
Mid-Query Re-Optimization

Navin Kabra
David J. DeWitt

Ivan Terziev
University of Pennsylvania

Query Optimization
• Ideally an optimal plan should be found. However, this

is not the case especially for complex queries.
• Optimizers are unable to accurately estimate the cost

of a complex execution plan. Why?
• Simplified cost model
• Out-of-date statistics
• Exponential error
• Insufficient information about the runtime system
• OOD or user-defined datatypes do not fit in the

cost model.

Query Optimization
• Solutions:

– Competition model: start with multiple execution
plans and leave the best one.

– Dynamic query plans: statistics during optimization
are stored in the plan. Before execution check
against the statistics catalog.

– Query Scrambling: re-optimizes only if data from a
source arrives slowly, not relevant

Query Optimization

– More solutions:
• Parametric query optimization algorithms: one

plan that is a combination of a number of
subplans each of which is optimal for a given set
of values. In runtime decide which precompiled
plan to choose. Sounds good but hard to create
from a great space of possibilities.

• Mid-query re-optimization: gather runtime
statistics and fix the remainder of the query (our
discussion).

Complex Queries
• Mid-Query optimization mainly addresses

complex queries
• Why are they evil?

– They are long and complex
(Q: Find all climbers below average age that are not authors with at
least one publication and have rented at least one boat, red or green in
the past 2 weeks.)

– Nested operators cause cost model errors to grow
exponentially

– It is hard to predict their behavior based on initial
estimates (which is what optimizers have)

– Operators share memory
– Pipeline stalls due to binary operators

The problem: Evil Queries

Histogram on A.a1
Value | Dist

1..3 |50%
4..9 |20%
10..20|30%

Actual result
on a1
Range |Dist

1…3 |0%
4…9 |20%
10…20 |80%

Select
C.a2 = ‘red’ or ‘green’

A B C D

The Algorithm
• Detects if a query is suboptimal and re-optimizes

the remainder of the query.
• Features of the algorithm:

– Execution plan modification
– Resource reallocation (memory, scheduling?,

others?)
– Keeping the overhead low
– Annotated execution plan: maintains statistics at key

points in the tree structure
– Runtime statistics: gather statistics during query

execution

Runtime Statistics
• Tools:

– Statistic collector operators: physical logic operators
just like selections, joins etc.

• Decisions:
– What kind of statistics to collect
– Where to insert statistics collector operators

• Limitations:
– Information must be gathered with only one pass over

the input
– Pipelined operators cannot benefit runtime statistics.
– Execution overhead

Dynamic Resource Reallocation

• Why? Not all operators receive the
memory requirements, e.g. operators
running in parallel

• How? Reallocate memory based on
current statistics. Done by the memory
management module

Modifying The Query Plan
• Ok, we want to modify the query plan. We can:

– discard current execution plan and build a new one.
Yeah, sure!

– stop execution. Re-optimize operators that have not
yet started. Sounds easy but hard to implement. If you
have a good solution email navin@cs.wisc.edu and
dewitt@cs.wisc.edu

– stop the execution before output reaches next
(parent) operator. Save current results (might by I/O
costly) and generate a new SQL query. A
compromised solution. Easy to implement.

mailto:navin@cs.wisc.edu
mailto:navin@cs.wisc.edu
mailto:dewitt@cs.wisc.edu
mailto:dewitt@cs.wisc.edu

Optimization
• Re-optimization includes:

– Query plan modification
– Dynamic resource reallocation

• We optimize when:

• Theta is empirically chosen
and accounts for overheads

θ>
−

initial

initialimproved

T
TT

Maintaining Low Overhead
• Getting hyped with gathering statistics and re-

optimizing to death might (will) cause a query to
run longer.

• Decide on what statistics to use during query
execution time

• Process the current plan to insert statistics
collector operators with a heuristic algorithm

• Do not insert statistics operators in simple
queries or queries expected to run fast.

Algorithm For Inserting Statistics
Collectors

• Input: annotated execution plan, maximum accepted
overhead fraction

• Output: annotated execution plan extended with
statistics operators

• Heuristic approach determines inaccuracy potential (low,
medium, high) of the statistics of an annotated plan
– Determine effectiveness of possible statistic collectors based on

inaccuracy potential
– Sort possible statistics operators on effectiveness and iteratively

delete the lowest effective operator until expected computing
time drops below maximum accepted overhead

Rules of Thumb
• Statistics collectors are inserted after filtering operators and before

the join operators
Hash-Join

Statistics Collector

A
•The inaccuracy potential for non-equi-joins is always high
•Detailed (serial) histograms have low inaccuracy potential
•The inaccuracy potential of a selection with two inputs is one level
higher than its inputs.
•The inaccuracy potential of an equi-join not over a key attribute is one
level higher than its inputs

Filter
A.x1:=v1
a.x2:=v2

B

All Comes Together
• Step by step:

– Conventional optimizer generates a conventional plan
– Statistics collector algorithm inserts statistics

operators ensuring does not overload the plan by
some given fraction

– The final plan (annotated) is then executed
– Data from statistics operators is used to generate a

better cost estimate E.
– E is compared to the optimizer’s estimate C. If

E + overhead is much better than C then generate a
new plan and repeat from the beginning

Implementation

• The algorithm is implemented in the Paradise
database system

• Components: query optimizer, memory
manager, scheduler & dispatcher, data server.

• Algorithm uses dynamic programming (all cool
algorithms do so!)

• Statistics are based on histograms. One page is
reserved for histograms updates on per-tuple
basis.

More

Query
Optimizer

SCIA Memory
Manager

Dynamic
Re-Optimization
Scheduler &
Dispatcher Data Server

Even More
The Query optimizer or
the memory manager can
be called at any level

L
Level 0

J K
Level 1

H I
G Level 2

A B E FC D

Results

• Simple queries do a little worse (5%
overhead)

• Medium queries have some to none
benefit

• Complex queries benefit a lot
• Results are consider to be excellent and

are as expected. The algorithm was never
supposed to be a moon walker.

Conclusion

• It works!

	Mid-Query Re-Optimization
	Query Optimization
	Query Optimization
	Query Optimization
	Complex Queries
	The problem: Evil Queries
	The Algorithm
	Runtime Statistics
	Dynamic Resource Reallocation
	Modifying The Query Plan
	Optimization
	Maintaining Low Overhead
	Algorithm For Inserting Statistics Collectors
	Rules of Thumb
	All Comes Together
	Implementation
	More
	Even More
	Results
	Conclusion

