
XML Keyword Search

CIS650
Yong Cha

Introduction

� One of the goals of XML is to represent
document information and we might want
to perform a keyword search on particular
elements.

� The goal of the paper is to combine
database-style query language with free-
text search.

Role of RDBMS in XML
keyword search

� XML is rapidly becoming data format of
choice, but retrieving data from large XML
sources can be a painfully slow
experience.

� What if you want to search 100MB XML
file?

� To improve XML query performance,
RDBMS is used to extend XML-QL.

Why use RDBMS

� It is easy to build an extended XML query
processor on top of RDBMS because most
of the functionality are already built in.

� RDBMSs are universally available.
� RDBMSs allow to mix XML data with other

types of data.
� RDBMSs have very high performance.

XML

� Extensible Markup Language
� XML and HTML are subsets of SGML

(Standard Generalized Markup Language)
� Comparison of SGML and XML
� http://www.w3.org/TR/NOTE-sgml-xml-

971215

http://www.w3.org/TR/NOTE-sgml-xml-971215
http://www.w3.org/TR/NOTE-sgml-xml-971215
http://www.w3.org/TR/NOTE-sgml-xml-971215
http://www.w3.org/TR/NOTE-sgml-xml-971215

Sample XML

<document>
<article id=“1”>

<author><name>Adam Dingle</name></author>
<author><name>Peter Sturmh</name></author>
<author><name>Li Zhang</name></author>
<title>Analysis and Characterization of Large-Scale Web
Server Access Pattern</title>
<year>1999</year>
<booktitle>World Wide Web Journal</booktitle>

</article>
</document>

XML as Tree

elId16
name

elId11
author

elId17
name

elId12
author

elId13
title

elId14
year

elId15
booktitle

elId1
article

elid26
name

elId21
author

elid27
name

elId22
author

elId23
title

elId24
year

elId25
booktitle

elId2
article

elId0
Root

XML-QL

� where (XML-pattern [ELEMENT_AS $elem_var]) IN
fileName, (predicate)* construct XML-pattern | variable

� Example: Retrive all articles written by Mr. Dingle in
1999 about the web.

where <article><author><name>$N
</name></author><title>$T</title><year>1999</year>
</article> ELEMENT_AS $E IN “bib.xml”,
$N like *Dingle* , $T like *web*
construct $E

Extending XML-QL with
Keyword Search

� XML-QL is a good way to query XML
document if you know the structure of the
document.

� If user is not familiar with the structure
queries get messy.

What if user wants to search for keyword
‘name’ without knowing the structure

Things get messy!!!
/* search for “name” as a subelement, at any depth */
where <article><author><*><name>$N</name></*></author>

<title>$T</title><year>1999</year>
</article>ELEMENT_AS $E IN “bib.xml”
$N like *Dingle*, $T like *web*

construct $E
union
/* search for “name” as an attribute name, at any depth */
where <article<author><*><! name=$N></_></*></author>

<title>$T</title><year>1999</year>
</article> ELEMENT_AS $E IN “bib.xml”,
$N like *Dingle*, $T like *web*

construct $E

Contains predicate

� Contains predicate is introduced to simplify queries.
� contains (tag_name, attribute_name content,

attribute_value)
where <article> </article> ELEMENT_AS $E IN “bib.xml”,
contains($E,”Dingle”, 3, any),
contains($E, “1999”, 3, any),
contains($E, “web”, 3, any)
construct $E

Inverted Files

� What happens when there are too many big documents?

� Use inverted files.

� The classic index structure for keyword search.

� In the simplest form, inverted files contain word and
document.

� For XML data, the paper used form <word, elId, depth,
location>

<“article”, elId1, 0, tag>

<“id”, elId1, 1, attr>

How to create inverted
files

� You want to index following text:
� A cookie is just a cookie, but fig newtons

are fruit and cake.
� <a, 1> <a, 17>
� <cookie, 3> <cookie, 19>
� <is, 10>
� <just, 13> etc.

Storing Inverted Files in
RDBMS

� Inverted files can be easily stored as
tables.

� To improve the performance, inverted
files are partitioned by words.

� Further partitioning is done by combining
word with type.

� word-type(elId, depth, location)
� Adam-name(elId16, 4, 1)

Problem with Inverted
Files

� Indexes can grow to be bigger than the
source.

� Size of original XML file: 7.7MB
� Size of relation database: 90MB

Extended XML-QL Query
Processing

� First, create binary table for all XML tags.
� tag-name(source, target, value)
� article(“article”, “author”, null)
� author(“author”, “name”, null)
� name(“name”, null, “Adam Dingle”)
� title(“title”, null, “Analysis … “)
� Once the tables are filled XML-QL queries can be executed as SQL.
select art.source
from article art, author aut, name n, title t, year y
where art.target=aut.source and art.target=t.source and
art.target = y.source and aut.target=n.source and y.value=1999
and t.value like “web” and n.value like “Dingle”

Keyword search

� Once you have inverted file, keyword
search become simple select.

� where <article> </article> ELEMENT_AS
$E IN “bib.xml”, contains($E, “Dingle”, 3,
any) construct $E

� simply becomes
� select elId from Dingle-article

Combining XML Query with
Keyword Search

� Both query and keyword search can be combined easily
into a single SQL statement.

� Where <article>
<year>1999</year><author>$A</author> </article>
ELEMENT_AS $E IN “bib.xml”, contains($E, “Web”, 4,
any) construct $A

� becomes
� select aut.target from article art, year y, author aut,

web-article c where art.target=year.source and
art.target=aut.source and art.target=c.elId and
year.value=“1999” and c.depth<=4

Distributed XML Query
Processing

� Problem arises when XML data cannot be
stored in RDBMS.

� Web site might give a permission to index
the data without giving a permission to
store the content.

� Two scenarios arise.
� XML data source without query

capabilities and XML data source with
query capabilities.

XML data sources without
query capabilities

� Prefilter: User the inverted file stored in
the RDBMS to find the relevant
documents and/or elIDs.

� Retrieve: Get the relevant documents (or
elements) from the data sources.

� Execute: Extract the query results from
the retrieved documents (or elements).

XML data sources with
query capabilities

� Prefilter: User the inverted file stored in the
RDBMS to find the relevant documents and/or
elIDs.

� Push Down: Pass elIds to the data sources and
let the data sources execute the whole or parts
of the query on these elIds.

� Refinement: Refine the results returned by the
data sources if the data sources could not
execute the whole query.

Query performance

� Experiments were done on three
scenarios.

� Structured: The query exploits the full
XML structure.

� Partially structured: The query exploits
some structure.

� Unstructured: The query has no structure.

Performance

Query 1 Query 2

Running Time Query Result Running Time Query Result

Structured 3 secs 38 lines 7 secs 208 scenes

Part.
Structured

1.5 secs 19 scenes 2.5 secs 1108 scenes

Unstructured 4 secs 56 elements 10 secs 10909
elements

Questions

	XML Keyword Search
	Introduction
	Role of RDBMS in XML keyword search
	Why use RDBMS
	XML
	Sample XML
	XML as Tree
	XML-QL
	Extending XML-QL with Keyword Search
	What if user wants to search for keyword ‘name’ without knowing the structure
	Contains predicate
	Inverted Files
	How to create inverted files
	Storing Inverted Files in RDBMS
	Problem with Inverted Files
	Extended XML-QL Query Processing
	Keyword search
	Combining XML Query with Keyword Search
	Distributed XML Query Processing
	XML data sources without query capabilities
	XML data sources with query capabilities
	Query performance
	Performance
	Questions

