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Introduction

� One of the goals of XML is to represent 
document information and we might want 
to perform a keyword search on particular 
elements. 

� The goal of the paper is to combine 
database-style query language with free-
text search.



Role of RDBMS in XML 
keyword search

� XML is rapidly becoming data format of 
choice, but retrieving data from large XML 
sources can be a painfully slow 
experience.

� What if you want to search 100MB XML 
file?

� To improve XML query performance, 
RDBMS is used to extend XML-QL.



Why use RDBMS

� It is easy to build an extended XML query 
processor on top of RDBMS because most 
of the functionality are already built in. 

� RDBMSs are universally available.
� RDBMSs allow to mix XML data with other 

types of data.
� RDBMSs have very high performance. 



XML

� Extensible Markup Language
� XML and HTML are subsets of SGML 

(Standard Generalized Markup Language)
� Comparison of SGML and XML
� http://www.w3.org/TR/NOTE-sgml-xml-

971215

http://www.w3.org/TR/NOTE-sgml-xml-971215
http://www.w3.org/TR/NOTE-sgml-xml-971215
http://www.w3.org/TR/NOTE-sgml-xml-971215
http://www.w3.org/TR/NOTE-sgml-xml-971215


Sample XML

<document>
<article id=“1”>

<author><name>Adam Dingle</name></author>
<author><name>Peter Sturmh</name></author>
<author><name>Li Zhang</name></author>
<title>Analysis and Characterization of Large-Scale Web 
Server Access Pattern</title>
<year>1999</year>
<booktitle>World Wide Web Journal</booktitle>

</article>
</document>



XML as Tree
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XML-QL

� where (XML-pattern [ELEMENT_AS $elem_var]) IN 
fileName, (predicate)* construct XML-pattern | variable

� Example: Retrive all articles written by Mr. Dingle in 
1999 about the web.

where <article><author><name>$N
</name></author><title>$T</title><year>1999</year>
</article> ELEMENT_AS $E IN “bib.xml”, 
$N like *Dingle* , $T like *web* 
construct $E



Extending XML-QL with 
Keyword Search

� XML-QL is a good way to query XML 
document if you know the structure of the 
document.

� If user is not familiar with the structure 
queries get messy.



What if user wants to search for keyword 
‘name’ without knowing the structure

Things get messy!!!
/* search for “name” as a subelement, at any depth */
where <article><author><*><name>$N</name></*></author>

<title>$T</title><year>1999</year>
</article>ELEMENT_AS $E IN “bib.xml”
$N like *Dingle*, $T like *web*

construct $E
union
/* search for “name” as an attribute name, at any depth */
where <article<author><*><! name=$N></_></*></author>

<title>$T</title><year>1999</year>
</article> ELEMENT_AS $E IN “bib.xml”,
$N like *Dingle*, $T like *web*

construct $E



Contains predicate

� Contains predicate is introduced to simplify queries.
� contains (tag_name, attribute_name content, 

attribute_value)
where <article> </article> ELEMENT_AS $E IN “bib.xml”, 
contains($E,”Dingle”, 3, any), 
contains($E, “1999”, 3, any), 
contains($E, “web”, 3, any)
construct $E



Inverted Files

� What happens when there are too many big documents?

� Use inverted files.

� The classic index structure for keyword search.

� In the simplest form, inverted files contain word and 
document.

� For XML data, the paper used form <word, elId, depth, 
location>

<“article”, elId1, 0, tag>

<“id”, elId1, 1, attr>



How to create inverted 
files

� You want to index following text:
� A cookie is just a cookie, but fig newtons 

are fruit and cake.
� <a, 1> <a, 17>
� <cookie, 3> <cookie, 19>
� <is, 10>
� <just, 13> etc.



Storing Inverted Files in 
RDBMS

� Inverted files can be easily stored as 
tables.

� To improve the performance, inverted 
files are partitioned by words.

� Further partitioning is done by combining 
word with type.

� word-type(elId, depth, location)
� Adam-name(elId16, 4, 1)



Problem with Inverted 
Files

� Indexes can grow to be bigger than the 
source.

� Size of original XML file: 7.7MB
� Size of relation database: 90MB



Extended XML-QL Query 
Processing

� First, create binary table for all XML tags.  
� tag-name(source, target, value)
� article(“article”, “author”, null)
� author(“author”, “name”, null)
� name(“name”, null, “Adam Dingle”)
� title(“title”, null, “Analysis … “)
� Once the tables are filled XML-QL queries can be executed as SQL.  
select art.source
from article art, author aut, name n, title t, year y
where art.target=aut.source and art.target=t.source and 
art.target = y.source and aut.target=n.source and y.value=1999 
and t.value like “web” and n.value like “Dingle”



Keyword search

� Once you have inverted file, keyword 
search become simple select.

� where <article> </article> ELEMENT_AS 
$E IN “bib.xml”, contains($E, “Dingle”, 3, 
any) construct $E

� simply becomes
� select elId from Dingle-article



Combining XML Query with 
Keyword Search

� Both query and keyword search can be combined easily 
into a single SQL statement.

� Where <article> 
<year>1999</year><author>$A</author> </article> 
ELEMENT_AS $E IN “bib.xml”, contains($E, “Web”, 4, 
any) construct $A

� becomes
� select aut.target from article art, year y, author aut, 

web-article c where art.target=year.source and 
art.target=aut.source and art.target=c.elId and 
year.value=“1999” and c.depth<=4



Distributed XML Query 
Processing

� Problem arises when XML data cannot be 
stored in RDBMS.

� Web site might give a permission to index 
the data without giving a permission to 
store the content.

� Two scenarios arise.
� XML data source without query 

capabilities and XML data source with 
query capabilities.



XML data sources without 
query capabilities

� Prefilter: User the inverted file stored in 
the RDBMS to find the relevant 
documents and/or elIDs.

� Retrieve: Get the relevant documents (or 
elements) from the data sources.

� Execute: Extract the query results from 
the retrieved documents (or elements).



XML data sources with 
query capabilities

� Prefilter: User the inverted file stored in the 
RDBMS to find the relevant documents and/or 
elIDs.

� Push Down: Pass elIds to the data sources and 
let the data sources execute the whole or parts 
of the query on these elIds.

� Refinement: Refine the results returned by the 
data sources if the data sources could not 
execute the whole query.



Query performance

� Experiments were done on three 
scenarios.

� Structured: The query exploits the full 
XML structure.

� Partially structured: The query exploits 
some structure.

� Unstructured: The query has no structure.  



Performance

Query 1 Query 2

Running Time Query Result Running Time Query Result

Structured 3 secs 38 lines 7 secs 208 scenes

Part.
Structured

1.5 secs 19 scenes 2.5 secs 1108 scenes

Unstructured 4 secs 56 elements 10 secs 10909
elements



Questions
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