</th>
<th>Annotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>pr</td>
</tr>
<tr>
<td>12</td>
<td>pr</td>
</tr>
<tr>
<td>13</td>
<td>$pq + r$</td>
</tr>
<tr>
<td>14</td>
<td>$pq + r$</td>
</tr>
<tr>
<td>15</td>
<td>$pq + r$</td>
</tr>
<tr>
<td>16</td>
<td>$pq + r$</td>
</tr>
<tr>
<td>17</td>
<td>r</td>
</tr>
<tr>
<td>18</td>
<td>r</td>
</tr>
<tr>
<td>19</td>
<td>r</td>
</tr>
</tbody>
</table>
Semimodule example: annotation

Query: \(\text{SUM(Value)} \)

Annotated aggregation

\[
pr \times (11 + 12) + (pq + r) \times (13 + 14 + 15 + 16) + r \times (17 + 18 + 19)
\]
Semimodule example: annotation

Query: \(\text{SUM(Value)} \)

Annotated aggregation

\[
pr \cdot (11 + 12) + (pq + r) \cdot (13 + 14 + 15 + 16) + r \cdot (17 + 18 + 19)
\]

First term: annotation

<table>
<thead>
<tr>
<th>Value</th>
<th>Annotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>(pr)</td>
</tr>
<tr>
<td>12</td>
<td>(pr)</td>
</tr>
<tr>
<td>13</td>
<td>(pq + r)</td>
</tr>
<tr>
<td>14</td>
<td>(pq + r)</td>
</tr>
<tr>
<td>15</td>
<td>(pq + r)</td>
</tr>
<tr>
<td>16</td>
<td>(pq + r)</td>
</tr>
<tr>
<td>17</td>
<td>(r)</td>
</tr>
<tr>
<td>18</td>
<td>(r)</td>
</tr>
<tr>
<td>19</td>
<td>(r)</td>
</tr>
</tbody>
</table>
Semimodule example: annotation

Query: SUM(Value)

Annotated aggregation

\[pr \times (11 + 12) + (pq + r) \times (13 + 14 + 15 + 16) + r \times (17 + 18 + 19) \]

First term: annotation
Second term: value

<table>
<thead>
<tr>
<th>Value</th>
<th>Annotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>pr</td>
</tr>
<tr>
<td>12</td>
<td>pr</td>
</tr>
<tr>
<td>13</td>
<td>pq + r</td>
</tr>
<tr>
<td>14</td>
<td>pq + r</td>
</tr>
<tr>
<td>15</td>
<td>pq + r</td>
</tr>
<tr>
<td>16</td>
<td>pq + r</td>
</tr>
<tr>
<td>17</td>
<td>r</td>
</tr>
<tr>
<td>18</td>
<td>r</td>
</tr>
<tr>
<td>19</td>
<td>r</td>
</tr>
</tbody>
</table>
Semimodule example: annotation

S

<table>
<thead>
<tr>
<th>Value</th>
<th>Annotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>pr</td>
</tr>
<tr>
<td>12</td>
<td>pr</td>
</tr>
<tr>
<td>13</td>
<td>pq + r</td>
</tr>
<tr>
<td>14</td>
<td>pq + r</td>
</tr>
<tr>
<td>15</td>
<td>pq + r</td>
</tr>
<tr>
<td>16</td>
<td>pq + r</td>
</tr>
<tr>
<td>17</td>
<td>r</td>
</tr>
<tr>
<td>18</td>
<td>r</td>
</tr>
<tr>
<td>19</td>
<td>r</td>
</tr>
</tbody>
</table>

Query: SUM(Value)

Annotated aggregation

\[pr \times (11 + 12) + (pq + r) \times (13 + 14 + 15 + 16) + r \times (17 + 18 + 19) \]

or \[pr \times 23 + (pq + r) \times 58 + r \times 54 \]
Semimodule example: annotation

<table>
<thead>
<tr>
<th>Value</th>
<th>Annotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>pr</td>
</tr>
<tr>
<td>12</td>
<td>pr</td>
</tr>
<tr>
<td>13</td>
<td>pq + r</td>
</tr>
<tr>
<td>14</td>
<td>pq + r</td>
</tr>
<tr>
<td>15</td>
<td>pq + r</td>
</tr>
<tr>
<td>16</td>
<td>pq + r</td>
</tr>
<tr>
<td>17</td>
<td>r</td>
</tr>
<tr>
<td>18</td>
<td>r</td>
</tr>
<tr>
<td>19</td>
<td>r</td>
</tr>
</tbody>
</table>

Query: SUM(Value)

Annotated aggregation

$$pr \times (11 + 12) + (pq + r) \times (13 + 14 + 15 + 16) + r \times (17 + 18 + 19)$$

or

$$pr \times 23 + (pq + r) \times 58 + r \times 54$$

or

$$pq \times 58 + r \times (p \times 23 + 112)$$
Semimodule example: annotation

Query: SUM(Value)

<table>
<thead>
<tr>
<th>Value</th>
<th>Annotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>pr</td>
</tr>
<tr>
<td>12</td>
<td>pr</td>
</tr>
<tr>
<td>13</td>
<td>pq + r</td>
</tr>
<tr>
<td>14</td>
<td>pq + r</td>
</tr>
<tr>
<td>15</td>
<td>pq + r</td>
</tr>
<tr>
<td>16</td>
<td>pq + r</td>
</tr>
<tr>
<td>17</td>
<td>r</td>
</tr>
<tr>
<td>18</td>
<td>r</td>
</tr>
<tr>
<td>19</td>
<td>r</td>
</tr>
</tbody>
</table>

Annotated aggregation

\[pr \times (11 + 12) + (pq + r) \times (13 + 14 + 15 + 16) \]
\[+ r \times (17 + 18 + 19) \]

or

\[pr \times 23 + (pq + r) \times 58 + r \times 54 \]

or

\[pq \times 58 + r \times (p \times 23 + 112) \]

Delete propagation:

set \(r = 0 \) and obtain \(pq \times 58 \)
Tracking matrix provenance

- We want to get the same benefits!
 - Algebraically manipulate annotated matrices
 - Hypothetical deletion
Tracking matrix data

A

m samples

n features
Tracking matrix data: partitioning

\[A \]

\[m \text{ samples} \]

\[n \text{ features} \]
Tracking matrix data: annotating

A

m samples

n features
Tracking matrix data: annotating

A

m samples

n features
Tracking matrix data: annotating

\[A \]

\[m \text{ samples} \]

\[n \text{ features} \]
Tracking matrix data: annotating

\[A = \begin{bmatrix} xu \end{bmatrix} \]

- \(m \) samples
- \(n \) features
Tracking matrix data: annotating

\[A \]

\[m \text{ samples} \]

\[n \text{ features} \]
Challenges

• Specify and relate different parts of a given matrix
 • Matrix decomposition through selector matrices

• Specify connection between derived and source matrices
 • Embed matrix algebra and provenance into a semialgebra
Decomposition

\[A = \begin{bmatrix} u & v \\ B & C \\ D & E \end{bmatrix} \]
Decomposition: selectors

\[A = S_x B \ T_u + S_x C \ T_v + S_y D \ T_u + S_y E \ T_v \]

with selectors \(S_x, S_y, T_u, T_v \)
Decomposition: selectors

\[A = S_x B T_u + S_x C T_v + S_y D T_u + S_y E T_v \]

with selectors \(S_x S_y T_u T_v \)
Decomposition: selectors

\[A = S_x B T_u + S_x C T_v + S_y D T_u + S_y E T_v \]

with selectors \(S_x S_y T_u T_v \)
Decomposition: selectors

\[A = S_x B T_u + S_x C T_v + S_y D T_u + S_y E T_v \]

with selectors \(S_x \) \(S_y \) \(T_u \) \(T_v \)
Decomposition: selectors

\[A = S_x B T_u + S_x C T_v + S_y D T_u + S_y E T_v \]

with selectors \(S_x \) \(S_y \) \(T_u \) \(T_v \)
Summary: selectors

- Relate a matrix to its sub-matrices.
- Matrices with only 0/1.
- Any row / column has at most a 1.
Summary: selectors

- Relate a matrix to its sub-matrices.
- Matrices with only 0/1.
- Any row / column has at most a 1.

- Extends to non-adjacent case.
- Works for any rectangular partition.
Provenance propagation

• We have
 • Matrices and operators over them – Algebra of matrices \mathcal{M}
 • Annotations – Semiring of provenance polynomials $\mathbb{N}[X]$

• Goals
 • Combine annotations in the same structure as the matrices
 • Operations should propagate data and annotations
Provenance propagation

• We have
 • Matrices and operators over them – Algebra of matrices \mathcal{M}
 • Annotations – Semiring of provenance polynomials $\mathbb{N}[X]$

• Goals
 • Combine annotations in the same structure as the matrices
 • Operations should propagate data and annotations

• We do this in the space of tensor product $\mathbb{N}[X] \otimes \mathcal{M}$
 • Matrices as vectors, provenance as scalars: $p \ast A$
 • Satisfies all the laws of a $\mathbb{N}[X]$-semialgebra.
Laws of a $\mathbb{N}[X]$-semialgebra (K-semialgebra)

$$(K, +_K, \cdot_K, 0_K, 1_K)$$ commutative semiring

$$(K \otimes \mathcal{M}, +, \cdot, 0, 1)$$ forms a ring (just like the matrices)

laws for scalar multiplication in a K-semialgebra

\[
\begin{align*}
 k \ast (A_1 + A_2) &= k \ast A_1 + k \ast A_2 \\
 k \ast 0 &= 0 \\
 (k_1 +_K k_2) \ast A &= k_1 \ast A + k_2 \ast A \\
 0_K \ast A &= 0 \\
 (k_1 \cdot_K k_2) \ast A &= k_1 \ast (k_2 \ast A) \\
 1_K \ast A &= A \\
 (k_1 \ast A_1)(k_2 \ast A_2) &= (k_1 \cdot_K k_2) \ast (A_1 A_2)
\end{align*}
\]
Semialgebra example

\[A = S_x B T_u + S_x C T_v + S_y D T_u + S_y E T_v \]
Semialgebra example: add annotation

\[A = S_x xu \cdot B T_u + S_x xv \cdot C T_v + S_y yu \cdot D T_u + S_y vy \cdot E T_v \]
Semialgebra example: propagate annotation

\[A = S_x x_u B T_u + S_x x_v C T_v + S_y y_u D T_u + S_y v_y E T_v \]
Propagating annotation: transposition

\[A = S_x xu^*B T_u + S_x xv^*C T_v \]
\[+ S_y yu^*D T_u + S_y vy^*E T_v \]

\[A^T = T_{u}^T (xu \ast B^T) S_x^T + T_{u}^T (yu \ast D^T) S_y^T \]
\[+ T_{v}^T (xv \ast C^T) S_x^T + T_{v}^T (yv \ast E^T) S_y^T \]
Propagating annotation: transposition

\[A = S_x x u \ast B \ T_u + S_x x v \ast C \ T_v \]
\[+ S_y y u \ast D \ T_u + S_y y v \ast E \ T_v \]

\[
A^T = T_u^T (x u \ast B^T) S_x^T + T_u^T (y u \ast D^T) S_y^T \\
+ T_v^T (x v \ast C^T) S_x^T + T_v^T (y v \ast E^T) S_y^T
\]

Transposition of a selector is still a selector
Still a sum of \((\text{selector} \times \text{matrix} \times \text{selector})\)
Propagating annotation: multiplication

\[A = S_x \ x_u B \ T_u + S_x \ x_v C \ T_v + S_y \ y_u D \ T_u + S_y \ y_v E \ T_v \]

\[A^T = T_u^T \ (x_u * B^T) \ S_x^T + T_u^T \ (y_u * D^T) \ S_y^T + T_v^T \ (x_v * C^T) \ S_x^T + T_v^T \ (y_v * E^T) \ S_y^T \]
Propagating annotation: multiplication

\[A = S_x xu * B T_u + S_x xv * C T_v + S_y yu * D T_u + S_y vy * E T_v \]

\[A^T = T_u^T (xu * B^T) S_x^T + T_u^T (yu * D^T) S_y^T + T_v^T (xv * C^T) S_x^T + T_v^T (vy * E^T) S_y^T \]

\[A A^T = S_x (x^2 u^2 * B B^T + x^2 v^2 * C C^T) S_x^T + S_x (xy u^2 * B D^T + xy v^2 * C E^T) S_y^T + S_y (xy u^2 * D B^T + xy v^2 * E C^T) S_x^T + S_y (y^2 u^2 * D D^T + y^2 v^2 * E E^T) S_y^T \]
Propagating annotation: multiplication

\[
A = S_x xu^*B_T u + S_x xv^*C_T v + S_y yu^*D_T u + S_y vy^*E_T v
\]

\[
A^T = T_u^T (xu \ast B^T) S_x^T + T_u^T (yu \ast D^T) S_y^T + T_v^T (xv \ast C^T) S_x^T + T_v^T (yv \ast E^T) S_y^T
\]

\[
AA^T = S_x (x^2u^2 \ast BB^T + x^2v^2 \ast CC^T) S_x^T + S_x (xyu^2 \ast BD^T + xyv^2 \ast CE^T) S_y^T + S_y (xyu^2 \ast DB^T + xyv^2 \ast EC^T) S_x^T + S_y (y^2u^2 \ast DD^T + y^2v^2 \ast EE^T) S_y^T
\]

\[
T_u T_u^T = T_v T_v^T = 1
\]

\[
T_u T_v^T = T_v T_u^T = 0
\]
Semialgebra: delete propagation

\[AA^T = S_x(x^2u^2 \ast BB^T + x^2v^2 \ast CC^T)S_x^T \]
\[+ S_x(xyu^2 \ast BD^T + xyv^2 \ast CE^T)S_y^T \]
\[+ S_y(xyu^2 \ast DB^T + xyv^2 \ast EC^T)S_x^T \]
\[+ S_y(y^2u^2 \ast DD^T + y^2v^2 \ast EE^T)S_y^T \]
Semialgebra: delete propagation

\[AA^T = S_x (x^2 u^2 * BB^T + x^2 v^2 * CC^T) S_x^T + S_x (xyu^2 * BD^T + xyv^2 * CE^T) S_y^T + S_y (xyu^2 * DB^T + xyv^2 * EC^T) S_x^T + S_y (y^2 u^2 * DD^T + y^2 v^2 * EE^T) S_y^T \]

Deletion propagation: set \(y = 0 \)

\[AA^T = x^2 * (u^2 * S_x BB^T S_x^T + v^2 * S_x CC^T S_x^T) \]
Preliminary application: solving equations

- $(A + B) x = b$, A and B are square matrices
- A is from source p, B is from source q
Preliminary application: solving equations

- $(A + B)x = b$, A and B are square matrices
- A is from source p, B is from source q

- Jacobi method: iteratively compute

$$u_{k+1} = (M^{-1}N)u_k + M^{-1}b$$
$$u_0 = \bar{0}$$

- $M = p \times \text{diag}(A)$, $N = p \times (\text{diag}(A) - A) - q \times B$
Jacobi method: example

• Iteratively compute
 \[u_{k+1} = (M^{-1}N)u_k + M^{-1}b \quad u_0 = \vec{0} \]

• \(M = p \ast \text{diag}(A) \), \(N = p \ast (\text{diag}(A) - A) - q \ast B \)
Jacobi method: example

- Iteratively compute
 \[u_{k+1} = (M^{-1}N)u_k + M^{-1}b \quad u_0 = \bar{0} \]
- \(M = p \ast \text{diag} (A) \), \(N = p \ast (\text{diag}(A) - A) - q \ast B \)

\[
A = p \ast \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}, \quad B = q \ast \begin{bmatrix} 0 & 0 \\ -2 & 0 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ -1 \end{bmatrix}
\]

\[
u_1 = p \ast \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}, \quad u_2 = p \ast \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} + p^3 \ast \begin{bmatrix} \frac{1}{4} \\ -\frac{1}{4} \end{bmatrix} + p^2 q \ast \begin{bmatrix} 0 \\ -\frac{1}{2} \end{bmatrix}, \ldots
\]
Preliminary applications

• Solving systems of linear equations

• Also in the paper
 • Largest eigenvalue
 • PageRank
Contributions

• First steps towards a semantics-preserving notion of fine-grained provenance for linear algebra operators
 • Key development: decomposition, tensor-product construction, and algebraic rules

• Preliminary applications in solving equations, computing largest eigenvalues, and PageRank.

• Key benefit
 • Automatic propagation of annotations through operators
 • Ability to assign values (e.g., 0 or 1) to the annotations and propagate the effects, e.g., for deletion or trust
Related and future work

- Provenance Semirings / Semimodules
 - Green et al. PODS’07, Amsterdamer et al. PODS’11

- Array databases
 - SciDB, RasDaMan
 - Wu et al. SubZero, Peng and Diao SIGMOD’15

- Distributed machine learning / linear algebra programs
 - SystemML, Spark, MLbase, Cumulon, MADlib, GraphX, LINView, etc

- Future work
 - Support more linear algebra operators
 - Scalable implementation
Thank you!