
Eddies: Continuously 
Adaptive Query Processing

Jae Kyu Chun
Feb. 17, 2003



Query in Large Scale System

Hardware and Workload Complexity
heterogeneous hardware mix
unpredictable hardware performance

Data Complexity
Static cost estimates become unreliable

User Interface Complexity
Query Processing should be adaptive.



Steps for a typical Query Processor

Express query as algebra expression (set of 
operators)
Enumerate alternative plans for evaluating 
the expression using equivalence rules, 
access methods, and implementation 
algorithms
For each alternative plan, estimate the cost of 
each enumerated plan
Choose the plan with the least estimate cost



Eddies
Continuously reorders the application of 
pipelined operators in a query plan, on a 
tuple-by-tuple basis.

Data flows into the eddy from input relations 
R, S and T
The eddy routes tuples to operators: the 
operators run as independent threads, 
returning tuples to the eddy
The eddy sends a tuple to the output only 
when it has been handled by all the 
operators
The eddy adaptively chooses an order to 
route each tuples through the operators



Eddies

Traditional Query Processor (System R)
Frequency : batch (daily/weekly)
Effect : all aspects of Query Processing

Eddies
Frequency : per tuple
Effect : reordering of pipelined operators



Eddies

Reordering operators during runtime 
sounds cool.

Will it always work?
Synchronization Barrier
Moments of Symmetry



Synchronization Barriers

The processing of fasthi is 
postponed for a long time 
while consuming many 
tuples from slowlow.

Favor minimal barriers.

sl
ow

lo
w fasthi



Moments of Symmetry

The order of the inputs to the 
join can often be changed 
without modifying any state 
in the join.
Commutativity of operator
+ Moments of symmetry

reordering of a plan tree



Join Algorithms

Nest Loop Join
Moments of Symmetry : End of each inner loop
Synchronization Barrier : End of each inner loop

Merge Join
Moments of Symmetry : Symmetric
Synchronization Barrier : data dependent

Hybrid Hash Join
Moments of Symmetry : none
Synchronization Barrier : none



Join Algorithms and Reordering

In order for an eddy to be most 
effective

Frequent moments of symmetry
Adaptive or non-existent barriers
Minimal ordering constraints

Ripple joins offer very frequent 
moments of symmetry and attractive 
adaptivity.



Routing Tuples in Eddies

An eddy’s tuple buffer is implemented 
as a priority queue with a flexible 
prioritization scheme.
An operator is given the highest-priority 
tuple in the buffer that has the 
corresponding Ready bit set.



Naïve Eddy

The query operator with low cost will quickly 
process its input tuple and is ready to process 
another.
-> The consumption rate of low cost operator is 
higher than that of high cost operator.
In case where the cost of the query varies, the 
eddy performs better then the possible static 
plans.
Not suitable for the cases where selectivity of the 
operators are varied.



Fast Eddy
Gives priority to operators with low cost and 
low selectivity.

Lottery Scheduling
Each time the eddy gives a tuple to an 
operator, it credits the operator one “ticket”.

-> favor low cost
Each time the operator returns a tuple to the 
eddy, one ticket is debited from the eddy’s 
running count for that operator.

-> favor low selectivity



Performance of two Joins

3 table query: hash 
ripple join between 
R and S, and an 
index join between 
S and T
Eddy do well in even 
in static scenarios
Perform nearly 
optimally



Changing Join Cost

Two index joins
Slow: 5 second delay, Fast: no time 
delay
Swap speeds after 30 seconds



Delayed Delivery
Eddy does not adapt to 
initial delays of R
RS join does not produce 
any output tuples during 
the early part of 
processing

Eddy awards most S tuples 
to the RS join initially

Ticket scheme does not 
capture the growing 
selectivity inherent in a 
join with delayed input

Delay in delivery of R by 10 Seconds
RS selectivity at 100 %,
ST selectivity at 20 %



Re-Optimization vs. Eddies
Re-Optimization (Kabra, Dewitt) : Reordering 
queries at the end of pipelines

Reordering operators only after temporary results 
are materialized

Eddies
Assumption : The choice of spanning tree, join 
algorithms and access methods are pre-
determined.
Adaptively reorder pipelined operators on-the-fly.
Learning algorithm that adaptively learns how to 
route the tuples to the pipelined operators



Strength of Eddies

Per tuples adaptivity : Be beneficial for 
rapidly changing, unpredictable 
environments
Can be used in concert with existing 
optimizers to improve adaptability 
within pipelines.



Future Work

Routing policy: adaptively converge 
quickly to optimal execution when 
conditions change
Make adaptive the choices of spanning 
tree, join algorithms, and access 
methods.


	Eddies: Continuously Adaptive Query Processing
	Query in Large Scale System
	Steps for a typical Query Processor
	Eddies
	Eddies
	Eddies
	Synchronization Barriers
	Moments of Symmetry
	Join Algorithms
	Join Algorithms and Reordering
	Routing Tuples in Eddies
	Naïve Eddy
	Fast Eddy
	Performance of two Joins
	Changing Join Cost
	Delayed Delivery
	Re-Optimization vs. Eddies
	Strength of Eddies
	Future Work

