
Principles of Query Execution

Zachary G. Ives
University of Pennsylvania

April 16, 2003

2

Today

§ Query execution architectures
§ Data manipulation toolkit
§ “Heaps” and iteration
§ Sorting
§ Hashing

§ Tables, clustering, and indices

Reminder: project proposals due Wednesday!

3

The Execution Engine

§ The “cardiopulmonary system” of answering queries
§ Causes data to flow from sources to output
§ The optimizer is the “brain”!

§ Input: physical query plan, set of sources
§ (How is physical plan different from logical?)
§ Plan is typically a tree (but can be a graph)

§ Engine and phys. plan schedule execution of operators
§ What goes in sequence, what goes in parallel?
§ What operations can be distributed or parallelized?
§ “Push” vs. “pull”

4

Some Scheduling Possibilities

§ Series vs. parallel:
§ Operators execute sequentially (blocking)
§ Operators are pipelined (note effect on state)

§ Scheduling:
§ Operators are input-driven (push)
§ Operators get separate threads
§ Operators are demand-driven (iterator)

5

The Iterator Model in Action

§ Methods: open, next, close()

?

I-scany < 5

S-scan

R2(x,y)

R1(y,z)

Merge
R1.y = R2.y

clustered on y

6

Processing Data Naively

§ Relation may be arbitrarily laid out on disk
§ Often called a “heap file” – but not as in the heap

data structure

§ How can we process it?
§ Iterate through every tuple and test
§ Iterate through every page of tuples and test

(when is this different?)

§ Or be smarter in laying out the data…

7

Sorting

§ How do we do sort an R-page table, given M pages’
worth of memory?
§ We all learned quicksort for in-memory sorts

� Pick a split point, partition data above and below it

§ Can also do replacement selection
� Heap-based – sort of like an incremental heapsort
� Average run file is about 2M;

expected runs

§ But that’s only for one run… How do we combine runs
efficiently?

  12/ +MR

General External Merge Sort

§ To sort a file with R pages using M buffer pages:
§ Pass 0: use M buffer pages. Produce sorted

runs of M pages each.
§ Pass 2, …, etc.: merge M-1 runs.

 MR /

M Main memory buffers

INPUT 1

INPUT M-1

OUTPUT

DiskDisk

INPUT 2

.

Cost of External Merge Sort

§ Number of passes:
§ Cost = 2R * (# of passes)
§ With 5 buffer pages, to sort 108 page file:
§ Pass 0: = 22 sorted runs of 5 pages

each (last run is only 3 pages)
§ Pass 1: = 6 sorted runs of 20 pages

each (last run is only 8 pages)
§ Pass 2: 2 sorted runs, 80 pages and 28 pages
§ Pass 3: Sorted file of 108 pages

  MRM /log1 1−+

 108 5/

 22 4/

10

Hashing

§ Sorting divides data using physical properties,
then combines using logical properties

§ Hashing divides data using logical properties
(hash key) and then chains them in buckets

§ How do we hash an R-page table, given M
pages’ worth of memory?
§ Avoidance: pre-partition the data into R / M smaller

units, then execute each
§ Resolution: partition after we run against bounds

11

Hybrid Hashing

§ R-page table, given M pages’ worth of memory
in F hash buckets:
§ Assign K partitions, each expected to be of size M
§ Leaves M – (K+1)C buffers for hashing

§ May need to hash recursively, and skew may
affect this
§ Sometimes revert to other algorithms when skew is a

problem

12

Reading from Disk

§ Simple sequential scan
§ Associative access: indices
§ An index contains a collection of data entries, and

supports efficient retrieval of all data entries k* with a
given key value k.

§ Hash index – what do you think this looks like?
§ B+ tree
§ Bitmap index

Alternatives for Data Entry k* in Index

§ Three alternatives:
§ Data record with key value k
üClustered -> fast lookup
8Index is large; only 1 can exist

§ <k, rid of data record with search key value k>, OR
§ <k, list of rids of data records with search key k>
üCan have secondary indices
üSmaller index may mean faster lookup
§ Often not clustered -> more expensive to use

§ Choice of alternative for data entries is
orthogonal to the indexing technique used to
locate data entries with a given key value k.

Classes of Indices

§ Primary vs. secondary: primary has primary key
§ Clustered vs. unclustered: order of records and index

approximately same
§ Alternative 1 implies clustered, but not vice-versa.
§ A file can be clustered on at most one search key.

§ Dense vs. Sparse: dense has index entry per data
value; sparse may “skip” some
§ Alternative 1 always leads to dense index.
§ Every sparse index is clustered!
§ Sparse indexes are smaller; however, some useful

optimizations are based on dense indexes.

Clustered vs. Unclustered Index

Suppose Index Alternative (2) used, records
are stored in Heap file
§ Perhaps initially sort data file, leave some gaps
§ Inserts may require overflow pages

Index entries

Data entries

direct search for

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

B+ Tree: Our Favorite Index

§ Insert/delete at log F N cost
§ (F = fanout, N = # leaf pages)
§ Keep tree height-balanced

§ Minimum 50% occupancy (except for root).
§ Each node contains d <= m <= 2d entries.

d is called the order of the tree.
§ Supports equality and range searches efficiently.

Index Entries

Data Entries
("Sequence set")

(Direct search)

Example B+ Tree

§ Search begins at root, and key comparisons
direct it to a leaf.

§ Search for 5*, 15*, all data entries >= 24* ...

§ Based on the search for 15*, we know it is not in the tree!

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

B+ Trees in Practice

§ Typical order: 100. Typical fill-factor: 67%.
§ average fanout = 133

§ Typical capacities:
§ Height 4: 1334 = 312,900,700 records
§ Height 3: 1333 = 2,352,637 records

§ Can often hold top levels in buffer pool:
§ Level 1 = 1 page = 8 Kbytes
§ Level 2 = 133 pages = 1 Mbyte
§ Level 3 = 17,689 pages = 133 MBytes

19

Bitmap Indices

§ Primarily useful for discrete values, indices on multiple
attributes
§ A bit for each possible value of an attribute
§ Example:

sex ∈ {M, F}; status ∈ {ugrad, grad, fac}
PennCIS(ID, name, sex, status)

ID name sex status
1 Peng M G
50 Kit F G
99 Zack M F

PennCISsex_bmp status_bmp
MF UGF
10 010
01 010
10 001

20

Wrapping Up

§ Today we saw a “toolkit” of techniques for query
execution
§ Sorting and hashing to speed up processing of data
§ Need strategies for larger-than-memory operation

§ Associative access methods for retrieving data
§ Hash indices
§ B+ trees
§ Bitmap indices

§ Wednesday: putting these to use in real
algorithms!

