Meaningful Change Detection in Structured Data*

Sudarshan S. Chawathe Hector Garcia-Molina

Computer Science Department, Stanford University, Stanford, California 94305

{chaw,hector}@cs.stanford.edu

Abstract

Detecting changes by comparing data snapshots is an important requirement for difference queries, active databases, and version and configuration management. In this paper we focus on detecting meaningful changes in hierarchically structured data, such as nested-object data. This problem is much more challenging than the corresponding one for relational or flat file data. In order to describe changes better, we base our work not just on the traditional "atomic" insert, delete, update operations, but also on operations that move an entire sub-tree of nodes, and that copy an entire sub-tree. These operations allow us to describe changes in a semantically more meaningful way. Since this change detection problem is \(\mathcal{NP} \)-hard, in this paper we present a heuristic change detection algorithm that yields close to "minimal" descriptions of the changes, and that has fewer restrictions than previous algorithms. Our algorithm is based on transforming the change detection problem to a problem of computing a minimum-cost edge cover of a bipartite graph. We study the quality of the solution produced by our algorithm, as well as the running time, both analytically and experimentally.

1 Introduction

Detection of changes between data structures is an important function in many applications. For example, in the World-Wide Web an analyst may be interested in knowing how a competitor's site has changed since the last time visited. This may be achieved by saving a snapshot of the previous HTML pages at the site (something that most browsers do for efficiency anyway). In a CAD design environment, an engineer may be interested in understanding the differences between two related but concurrently developed circuit designs. In a distributed file system, an administrator may need to detect differences between two mirror file systems that became partitioned and independently modified. In a warehousing environment, the changes at a site need to be identified so that a materialized view can be incrementally maintained.

In this paper we present an efficient algorithm, MH-DIFF, for meaningful change detection between two hierarchically structured data snapshots, or trees. The key word here is meaningful (the "M" in the name). That is, our goal is to portray the changes between two trees in a succinct and descriptive way. As is commonly done, we portray the changes as an edit script that gives the sequence of operations needed to transform one tree into another. However, in this paper we use a richer set of operations than has ever been used before, and this leads, we believe, to much higher quality edit scripts.

In particular, we use move and copy operations, in addition to the more traditional insert, delete, and update operations. Thus, if a substructure (e.g., a section of text, a shift register) is moved to another location, our algorithm will report it as a single operation. If the substructure is copied (e.g., a second shift register is added which is identical to one already in the circuit), then our algorithm will identify it as such. Traditional change detection algorithms would report such changes as sequences of inserts and deletes (or simply inserts in the case of a copy), which does not convey the true meaning of the change.

Note that detecting moves and copies becomes more important if the moved or copied subtree is large. For instance, if we are comparing file systems, and a large directory with thousands of files is mounted elsewhere, we clearly do not wish to report the change as thousands of file deletes followed by thousands of file creations. Also note that to detect moves and copies, it is essential that our algorithm understand the structure as well as the content of the data. Thus, our algorithm cannot treat the data as "flat" information, e.g., as files with records or relations with tuples. This means that techniques developed for flat change detection [Mye86, LGM96] are not applicable here.

Algorithm MH-DIFF has two additional important features:

- It does not rely on the existence of node (atomic object) identifiers that can match nodes in one tree to nodes in the other. In many applications such identifiers do not exist. For instance, sentences and paragraphs in text documents do not come with unique
identifiers attached. Even when the nodes are stored in a database system (e.g., circuit components), we may be comparing copies with the same content but different identifiers. Thus, for full generality, MH-DIFF does not assume unique identifiers that span the two trees, and instead compares the contents of nodes to determine if they are related. (If the trees have such identifiers, MH-DIFF could easily take advantage of them, but we do not discuss that here.)

- Algorithm MH-DIFF is based on a fairly flexible cost model. Each operation in the repertoire is given a user-defined fixed cost, except for the update operation, whose cost is determined by a user-provided function that compares the values of two nodes. This gives end users great latitude in saving what types of edit scripts are preferable for an application.

There is a good reason why difference algorithms with the features we have described here have not been developed earlier, even though they are clearly desirable. The reason is the inherent complexity of the problem; one can show that the problem is

Algorithm MH-DIFF provides a heuristic solution, which is based on transforming the problem to the "edge cover domain." That is, instead of working with edit scripts, the algorithm works with edge covers that represent how one set of nodes match another set. In this transformation, the costs of the edit operations are translated into costs on the edges of the cover.

In an earlier paper [CRGMW96] we studied a much simpler version of the change detection problem. In that work we did not consider copy operations, we assumed that the number of duplicates of a node was very limited, we assumed ordered trees, and we assumed that nodes had "tags" that reflect the structural constraints on the input trees. (For example, nodes were tagged as say "paragraphs" or "sections," making it easier to match nodes.) All these restrictions made it much simpler to find a minimum-cost edit script, and indeed we developed an efficient algorithm that found a minimum-cost script. Here, on the other hand, here we drop these restrictions, and introduce copy operations. This leads to an algorithm that is very different from the one in [CRGMW96], and that yields a heuristic solution in worst-case \(O(n^3)\) time, where \(n\) is the number of nodes, but most often in roughly \(O(n^2)\) time. In Section 7 we compare in more detail MH-DIFF to our earlier work, as well as to other work on change detection.

2 Model and Problem Definition

We use rooted, labeled trees as our model for structured data. These are trees in which each node \(n\) has a label \(l(n)\) that is chosen from an arbitrary domain \(L\). The problem of snapshot change detection in structured data is thus the problem of finding a way to edit the tree representation of one snapshot to that of the other. We denote a tree \(T\) by its nodes \(N\), the parent function \(p\), and the labeling function \(l\), and write \(T = (N, p, l)\). The children of a node \(n \in N\) are denoted by \(C(n)\).

We begin by defining the tree edit operations that we consider. Since there are many ways to transform one tree to another using these edit operations, we define a cost model for these edit operations, and then define the problem of finding a minimum-cost edit script that transforms one tree to another.

2.1 Edit Operations and Edit Scripts

In the following, we will assume that an edit operation \(e\) is applied to \(T_1 = (N_1, p_1, l_1)\), and produces the tree \(T_2 = (N_2, p_2, l_2)\). We write this as \(T_1 \xrightarrow{e} T_2\). We consider the following six edit operations:

- **Insertion**: Intuitively, an insertion operation creates a new tree node with a given label, and places it at a given position in the tree. The position of the new node \(n\) in the tree is specified by giving its parent node \(p\) and a subset \(C\) of the children of \(p\). The result of this operation is that \(n\) is a child of \(p\), and the nodes in \(C\), that were originally children of \(p\), are now children of the newly inserted node \(n\).

Formally, an insertion operation is denoted by \(\text{INS}(n, p, C)\), where \(n\) is the (unique) identifier of the new node, \(p\) is the label of the new node, \(p \in N_1\) is the node that is to be the parent of \(n\), and \(C \subseteq C(p)\) is the set of nodes that are to be the children of \(n\). When applied to \(T_1 = (N_1, p_1, l_1)\), we get a tree \(T_2 = (N_2, p_2, l_2)\), where \(N_2 = N_1 \cup \{n\}\), \(p_2(n) = p_1\), \(p_2(c) = p_1(c) \forall c \in C\), \(l_2(c) = l_1(c) \forall c \in N_1 - C\), \(l_2(n) = v\), and \(l_2(m) = l_1(m)\) \(\forall m \in N_1\). Due to space constraints, we describe the remaining edit operations only informally below; the formal definitions are in [CGM97].

- **Deletion**: This operation is the inverse of the insertion operation. Intuitively, \(\text{DEL}(n)\) causes \(n\) to disappear from the tree; the children of \(n\) are now the children of the (old) parent of \(n\). The root of the tree cannot be deleted.

- **Update**: The operation \(\text{UPD}(n, v)\) changes the label of the node \(n\) to \(v\).

- **Move**: A move operation \(\text{MOV}(n, p)\) moves the subtree rooted at \(n\) to another position in the tree. The new position is specified by giving the new parent of the node, \(p\). The root cannot be moved.

- **Copy**: A copy operation \(\text{CPY}(m, p)\) copies the subtree rooted at \(n\) to another position. The new position is specified by giving the node \(p\) that is to be the parent of the new copy. The root cannot be copied.

- **Glue**: This operation is the inverse of a copy operation. Given two nodes \(n_1\) and \(n_2\) such that the subtrees rooted at \(n_1\) and \(n_2\) are isomorphic, \(\text{GLU}(n_1, n_2)\) causes the subtree rooted at \(n_1\) to disappear. (It is conceptually "united" with the subtree rooted at \(n_2\).) The root cannot be glued. Although the \(\text{GLU}\) operation may seem unusual, note that \(\text{GLU}\) is a natural choice for an edit operation given the existence of the \(\text{CPY}\) operation. As we will see in Example 2.1, inverting an edit script containing a \(\text{CPY}\) operation results in an edit script with a \(\text{GLU}\) operation. This symmetry in the structure of edit operations is useful in the design of our algorithms.

In addition to the above tree edit operations, one may wish to consider operations such as a *subtree delete* operation that deletes all nodes in a given subtree. Similarly, one could define a *subtree merge* operation that merges two
or more subtrees. We do not consider such more complex
edit operations in this paper, but note that some of these
operations, (e.g., subtree deletes) may be detected by post-
processing the output of our algorithm.

We define an edit script to be a sequence of zero or more
edit operations that can be applied in the order in which
they occur in the sequence. That is, given a tree \(T_0 \), a
sequence of edit operations \(E = e_1, e_2, \ldots, e_k \) is an edit script
if there exist trees \(T_i, 1 \leq i \leq k \) such that \(T_{i-1} \xrightarrow{e_i} T_i, 1 \leq
i \leq k \). We say that the edit script \(E \) transforms \(T_0 \) to \(T_k \),
and write \(T_0 \xrightarrow{E} T_k \).

Example 2.1 Consider the tree \(T_1 \) depicted in Figure 1.
We represent the identifier of each node by the number in-
side the circle representing the node. The label of each
node is depicted to the right of the node. Thus, the root
of the tree \(T_1 \) has an identifier 1, and a label \(a \). Figure 1 shows how \(T_1 \) is transformed by applying the edit script to
\(E_1 \) that you defined in Example 2.1, we applied an edit script to a

\[
E_1 = (\text{INS}(11, 9), \text{MOV}(2, 1), \text{CPY}(7, 1)) \quad T_1.
\]

Similarly, if we start with the tree \(T_2 \) in the figure, the edit script
\(E_2 = (\text{GLU}(12, 7), \text{MOV}(2, 1), \text{DEL}(11)) \) transforms it back to
\(T_1 \). We write \(T_1 \xrightarrow{E_1} T_2 \), and \(T_2 \xrightarrow{E_2} T_1 \).

2.2 Cost Model

Given a pair of trees, there are, in general, several edit
scripts that transform one tree to the other. For example,
there is the trivial edit script that deletes all the nodes of
one tree and then inserts all the nodes of the second tree.
There are many other edit scripts that, informally, do more
work than seems necessary. Formally, we would like to find
an edit script that is "minimal" in the sense that it does no
more work that what is absolutely required. To this end, we
define a cost model for edit operations and edit scripts.

There are two major criteria for choosing a cost model.
Firstly, the cost model should accurately capture the domain
characteristics of the data being considered. For example,
if we are comparing the schematics for two printed-circuit
boards, we may prefer an edit script that has as few inserts
as possible, and instead describes changes with moves and
copies of the old components. However, if we are comparing
text documents, we may prefer to see a paragraph as a new
insertion, rather than a description of how it was assembled
from bits and pieces of sentences from the old document.
Secondly, the cost model should be simple to specify, and
should require little effort from the user. For example, a
cost model that requires the user to specify dozens of pa-
rameters is not desirable by this criterion, even though it
may accurately model the domain.

Another issue is the trade-off between generality of the
cost model and difficulty in computing a minimum-cost edit
script. For example, a very general cost model would have
a user-specified function to determine the cost of each edit
operation, based on the type of the edit operation, as well
as the particular nodes on which it operates. However, such
a model is not amenable to the design of efficient algorithms
for computing the minimum-cost edit script, since it does
not permit us to reason about the relative costs of the possi-
bile edit operations.

With the above criteria in mind, we propose a simple
cost model in which the costs of insertion, deletion, move,
copy, and glue operations are given by constants, \(c_I \), \(c_d \), \(c_m \),
\(c_c \), and \(c_g \), respectively. Furthermore, given the symmetry
between \(\text{INS} \) and \(\text{DEL} \), and \(\text{CPY} \) and \(\text{GLU} \), it is reasonable to
use \(c_I = c_d \), and \(c_c = c_g \). Since, intuitively, a \(\text{MOV} \) opera-
tion causes a smaller change than either \(\text{CPY} \) or \(\text{GLU} \), it is
also reasonable to use \(c_m < c_c \). Note, however, that our al-
gorithms do not depend on these relationships between the
cost parameters. The cost of an update operation depends
on the old and new values of the labeling being updated; that
is, \(c(\text{UPD}(n, v)) = c_u(v_0, v) \), where \(v_0 \) is the old label of \(n \),
and \(c_u \) is a domain-dependent function that returns a non-
negative real number.

Finally, the cost of an edit script \(E \), denoted by \(c(E) \), is
defined as the sum of the costs of the edit operations in \(E \).
That is, \(c(E) = \sum_{e \in E} c(e) \).

Problem Statement: Given two rooted, labeled trees \(T_1 \)
and \(T_2 \), find an edit script \(E \) such that \(E \) transforms \(T_1 \)
to a tree that is isomorphic to \(T_2 \), and such that for every edit
script \(E' \) with this property, \(C(E') \geq C(E) \).

3 Method Overview

In this section, we present an overview of algorithm MH-
DIFF for computing a minimum-cost edit script between two
trees. We present our algorithm informally using a running
example; the details are deferred to later sections.

Consider the two trees depicted in Figure 2. We would
like to find a minimum-cost edit script that transforms tree
\(T_1 \) into tree \(T_2 \). The reader may observe that these trees are
isomorphic to the initial and final trees from Example 2.1 in
Section 2. Note, however, that there is no correspondence
between the node identifiers of \(T_1 \) and \(T_2 \) in Figure 2. This is
because in Example 2.1 we applied a known edit script to a
tree, transforming it to another tree in the process, whereas in this section, we are trying to find an edit script, given two trees with no information on the relationship between their nodes. Therefore, our first step consists of finding a correspondence between the nodes of the two given trees.

For example, consider the node 8 in Figure 2. We want to find the node in \(T_2 \) that corresponds to this node in \(T_1 \). The dashed lines in Figure 2 represent some of the possibilities. Intuitively, we can see that matching the node 8 to the node 51 does not seem like a good idea, since not only do the labels of the two nodes differ, but the two nodes also have very different locations in their respective trees; node 8 is a leaf node, while node 51 is the root node. Similarly, we may intuitively argue that matching the node 8 to node 62 seems promising, since they are both leaf nodes and their labels match. However, note that matching a node based simply on their labels ignores the structure of the trees, and thus is not, in general, the best choice. We make this intuitive notion of a correspondence between nodes more precise below.

3.1 The Induced Graph

Consider the complete bipartite graph \(B \) consisting of the nodes of \(T_1 \) on one side, and the nodes of \(T_2 \) on the other, plus the special nodes \(\$ \) (on \(T_1 \)'s side) and \(\& \) (on \(T_2 \)'s side). We call \(B \) the induced graph of \(T_1 \) and \(T_2 \). The dashed lines in Figure 2 correspond to a few edges of the induced graph. Intuitively, we would like to find a subset \(K \) of the edges of \(B \) that tells us the correspondence between the nodes of \(T_1 \) and \(T_2 \). If an edge connects a node \(m \in T_1 \) to a node \(n \in T_2 \), it means that \(n \) was "derived" from \(m \). (For example, \(n \) may be a copy of \(m \).) We say \(m \) is matched to \(n \). A node matched to the special node \(\$ \) indicates that it was inserted, and a node matched to \(\& \) indicates that it was deleted. Note that this matching between nodes need not be one-to-one; a node may be matched to more than one other nodes. (For example, referring to Figure 2 node 7 may be matched to both node 52 and node 61.) The only restriction is that a node be matched to at least one other node. Thus, finding the correspondence between the nodes of two trees consists essentially of finding an edge cover\(^2\) of their induced graph.

The induced graph has a large number of edge covers (this number being exponential in the number of nodes). However, we may intuitively observe that most of these possible edge covers of \(B \) are undesirable. For example, and edge cover that maps all nodes in \(T_1 \) to \(\& \), and all nodes in \(T_2 \) to \(\$ \) seems like a bad choice, since it corresponds to deleting all the nodes of \(T_1 \) and then inserting all the nodes of \(T_2 \). We will define the correspondence between an edge cover of an induced graph and an edit script for the underlying trees formally in Section 4, where we also describe how to compute an edit script corresponding to an edge cover. For now, we simply note that, given an edge cover of the induced graph, we can compute a corresponding edit script for the underlying trees. Hence, we would like to select an edge cover of the induced graph that corresponds to a minimum-cost edit script.

\(^2\)An edge cover of a graph is a subset \(K \) of the edges of the graph such that any node in the graph is incident on at least one edge in \(K \).

3.2 Pruning the Induced Graph

We noted earlier that many of the potential edge covers of the induced graph are undesirable because they correspond to expensive and undesirable edit scripts. Intuitively, we may therefore expect a substantial number of the edges of the induced graph to be extraneous. Our next step, therefore, consists of removing (pruning) as many of these extraneous edges as possible from the induced graph, by using some pruning rules. The pruning rules that we use are conservative, meaning that they remove only those edges that we can be sure are not needed by a minimum-cost edit script.

We discuss pruning rules in detail in Section 5.3, presenting only a simple example here.

As an example of the action of a simple pruning rule, consider the edge \(e_1 = [5, 53] \) representing the correspondence between nodes 5 and 53 in Figure 2. Suppose that the cost \(c_{0}(a, ac) \) of updating the label \(a \) of node 5 to the label \(ac \) of node 53 is 3 units. Furthermore, let the cost of inserting a node and deleting a node be 1 unit each. Then we can safely prune the edge \([5, 53]\) because, intuitively, given any edge cover \(K_1 \) that includes the edge \(e_1 \), we can generate another edge cover that excludes \(e_1 \) and that corresponds to an edit script that is at least as good as the one corresponding to \(K_1 \). As an illustration of such pruning, consider the edge cover \(K_2 = K_1 - \{ e \} \cup \{ [5, \$], [53, \&] \} \). This edge cover corresponds to an edit script that deletes the node 5, and inserts the node 53. These two operations cost a total of 2 units, which is less than the cost of the update operation suggested by the edge \(e \) in edge cover \(K_1 \). We therefore conclude that the edge \([5, 53]\) in our running example may safely be pruned. In Section 5.3 we present Pruning Rule 3, which is a generalization of this example.

3.3 Finding an Edge Cover

By applying the pruning rules (Section 5.3) to the induced graph of our running example, say we obtain the pruned induced graph depicted in Figure 3 (ignore for the present the difference between dotted and solid lines in the figure). Although the pruned induced graph typically has far fewer edges than the original induced graph does, it may still contain more edges than needed to form an edge cover. In Section 4.2 we will see that we need only consider edge covers that are minimal; that is, edge covers that are not proper supersets of any edge cover. In other words, we would like to remove from the pruned induced graph those edges that are not needed to cover nodes. For example, in the pruned induced graph shown in Figure 3, having all four of the edges \([7, 61], [7, 63], [9, 61], \) and \([9, 63]\) is unnecessary; we may remove either \([7, 63]\) and \([9, 61]\), or \([7, 61]\) and \([9, 63]\). However, it is not possible to decide a priori which of these options is the better one; that is, it is not obvious which choice would lead to an edit script of lower cost. With pruning, on the other hand, there was no doubt that certain edges could be
One way to decide among these options is to enumerate all possible minimal edge covers of the pruned induced graph, find the edit script corresponding to each one (using the method described later in Section 5), and pick the one with the least cost. However, given the exponentially large number of edge covers, this is obviously not an efficient algorithm. To compute an optimal edge cover efficiently, we need to be able to determine how much each edge in the edge cover contributes to the total cost of an edit script corresponding to an edge cover containing it. That is, we need to distribute the cost of the edit script corresponding to an edge cover over the individual edges of the edge cover. Once we have a cost defined for each edge in the pruned induced graph, we can find a minimum-cost edge cover using standard techniques based on reducing the edge cover problem to a weighted matching problem [PS82, Law76]. For example, if the edges [7,61], [7,63], [9,61], and [9,63], have costs 0, 1.3, 0.2, and 2.4, respectively, then we generate an edge cover that includes [7,61] and [9,61], and excludes [7,63] and [9,61].

Note, however, that such a reduction of the edit script problem to an edge cover (and thus, weighted matching) problem cannot be exact, given the hardness of the edit script problem. Indeed, our method of assigning costs to edges of the induced graph (Section 5.1) is only approximate, and thus the minimum-cost edge cover is not guaranteed to produce the best solution for the edit script problem.

3.4 Generating the Edit Script

Returning to the pruned induced graph of our running example, let us assume that we have gone through the process of determining the cost of each edge, and have computed a minimum-cost edge cover according to these costs, obtaining the edge cover represented by the bold edges in Figure 3. Our next step consists of using this edge cover to compute an edit script that transforms the tree T_1 to the tree T_2. Our algorithm CtoS (Cover-to-Script) for this purpose is described in Section 5. Here, we briefly illustrate some of the ideas used by the algorithm by considering its action on an edge in the edge cover for our running example.

Consider the edge $e_1 = [7,52]$ of the edge cover depicted by the bold lines in Figure 3. In Figure 4, we depict this edge in relation to the original trees. (We also depict two other edges from the edge cover. The edge cover edges are shown as dashed lines in Figure 4. We observe that there is one other edge in the edge cover that is incident on node 7, viz. [7,61], suggesting that the node 7 was copied either directly, or indirectly (due to one of its ancestors being copied). Furthermore, we note that the parent (node 4) of node 7 is matched to the parent (node 55) of node 61 (i.e., the edge [4,55] exists in the edge cover), while the parent of node 52 is not matched to the parent of node 7. This matching of the parents suggests that node 61 is the original instance of node 7, while node 52 is the copy. We therefore generate a copy operation that copies the subtree rooted at node 7 to the location of node 52. A convenient way of depicting this copy operation is by annotating the corresponding edge ([7,52] in our example) with a CPY mark: this scheme allows us to talk about edit operations without having to refer to explicit node identifiers. Edges that do not correspond to any edit operation (e.g., [6,57] in our example) are annotated with a NIL mark. In the sequel, we will use such edge annotations interchangeably with the actual edit operations that they represent.

Consider next the edges [8,53] and [8,62]. Although both these edge cover edges are incident on node 8, neither of them corresponds to a CPY operation, since the copy 52 of node 8 is generated "for free" when node 7 is copied. Therefore, both these edges are annotated NIL. Proceeding thusly, we annotate all the edges in the edge cover of our running example, to obtain the annotated edge cover depicted in Figure 5, which shows only the edges with non-nil annotations, for clarity. These annotations correspond to the edit script $(\text{INS}(g,1,\{9\}), \text{MOV}(2,6), \text{CPY}(7,1))$. We see that this edit script is identical to the one in Example 2.1, which happens to be a minimum cost edit script for our example. Of course, the above edit operations may also be listed in the order $(\text{MOV}(2,6), \text{CPY}(7,1), \text{INS}(g,1,\{9\}))$. Both edit scripts have the same final effect, and have the same cost. In general, all edit scripts corresponding to a set of annotated edges have the same overall effect and the same cost.
method for generating an edit script from an edge cover of the induced graph. In Section 5, we describe how the cost of an edit script is distributed over the edges of the corresponding edge cover of the induced graph. In that section, we also describe how this cost function is approximated by deriving upper and lower bounds on the cost of an edge of the induced graph, and how these bounds are used to prune the induced graph. Since finding a minimum-cost edge cover for a bipartite graph with fixed edge costs is a problem that has been previously studied in the literature [PS82, Law76], we do not present the details in this paper.

4 Edge Covers and Edit Scripts

In this section, we describe algorithm CtoS, which generates an edit script between two trees, given an edge cover of their induced graph. Before we can describe this algorithm, we need to understand the relationship between an edit script and the induced graph. Therefore, we first define the edge cover induced by an edit script. That is, we describe how, given an edit script between two trees, we generate an edge cover of the induced graph. (Note that this process is the reverse of the process the algorithm CtoS performs. However, a definition of this reverse process is needed for the description of the algorithm.)

4.1 Edge Cover Induced by an Edit Script

In Section 3, we introduced the graph induced by two trees T_1 and T_2 as the complete bipartite graph $B = (U, V, U \times V)$, with $U = N_1 \cup \{\oplus\}$ and $V = N_2 \cup \{\ominus\}$ (where N_1 and N_2 are the nodes of T_1 and T_2, respectively). Let \mathcal{E} be an edit script that transforms T_1 to T_2; that is, $T_1 \xrightarrow{\mathcal{E}} T_2$. We now define the edge cover $K(\mathcal{E})$ induced by \mathcal{E}. Intuitively, we obtain $K(\mathcal{E})$ as follows. Create a copy T_3 of T_1, and introduce an edge between each node in T_1 and its copy in T_3. Apply the edit script to T_3, moving, copying, etc. the end-points of the edges with the nodes they are attached to as nodes are moved, copied, etc. Thus, when an a node $n \in T_1$ is copied, producing node n', any edge $[m, n]$ is split to produce an new edge $[m, n']$. The other edit operations are handled analogously. Furthermore, an edge between the special nodes \oplus and \ominus is added initially, and removed when it is no longer needed to cover either \oplus or \ominus. Due to space limitations, we illustrate the definition of the edge cover induced by an edit script informally using an example; the formal definition is in [CGM97].

Example 4.1 Consider the edit script from Example 2.1, and the initial tree T_1 from Figure 1. As described above, our first step consists of creating a copy T_3 of T_1, and adding an edge between each node of T_1 and its counterpart in T_3. We also add the special nodes \oplus and \ominus, along with an edge connecting them. The result of this step is depicted in Figure 6. For clarity in presentation, the edges between the nodes of T_1 and their counterparts in T_3 are not shown in Figure 6; instead, we encode these edges using the node identifiers of T_1 and T_3. That is, as indicated in the figure, imagine an edge $[n, n + 30], \forall n = 1 \ldots 10$.

![Figure 6: Example 4.1: the initial edge cover](image)

Our next step consists of applying the edit script from Example 2.1 to the tree T_3. To enable this application of the edit script for T_1 to T_2, we change the node identifiers in the edit script from the identifiers of the nodes of T_1 to those of T_3, obtaining $\mathcal{E}_1 = (\text{INS}(41, g, 31, \{39\}), \text{MOV}(32, 36), \text{CPY}(37, 31))$. As a result of the INS operation, a node with identifier 41 and label g is inserted as a child of node 31, and node 37 is made its child. In addition, we add an edge $[\emptyset, 41]$ to the induced edge cover. Next, consider the action of the MOV operation, which moves node 32 to become a child of node 37. This operation does not add any new edges to the edge cover. (The existing edges $[2, 32]$ and $[3, 33]$ continue to exist.) Finally, the CPY operation creates a copy of the subtree rooted at node 30, and inserts this copy as a child of node 31. In addition, the edges $[7, 42]$ and $[8, 43]$ are added to the edge cover. The result is depicted in Figure 7, which also omits edges $[n, n + 30], \forall n = 1 \ldots 10$ for clarity. Note that the transformed tree T_3 is now isomorphic to the tree T_2 in Example 2.1, so that essentially, we now have an edge cover of the induced graph of T_1 and T_2.

4.2 Using Edge Covers to Generate Edit Scripts

The goal of using an edge cover is that it should capture the essential aspects of an edit script; that is, no important information should be lost in going from an edit script to the edge cover induced by it. However, there are certain edit scripts for which this property does not hold. For example, consider an edit script \mathcal{E}_2 that inserts a node p as the parent of ten siblings (children of the same parent) n_1, \ldots, n_{10}, then moves p to another location in the tree, and finally deletes p. The node p is present from both the initial tree to the final tree. Therefore, an edge cover of the initial and final tree contains no record of the temporary insertion of node p. Thus, we have lost some information in going from \mathcal{E}_2 to the edge cover.

![Figure 7: Example 4.1: the final edge cover](image)
cost of one move, plus the cost of one delete, for a total cost of 3. If we do not use the "bulk move trick" that \(E_2 \) uses, we need to move each of \(n_1, \ldots, n_{10} \) individually, for a cost of 10. Thus, \(E_2 \) could be the minimum cost edit script, and if we rule it out, then \(MH-DIFF \) would miss it.

On the other hand, scripts like \(E_2 \) do not represent transformations that are meaningful or intuitive to an end user. In other words, if a user saw \(E_2 \), he would not understand why node \(p \) was inserted, since it really has no function in his application. True, the costs provided by the user are intended to describe the desirability of edit operations, but if we abuse these numbers we can end up with "tricky" scripts like \(E_2 \) that are more confusing than helpful.

Another example of a potentially unintuitive edit script is the following: Consider an edit script \(E_3 \) that moves a node \(n_1 \) to become a child of another node \(n_2 \), then makes several copies of the subtree rooted at \(n_2 \) (thus making copies of \(n_1 \) as well), and finally deletes the original copy of \(n_1 \). This edit script moves \(n_1 \) to a place where it does not need to be (under \(n_2 \)) only to generate free copies of \(n_1 \).

The cause of the unintuitive nature of the edit scripts described above is an interaction between different edit operations, which gives rise to a "compound" effect. For example, in the edit script \(E_2 \) above, the effect of the move operation is compounded because it acts on a node that was previously inserted. Similarly, in edit script \(E_3 \) above, the effects of the copy operations are compounded because they act on a subtree into which a node was previously moved. Our approach is to disallow such unintuitive compound effects.

A simple way of characterizing edit scripts that disallow undesirable compound effects is to require edit operations to occur in phases, and to order the phases appropriately. In the following discussion, we use the names \(INS \), \(DEL \), etc. to denote phases consisting of, respectively, \(INS \) operations, \(DEL \) operations, etc. First, we require that the \(INS \) phase occur after the \(DEL \) phase, so that an edit script cannot first insert a node and then delete it. Next, we require the other edit phases (\(UPD \), \(MOV \), \(CPY \), and \(GLU \)) to occur after the \(DEL \) phase (so that nodes operated on by these phases cannot be later deleted), and before the \(INS \) phase (so that inserted nodes cannot be operated on by these phases). Furthermore, we require that the \(UPD \) (respectively, \(MOV \)) phase occur after the \(CPY \) phase and before the \(GLU \) phase, so that an edit script cannot copy the effect of an \(UPD \) (respectively, \(MOV \)) operation by copying the updated node (and similarly for glues). These ordering constraints yield the following order of edit phases: \(DEL \), \(CPY \), \(UPD \), \(MOV \), \(GLU \), \(INS \). (We chose the relative order of the \(UPD \) and \(MOV \) phases arbitrarily.)

One additional restriction, not covered by the above ordering constraint, is the following: A node in a subtree operated on by a \(CPY \) operation cannot be operated on by a \(GLU \) operation. We call edit scripts that satisfy these restrictions structured edit scripts. In the sequel, we consider only structured edit scripts. Structured edit scripts have the following important property that allows us to consider only minimal edge covers in the sequel. (A minimal edge cover is an edge cover that is not a proper superset of any edge cover.)

Lemma 4.1. The edge cover induced by a structured edit script is minimal.

The reader may observe that, in addition to disallowing unintuitive compound effects, the above restrictions also disallow some intuitive sequences of operations. For example, a structured edit script cannot delete a node produced as a result of a \(CPY \) operation. Therefore, a structured edit script cannot copy a subtree containing 100 nodes if 99 of them are needed, because it would be unable to delete the unwanted copy of the 100th node. An analogous situation exists for \(INS \) and \(GLU \) operations. Our algorithms [CGM97] actually do permit such deletions (called ghost deletions) after copies, and insertions (called ghost insertions) before glues. For similar reasons, we also permit certain move operations to occur before the \(CPY \) phase. Furthermore, we allow a move or copy operation to a destination that is currently unavailable (e.g., because it is produced by a copy operation) to be "paused" until the destination becomes available.

We now describe how, given a minimal edge cover \(K \) of the graph induced by (trees \(T_1 \) and \(T_2 \), we compute a minimum-cost edit script corresponding to this edge cover. As explained in Section 3, we also represent the edit operations of such an edit script as annotations on the affected edges. Due to space constraints, we do not present the full details of our algorithm \(CtoS \) (cover-to-script) in this paper, and present instead a brief explanation of the basic ideas behind the algorithm. The detailed algorithm is presented in [CGM97].

The algorithm proceeds in phases that roughly reflect the phases of a structured edit script described above. We refer to edges belonging to the given edge cover \(K \) as \(K \)-edges. We say two nodes are matched to each other if there is a \(K \)-edge connecting them. The first phase of the algorithms is the delete phase, in which we generate an edit operation \(DEL(m) \) for each node \(m \) that is matched to the special node \(\emptyset \). We claim that any edit script that matches \(m \) to \(\emptyset \) must contain this \(DEL \) operation, due to the following observations: Firstly, any node matched to \(\emptyset \) is absent from the final tree. Furthermore, there are only two ways in which a node can be made to disappear: either it is deleted explicitly, or it is glued to some other node. (We use here the fact that structured edit scripts cannot first glue a node to another and then delete the second node.) However, the second method will not result in \(m \) matching \(\emptyset \) in the edge cover induced by the script; instead, \(m \) will match the node to which it was glued. Therefore we can safely produce a \(DEL(m) \) operation for all such nodes \(m \).

The next phase of the algorithm handles copy operations. In particular, it looks for sets two or more of \(K \)-edges incident on a common node \(m \in T_1 \). Note that from Lemma 4.1, and the observation that minimal edge covers cannot contain any path of length three, it follows that if \(e = [m,n] \) is such an edge, there can be no other \(K \)-edge incident on \(n \). We call such a set of edges a flower with base \(m \). This set of edges represents copies of the node \(m \). However, as we have seen in Section 3, some of the copies of \(m \) could be produced as a result of some ancestor of \(m \) being copied. We call such copies free copies of \(m \). Our algorithm considers flowers in preorder of the base nodes. As copy operations are generated for some node \(m \), we also keep track of the number of free copies of nodes in the copied subtree. Knowing the number of available free copies allows us to determine exactly which flowers correspond to explicit copy operations and which correspond to implicit (free) copies. Furthermore, any unused free copies are nodes that need to be deleted after the copy operation is performed. These are the ghost deletions we introduced above. Finally, note that a free copy may need to be moved to its final location; this situation is easily detected by checking whether the parents of the affected nodes match.
The update phase of the algorithm is straightforward, and produces an update operation for each edge $[m, n]$ such that the labels of m and n differ. Since we are considering only structured edit scripts, there is no way to avoid such an update; in particular, "tricks" like updating a node and then copying it are disallowed. The glue and delete phases of the algorithm are analogous to the copy and insert phases, respectively. The details are in [CGM97].

5 Finding the Edge Cover

In this section we describe how MH-DIFF finds a minimal edge cover of the induced graph. The resulting cover will serve as input to algorithm CtoS (Section 4). Our goal is to find not just any minimal edge cover, but one that corresponds to a minimum-cost edit script. Let us call such an minimal edge cover the target cover.

Consider an edge e in our pruned induced graph. To get the target cover, MH-DIFF must decide whether e should be included in the cover. To reach this decision, it would be nice if MH-DIFF knew the "cost" of e. That is, if e remains in the target cover, then it would be annotated (by algorithm CtoS) with some operation, and we could say that the cost of this operation is the cost of e. Unfortunately, we have a "chicken and the egg problem" here: CtoS cannot run until we have the target cover, and we cannot get the target cover until we know the costs it will imply. To break the impasse, our approach uses the following idea:

Instead of trying to compute the actual cost of e, we compute an upper and lower bound to this cost. These bounds can be computed without the knowledge of which other edges are included in the target cover, and serve two purposes: Firstly, they allow us to design pruning rules that are used to conservatively eliminate unnecessary edges from the induced graph. Secondly, after pruning, the bounds can guide our search for the target cover.

As an enhancement, we actually use a variation on the edge cost suggested above. The following example shows that simply "charging" each annotation to the edge it is on is not entirely "fair". We are given a tree T_1, containing two nodes, n_1 and n_2 with the same label l. Furthermore n_1 has children n_{11} and n_{12} with labels a and b, respectively, and n_2 has children n_{21} and n_{22} with labels c and d, respectively. Suppose T_2 is a logical copy of T_1. (That is, T_1 and T_2 are isomorphic.) Consider an edge cover that matches each node in T_1 to its copy in T_2 except that it "cross matches" n_1 and n_2 across the trees, as shown in Figure 8. Given this edge cover, algorithm CtoS will produce a move operation for each of the edges $n_{11}, n_{12}, n_{21}, n_{22}$, and n_{22}, and n_{22}, but instead, by the mismatching of n_1 and n_2. Therefore it would be intuitively more fair to charge these move operations to the edges responsible for the mismatch, viz. $[n_1, n_2]$ and $[n_2, n_1]$. To achieve this, we use the following scheme: If e is annotated with INS, DEL, or UPD in the target cover, we do charge e for this operation. However, if e is annotated with MOV, CPY, or GLU, then the parent of e, and not e is charged. We call the edge costs computed in such a fashion fair costs, and define them below:

Figure 8: Distributing edge costs fairly

5.1 An Edge-wise Cost Function

Let K be an annotated minimal edge cover. For an edge $e \in K$, if the annotation on e is MOV, CPY, or GLU, let $c_s(e)$ denote the cost of that operation. If e is annotated with INS, DEL, or UPD, then let $c_s(e)$ denote the cost of the operation. Furthermore, let $E(m)$ be the set of edges in K that are incident on m, that is, $E(m) = \{[m, n] \in K \mid m, n \in m\}$. Let $C(m)$ be the set of the children of m. We then define the fair cost of each edge $[m, n] \in K$ as follows:

$$c_K([m, n]) = c_s(m, n) + \frac{1}{2|E(m)|} \sum_{m' \in C(m)} \sum_{n' \in K} c_s([m', n']) + \frac{1}{2|E(n)|} \sum_{n' \in C(n)} \sum_{m' \in K} c_s([m', n'])$$

Note that this cost depends on K, and thus is not a function of e alone. The following lemma, proved in [CGM97], states that the above scheme of distributing the cost of an edge cover over its component edges is a sound one; that is, adding up the cost edge-wise yields the overall cost of the edge cover (i.e., the cost of the corresponding edit script).

Lemma 5.1 If K is an annotated, minimal edge cover of the graph induced by two trees, then $c(K) = \sum_{e \in E} c_K(e)$.

5.2 Bounds on Edge Costs

Although Lemma 5.1 suggests a method of distributing the cost of an annotated edge cover (and thus an edit script) over the component edges, the cost of each edge depends on the other edges present in the edge cover, and is thus not directly useful for computing a minimum-cost edge cover. However, we use that distribution scheme to derive upper and lower bounds on the fair cost $c_K(e)$ of an edge e over all minimal edge covers K.

Intuitively, given that the cost of any UPD annotation on an edge is charged to that edge (by Equation 1), a simple choice for the lower bound on the cost of an edge $[m, n]$ is simply the cost $c_s(m, n)$ of updating the label m to that of n. However, we can do a little better. In some cases, selecting an edge $[m, n]$ (as part of the edge cover being constructed) may force some of the children m' of m to be moved to n. In particular, this happens for those children of m' for which there is no edge that could possibly match m' to a child of n. We call such moves forced moves. In cases where we can determine a forced move exists, the cost of a MOVE is added to the lower bound cost. However, according to Equation 1 not all the cost of a forced move goes to edge $[m, n]$. In the worst
rules we use to reduce the size of the induced graph of the two trees being compared. Let $e_1 = [m, n]$ be any edge in the induced graph. Let e_2 be any edge incident on m, and let e_3 be any edge incident on n. Intuitively, our first pruning rules removes an edge with a lower bound cost that is so high that it is preferable to match each of its nodes using some other edge that has a suitably lower upper bound cost.

Pruning Rule 1 Let $C_i = \max\{c_{\text{ub}}(e_1), c_{\text{ub}}(e_2), c_{\text{ub}}(e_3)\}$. If $c_{\text{ub}}(e_1) \geq c_{\text{ub}}(e_2) + c_{\text{ub}}(e_3) + 2C_i$ then prune e_1.

Example 5.1 To illustrate this rule, consider a tree T_1 containing, among others, two childless nodes 1 (label f) and 2 (label g). Similarly, T_2 contains childless nodes 3 (label g) and 4 (label f), among others. Say the costs $c_{\text{ub}}(f, g)$ and $c_{\text{ub}}(g, f)$ are one unit each, while the update costs are $c_{\text{ub}}(f, g) = 3$, and $c_{\text{ub}}(f, f) = c_{\text{ub}}(g, g) = 0$. Let us now consider if edge $e_1 = [1, 2]$ can be pruned because edges $e_2 = [1, 4]$ and $e_3 = [2, 3]$ exist. Since the nodes have no children, it is easy to compute $c_{\text{ub}}(e_1) = c_{\text{ub}}(f, g) = 3$, $c_{\text{ub}}(e_2) = c_{\text{ub}}(f, f) = 0$, and $c_{\text{ub}}(e_3) = c_{\text{ub}}(g, g) = 0$. Since $C_1 = 1$, we see that Pruning Rule 1 holds and e_1 can be safely removed.

Our second pruning rule (already illustrated in Section 3) states that if it is less expensive to delete a node and insert another, we do not need to consider matching the two nodes to each other. More precisely, we state the following:

Pruning Rule 2 If $c_{\text{ub}}(e_1) \geq c_{\text{ub}}(e_2) + c_{\text{ub}}(e_3)$ then prune e_1.

Note that the above pruning rules are simpler to apply if we let e_2 and e_3 be the minimum-cost edge incident on m and n, respectively. The following lemma, proved in [CGM97], tells us that the pruning rules are conservative:

Lemma 5.3 Let \mathcal{E} be the set of edges pruned by repeated application of Pruning Rules 1 and 2. Let K_1 be any minimal edge cover of the graph B. There exists a minimal edge cover K_2 such that (1) $K_2 \cap \mathcal{E} = \emptyset$, and (2) $O(K_2) \leq O(K_1)$.

The pruning phase of our algorithm consists of repeatedly applying Pruning Rules 1 and 2. Note that the absence of edges raises the upper bound function, and lowers the upper bound function, thus possibly causing more edges to get pruned. Our algorithm updates the cost bounds for the edges affected by the pruning of an edge whenever the edge is pruned. By maintaining the appropriate data structures, such a cost-update step after an edge is pruned can be performed in $O(\log n)$ time, where n is the number of nodes in the induced graph.

5.4 Computing a Min-Cost Edge Cover

After application of the pruning rules described above, we obtain a pruned induced graph, containing a (typically small)
subset of the edges in the original induced graph. In favorable cases, the remaining edges contain only one minimal edge cover. However, typically, there may be several minimal edge covers possible for the pruned induced graph. We now describe how we select one of these minimal edge covers.

We first approximate the fair cost of every edge e that remains after pruning by its lower bound $e_{\text{LB}}(e)$. (We could have also use the upper bound, or an average of both bounds, since this is only an estimate.) Then, given these constant estimated costs, we compute a minimum-cost edge cover by reducing the edge cover problem to a bipartite weighted matching problem, as suggested in [PS82]. Since the weighted matching problem can be solved using standard techniques, we do not present the details in this paper, noting only that given a bipartite graph with n nodes and e edges, the weighted matching problem can be solved in time $O(ne)$. For our application, e is the number of edges that remain in the induced graph after pruning.

6 Implementation and Performance

In this section, we describe our implementation of MH-DIFF, and discuss its analytical and empirical performance. Figure 9 depicts the overall architecture of our implementation, with rectangles representing the modules (numbered, for reference) of the program, and other shapes representing data. Given two trees T_1 and T_2 as input, Module 1 constructs the induced graph (Section 3.1). This induced graph is next pruned (Module 2) using the pruning rules of Section 5.2 to give the pruned induced graph. In Module 2, the update cost for each edge in the induced graph is computed using the domain-dependent comparison function for node labels (Section 2.2). The next three modules together compute a minimum-cost edge cover of the pruned induced graph using the reduction of the edge cover problem to a weighted matching problem [PS82]. That is, the pruned induced graph is first translated (by Module 3) into an instance of a weighted matching problem. This weighted matching problem is solved using a package (Module 4) [Rot] based on standard techniques [PS82]. The output of the weighted matching solver is a minimum-cost matching, which is translated by Module 5 into K_0, a minimum-cost edge cover of the pruned induced graph. Next, Module 6 uses the minimum-cost edge cover computed, to produce the desired edit script, using the method described in Section 4.2.

Let us now analyze the running time of our program. Let n be the total number of nodes in both input trees T_1 and T_2. Constructing the induced graph (Module 1, in Figure 9) involves building a complete bipartite graph with $O(n)$ nodes on each side. We also evaluate the domain-dependent label-comparison function for each pair of nodes, and store this cost on the corresponding edge. Thus, building the induced graph requires time $O(kn^2)$, where k is the cost of the domain-dependent comparison function. Next, consider the pruning phase (Module 2). By maintaining a priority queue (based on edge costs) of edges incident on each node of the induced graph, the test to determine whether an edge may be pruned can be performed in constant time. If the edge is pruned, removing it from the induced graph requires constant time, while removing it from the priority queue at each of its nodes requires $O(\log n)$ time. When an edge $[m, n]$ is pruned, we also record the changes to the costs $c_{mc}(m, p(n))$, $c_{mc}(n, p(m))$, $c_{mf}(m, p(n))$, and $c_{mf}(n, p(m))$, which can be done in constant time. Thus, pruning an edge requires $O(\log n)$ time. Since at most $O(n^2)$ are pruned, the total worst case cost of the pruning phase is $O(n^2 \log n)$. Let e be the number of edges that remain in the induced graph after pruning. The minimum-cost edge cover is computed in time $O(ne)$ by Modules 3, 4, and 5. The computation of the edit script from the minimum-cost edge cover can be done in $O(n)$ time by Module 6. (Note that the number of edges
in a minimal edge cover is always $O(n)$.)

The number of edges that remain in the induced graph after pruning (denoted by e above) is an important metric for three main reasons. First, as seen above, a lower number of edges results in faster execution of the minimum-cost edge cover algorithm. Second, a smaller number of edges decreases the possibility of finding a suboptimal edge cover, since there are fewer choices that need to be made by the algorithm. Thirdly, having a smaller number of edges in the induced graph reduces exponentially the size of the space of candidate minimal edge covers that the search module needs to explore.

We have also studied the quality of the initial solution produced by MH-DIFF. In particular, we are interested in finding out in what fraction of cases our method produces suboptimal initial solutions, and by how much the cost of the suboptimal solution exceeds that of the optimal. Given the exponential (in e) size of the search space of minimal edge covers of the induced graph, it is not feasible to try exhaustive searches on large datasets. However, we have exhaustively searched the space of minimal edge covers, and corresponding edit scripts, for smaller datasets. We ran 50 experiments, starting with an input tree T_i derived as in the experiments for e above, and using 6 randomly generated edit operations to generate an output tree. We searched the space of minimal edge covers of the pruned induced graph exhaustively for these cases, and found that the MH-DIFF initial solution differed from the minimum-cost one in only 2 cases out of 50. That is, in 96% of the cases MH-DIFF found the minimum cost edit script, and of course it did this in much less time than the exhaustive method. In the two cases where MH-DIFF missed, the resulting script cost about 15% more that the minimum cost possible.

![Figure 10: Effectiveness of pruning](image-url)

Given the importance of the metric e, we have conducted a number of experiments to study the relationship between e and n. We start with four "input" trees representing actual results of varying sizes from our Tsimmis system. For each input tree, we generate a batch of "output" trees by applying a number of random edits. The number of random edits is either 10% or 20% of the number of nodes in the input tree.

Then for each output tree, we run MH-DIFF on it and its original input tree. The results are summarized by the graph in Figure 10. The horizontal axis indicates the total number of nodes in the two trees being compared (and hence, in the induced graph). The vertical axis indicates the number of edges that remain after pruning the induced graph. Note that the ideal case (best possible pruning) corresponds to $e = \lfloor n/2 \rfloor$, since we need at least $\lfloor n/2 \rfloor$ edges to cover n nodes, whereas the worst case is $e = n^2$ (no pruning at all). For comparison, we have also plotted $e = n/2$ and $e = n^2$ on the graph in Figure 10. We observe that the relationship between e and n is close to linear, and that the observed values of e are much closer to $n/2$ than to n^2.

Note that in Figure 10 we have plotted the results for two different values of d, the percentage of random edit operations applied to the input tree. We see that, for a given value of n, a higher value of d results in a higher value of e, in general. We note that some points with a higher d value seem to have a lower value of e than the general trend. This is because applying d random edits is not the same as having the input and output trees separated by d edits, due to the possibility of redundant edit operations. Thus, some data points, even though they were obtained by applying d random edits, actually correspond to fewer changes in the tree.

7 Related Work

The general problem of detecting changes from snapshots of data has been studied before from different angles. For example, [WF74] defines a string-to-string correction problem as the problem of finding the best sequence of insert, delete, and update operations that transform one string to another. The problem is developed further in [Wag75], which adds the "swap" operation to the list of edit operations. These papers also introduce the structure of a "trace" or a matching between the characters of the strings being compared as a useful tool for computing an edit script. A simpler change detection problem for strings, using only insertions and deletions as edit operations has been studied extensively in [Mye86, WMG90]. The idea of a longest common subsequence replaces the idea of a trace in this simpler problem. A variant of the algorithm presented in [Mye86] for computing the longest common subsequence is implemented in the gnudiff [HHS+] program. All these algorithms work with strings, that is, with flat-file, or relational data, and are not suitable for computing changes in structured data.

In [ZS90], the authors define a change detection problem for ordered trees, using insertion, deletion, and label-update as the edit operations, observing its added difficulty compared to the equivalent problem for strings; they also present an efficient dynamic-programming based algorithm to solve that problem. A proof of the NP-hardness of a similar change detection problem (using insertion, deletion, and label-update) for unordered trees is presented in [ZWS95], which also presents an algorithm for a restricted version of the change detection problem. In [ZWWS94], the authors present an enumerative (exponential time) algorithm for the change detection problem for unordered trees, as well as heuristic algorithms based on search techniques such as simulated annealing. An important assumption made by the algorithms in [ZS90, ZWS95, ZWWS94] is that the cost of updating any label to any other label is always less than the cost of deleting a node with the old label and inserting a node with the new label. While this restriction is reasonable for some domains, it does not always lead to

5In these preliminary experiments, we used a slightly different version of the algorithm described in Section 4.1; we believe that the differences do not impact the results significantly.
intuitive results. For example, consider two trees with the same structure, but completely different labels on the nodes (e.g., two trees representing different query results, but with a similar structure). Assuming the cost of label update is always lower than the cost of the corresponding insertion and deletion will result in an edit script that simply updates all the labels in the trees. While this is technically sound, it is not the semantically desirable result for this example.

In [CRGMW96] we defined a variant of the change detection problem for ordered trees, using subtree moves as an edit operation in addition to insertions, deletions, and updates, and presented an efficient algorithm for solving it. That algorithm uses domain characteristics to find a solution efficiently. A major drawback of the algorithm in [CRGMW96] is that it assumes that the number of duplicates (or near duplicates) in the labels found in the input trees is very small. Another drawback of the algorithm in [CRGMW96] is that it assumes each node of the input trees has a special tag that describes its semantics. (For example, an ordered tree representing a document may have tags “paragraph,” “section,” etc.) Furthermore, that algorithm assumes the existence of a total order < on these tags such that a node with tag ti cannot be the child of a node with tag t2 unless ti ≤ t2. While these assumptions are reasonable in a text comparison scenario, there are many domains in which they do not hold.

The work presented in this paper differs from previous work in several important ways. Firstly, we detect the change detection problem for unordered trees, which is inherently harder than the similar problem for ordered trees. Secondly, we consider a rich set of edit operations, including copy and move operations, that make the edit script computed more meaningful and intuitively usable. Furthermore, we do not assume that the nodes of the input trees are “tagged” in a manner required by the algorithm in [CRGMW96], nor do we assume the absence of duplicates (or near duplicates) in the labels of the nodes in the input trees. Finally, we do not assume that the cost of updating any label to any other label is always less than the cost of deletion and insertion.

8 Conclusion

We have described the need for computing semantically meaningful changes in structured data. We have introduced operations such as subtree copy and subtree move that allow us to describe changes to structured data more meaningfully than is possible by using only the traditional insert, delete, and update operations. We have formally defined the problem of computing a minimum-cost edit script, consisting of these operations, between two trees. To solve this problem, we have presented an algorithm that is based on representing an edit script between two trees as an edge cover of a bipartite graph induced by the trees. We have also studied the performance of our algorithm both analytically and empirically. The experimental results, although preliminary, are very encouraging.

References

