
Heraclitus: A Delta-Based DB
Programming Language

Zachary G. Ives
University of Pennsylvania

April 16, 2003

2

Many Non-traditional Models for
Representing Data

§ We know the relational (OO, semistructured, …)
models well
§ Describes world “as we know it”
§ Assumption generally of “closed world”

§ But there are also other ideas:
§ Incomplete databases: some values might be

missing but we may know something about them
§ Constraint databases: we may know certain

relationships between items
§ Today: “what if” databases

3

Heraclitus

§ Named after a Greek philosopher
§ “World is an ongoing process governed by a law of

change”

§ Idea: let’s explore the affects of possibly
applying changes to the database
§ Possible changes are described as “deltas”

§ Heraclitus[Alg,C] is an implementation using a
“database programming language” (DBPL)

4

Background: DBPLs

§ Strong “impedance mismatch” between SQL
and programming languages
§ Painful to use ODBC (or even JDBC) to manipulate

data – need to map between objects, open cursors,
execute SQL and get rowsets, etc.

§ OO databases tried to abolish most of these
§ The database holds objects; the programming

language (e.g., C++) is OO

§ DBPLs go even further: seamlessly integrate
database types into the language

5

Heraclitus Data Model

§ Relations (in the usual sense)
§ Semantics are set-oriented only – no bags

§ Deltas – additions or deletions to relations
§ Atoms are insertions or deletions
§ Restriction: delta shouldn’t do useless work
§ Special delta, analogous to null/undefined: fail

6

Operations

§ Need to be able to apply deltas (speculatively)
to relations
R’ = apply(R, ∆)
∆ can be divided into ∆+ (adds) and ∆- (removes)

§ Want to be able to merge deltas in meaningful
ways
§ For disjoint atoms, no problem
§ But what to do with conflicting atoms:
� ∆1 = {+Suppliers(Bob, shoe)}, ∆2 = {-Suppliers(Bob, shoe)}

7

First delta combinator: “smash”

§ ∆1 ! ∆2 favors ∆2 for any conflict
§ (∆1 ! ∆2)+ = ∆2

+ ∪ (∆1
+ - ∆2

-)
§ (∆1 ! ∆2)- = ∆2

- ∪ (∆1
- - ∆2

+)

§ Think about query optimization: what do we
depend on in terms of our operators?

§ What are the implications of smash on query
optimization?

8

Second delta combinator : “merge”

§ ∆1 & ∆2 fails on any conflict

§ Does this have better properties for
optimization?

§ What about weak-merge, which simply deletes
conflicting atoms?

9

Third delta combinator: “compose”

§ ∆1 # ∆2 applies ∆1, then applies ∆2 to the result

§ How does this differ from smash?

10

Smash vs. Compose

Updates:
δ1: +Ord(“light”, 400, “Cat Paw”, “9/18/93”)
δ2: Ord(*,400, *, *) -> Ord(*,450, *, *)

Applied to:
Ord(“frame”, 400, “Trek”, “8/18/93”)

11

What it Looks Like to the Programmer

§ Heraclitus[Alg,C] adds to C:
§ Datatypes for relations
§ Definitions of schemas
§ Specifications of deltas
§ Operators

§ Example:
relation temp;
Delta D1;
D1 = [del Supp(“Campy”, “pedals”)];
temp = project([part, qty*2], select({foo(sup)>qty}, Ord)) when D1;

12

How Do We Build It?

§ Let’s do it!
§ What’s new?
§ “when” / “apply” operations
§ “smash” etc.
§ How do we optimize?
§ How do we execute?

13

Summary

§ A very interesting and different way of modeling data
§ Based on deltas (the “reverse” of Monday’s paper)
§ Allows us to query the results of applying speculative changes
§ Sadly, little follow-up work seems to have been done

§ Notice that given the specs, we can use our standard
class of techniques and build it!
§ Algebraic laws affect optimization
§ Cost model depends on expected # of probes, size, etc.
§ Basic iterate, sort, hash, index techniques useful for execution

