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Query Optimization
• Ideally an optimal plan should be found. However, this 

is not the case especially for complex queries.
• Optimizers are unable to accurately estimate the cost 

of a complex execution plan. Why?
• Simplified cost model
• Out-of-date statistics
• Exponential error
• Insufficient information about the runtime system
• OOD or user-defined datatypes do not fit in the 

cost model.



Query Optimization
• Solutions: 

– Competition model: start with multiple execution 
plans and leave the best one.

– Dynamic query plans: statistics during optimization
are stored in the plan. Before execution check 
against the statistics catalog.

– Query Scrambling: re-optimizes only if data from a 
source arrives slowly, not relevant



Query Optimization

– More solutions:
• Parametric query optimization algorithms: one 

plan that is a combination of a number of 
subplans each of which is optimal for a given set 
of values. In runtime decide which precompiled 
plan to choose. Sounds good but hard to create 
from a great space of possibilities. 

• Mid-query re-optimization: gather runtime 
statistics and fix the remainder of the query (our 
discussion).



Complex Queries
• Mid-Query optimization mainly addresses 

complex queries
• Why are they evil?

– They are long and complex
(Q: Find all climbers below average age that are not authors with at 
least one publication and have rented at least one boat, red or green in 
the past 2 weeks.) 

– Nested operators cause cost model errors to grow 
exponentially

– It is hard to predict their behavior based on initial 
estimates (which is what optimizers have)

– Operators share memory
– Pipeline stalls due to binary operators  



The problem: Evil Queries

Histogram on A.a1
Value | Dist
---------------
1..3    |50%
4..9    |20%
10..20|30%

Actual result
on a1
Range  |Dist
---------------
1…3     |0%
4…9     |20%
10…20 |80%

Select
C.a2 = ‘red’ or ‘green’

A B C D



The Algorithm
• Detects if a query is suboptimal and re-optimizes 

the remainder of the query.
• Features of the algorithm:

– Execution plan modification
– Resource reallocation (memory, scheduling?, 

others?)
– Keeping the overhead low
– Annotated execution plan: maintains statistics at key 

points in the tree structure
– Runtime statistics: gather statistics during query 

execution



Runtime Statistics
• Tools:

– Statistic collector operators: physical logic operators 
just like selections, joins etc. 

• Decisions:
– What kind of statistics to collect
– Where to insert statistics collector operators

• Limitations:
– Information must be gathered with only one pass over 

the input
– Pipelined operators cannot benefit runtime statistics.
– Execution overhead 



Dynamic Resource Reallocation

• Why? Not all operators receive the 
memory requirements, e.g. operators 
running in parallel

• How? Reallocate memory based on 
current statistics. Done by the memory 
management module



Modifying The Query Plan
• Ok, we want to modify the query plan. We can:

– discard current execution plan and build a new one. 
Yeah, sure!

– stop execution. Re-optimize operators that have not 
yet started. Sounds easy but hard to implement. If you 
have a good solution email navin@cs.wisc.edu and 
dewitt@cs.wisc.edu

– stop the execution before output reaches next 
(parent) operator. Save current results (might by I/O 
costly) and generate a new SQL query. A 
compromised solution. Easy to implement.   
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Optimization
• Re-optimization includes:

– Query plan modification
– Dynamic resource reallocation

• We optimize when:

• Theta is empirically chosen 
and accounts for overheads

θ>
−

initial

initialimproved

T
TT



Maintaining Low Overhead
• Getting hyped with gathering statistics and re-

optimizing to death might (will) cause a query to 
run longer.  

• Decide on what statistics to use during query 
execution time

• Process the current plan to insert statistics 
collector operators with a heuristic algorithm

• Do not insert statistics operators in simple 
queries or queries expected to run fast.



Algorithm For Inserting Statistics 
Collectors

• Input: annotated execution plan, maximum accepted 
overhead fraction

• Output: annotated execution plan extended with 
statistics operators

• Heuristic approach determines inaccuracy potential (low, 
medium, high) of the statistics of an annotated plan
– Determine effectiveness of possible statistic collectors based on 

inaccuracy potential
– Sort possible statistics operators on effectiveness and iteratively 

delete the lowest effective operator until expected computing 
time drops below maximum accepted overhead   



Rules of Thumb
• Statistics collectors are inserted after filtering operators and before 

the join operators
Hash-Join

Statistics Collector

A
•The inaccuracy potential for non-equi-joins is always high
•Detailed (serial) histograms have low inaccuracy potential
•The inaccuracy potential of a selection with two inputs is one level    
higher than its inputs. 
•The inaccuracy potential of an equi-join not over a key attribute is one 
level higher than its inputs

Filter
A.x1:=v1
a.x2:=v2

B



All Comes Together
• Step by step:

– Conventional optimizer generates a conventional plan
– Statistics collector algorithm inserts statistics 

operators ensuring does not overload the plan by 
some given fraction

– The final plan (annotated) is then executed
– Data from statistics operators is used to generate a 

better cost estimate E.
– E is compared to the optimizer’s estimate C. If           

E + overhead is much better than C then generate a 
new plan and repeat from the beginning



Implementation

• The algorithm is implemented in the Paradise 
database system

• Components: query optimizer, memory 
manager, scheduler & dispatcher, data server.

• Algorithm uses dynamic programming (all cool 
algorithms do so!)

• Statistics are based on histograms. One page is 
reserved for histograms updates on per-tuple
basis. 



More

Query
Optimizer

SCIA Memory
Manager

Dynamic
Re-Optimization
Scheduler & 
Dispatcher Data Server



Even More
The Query optimizer or
the memory manager can 
be called at any level

L
Level 0

J K
Level 1

H I
G Level 2

A B E FC D



Results

• Simple queries do a little worse (5% 
overhead)

• Medium queries have some to none 
benefit

• Complex queries benefit a lot
• Results are consider to be excellent and 

are as expected. The algorithm was never 
supposed to be a moon walker.



Conclusion

• It works!
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