
MiniConMiniCon
Answering Queries Using Views: A Survey. Alon Y. HalevyAnswering Queries Using Views: A Survey. Alon Y. Halevy

Stanislav Angelov, CIS650 Data Sharing and the Web
U. of Pennsylvania

Additional references: MiniCon: A Scalable algorithm for
answering queries using views. R. Pottinger, A. Halevy

InverseInverse--rules Algorithmrules Algorithm
Construct set of rules that invert the view definition.Construct set of rules that invert the view definition.

Pros
Simplicity and modularity
Returns maximally contained
rewriting even w/ arbitrary
recursive Datalog programs
Needs additional constant
propagation to trim
redundant computations

Cons
May invert some of the
useful computation done to
produce view

Needs additional constant
propagation to trim
redundant computations

Bucket AlgorithmBucket Algorithm
1) Create a bucket for each sub1) Create a bucket for each sub--goal in the query containing the views that have goal in the query containing the views that have
the same subthe same sub--goal and there is a mapping. 2) Consider conjunctive rewriting fgoal and there is a mapping. 2) Consider conjunctive rewriting for or
each element of the Cartesian product of the buckets, and check each element of the Cartesian product of the buckets, and check whether it is whether it is
contained or can be made to be contained in the query.contained or can be made to be contained in the query.

Pros
Considers each sub-goal in
isolation
To some degree takes into
account context to prune
search space
Would possibly take
advantage of materialized
views

Cons
Considers each sub-goal in
isolation
Considers Cartesian product
of buckets
It is hard to recover projected
away attributes w/o
additional knowledge

MiniCon AlgorithmMiniCon Algorithm
Inverse-rules algorithm (extended version) is very similar to the
Bucket algorithm and performs better.
Main objective of the MiniCon Algorithm is to scale better
with the number of available views
Key difference between MiniCon and the above algorithms
is the MiniCon Descriptors computed for each goal
mapping

- more preprocessing to build Descriptors (scale nicely to
number of goals/views)

- less work on combining phase (potentially exponential).

MiniCon Algorithm OutlineMiniCon Algorithm Outline
1a) Begin like the Bucket Algorithm
1b) Form the MiniCon Descriptors

For sub-goal g in the query Q mapped to sub-goal g’ in view V
(bucket), look at the variables Q and consider the join predicates
to find the minimal additional set of sub-goals in Q that must be
mapped to sub-goal in V in order V be usable.
2) Combine MCD-s

- proceed as in the bucket algorithm but consider rewritings
involving only disjoin MCD-s

- no need of containment check (additional speedup) for each
rewriting

Example: Setting and 1Example: Setting and 1stst phasephase
q(D) :- Major(S, D), Registered(S, 444, Q), Advises(P, S)

V1(dept) :- Major(student,dept),
Registered(student,444,quarter)

V2(prof,student,area) :- Advises(prof,student), Prof(prof,area)
V3(dept,c-number) :- Major(student,dept),

Registered(student,c-number,quarter),
Advises(prof,student)

Bucket Algorithm (phase 1):

V2(P,S,A’)
V3(D’,C’)

V1(D’)

V3(D’,C)

V1(D’)

V3(D’,C’)

3. Advises(P,S)2. Registered(S,C,Q)1. Major(S,Q)

Example: MCD Construction 1/3Example: MCD Construction 1/3

In order V1 (q:Major -> V1:Major) to be usable we need to be
able to join Major with Registered and Advises on Student.
Since Student is not in the head of V1, V1 should include
those two joins but is include only of them.
So join with Advises on S cannot be done unless additional
functional dependencies exist and are known.
We apply the same argument to determine that the mapping
(q:Registered -> V1:Registered) is not possible.

V2(P,S,A’)
V3(D’,C’)

V1(D’)

V3(D’,C)

V1(D’)

V3(D’,C’)

3. Advises(P,S)2. Registered(S,C,Q)1. Major(S,Q)

q(D) :- Major(S, D), Registered(S, 444, Q), Advises(P, S)

V1(dept) :- Major(student,dept), Registered(student,444,quarter)

Example: MCD Construction 2/3Example: MCD Construction 2/3
q(D) :- Major(S, D), Registered(S, 444, Q), Advises(P, S)

V2(prof,student,area) :- Advises(prof,student), Prof(prof,area)

V2(P,S,A’)
V3(D’,C’)

V1(D’)

V3(D’,C)

V1(D’)

V3(D’,C’)

3. Advises(P,S)2. Registered(S,C,Q)1. Major(S,Q)

In order V2 (q:Advises->V2:Advises) to be usable we need to
be able to join it with Major and Registered on Student. Since
(S-> Student) is in the head of V2 we can apply the join
predicates later and we don’t need to do additional mappings.

Example: MCD Construction 3/3Example: MCD Construction 3/3
q(D) :- Major(S, D), Registered(S, 444, Q), Advises(P, S)

V3(dept,c-number) :- Major(student,dept),
Registered(student,c-number,quarter),
Advises(prof,student)

V2(P,S,A’)
V3(D’,C’)

V1(D’)

V3(D’,C)

V1(D’)

V3(D’,C’)

3. Advises(P,S)2. Registered(S,C,Q)1. Major(S,Q)

In order V3 (q:Major->V3:Major) to be usable we need to be
able to join it with Registered and Advises on Student. Since S
is not in the head of V3 we have to map Registered and
Advises also.

Example: Combining MCDExample: Combining MCD--ss
1 2 3

q(D) :- Major(S, D), Registered(S, 444, Q), Advises(P, S)
MCD-s

* Can equate distinguished variables h(x)=h(h(x))
** Partial mapping of Vars(Q) to head h(Vars(V))

Now we have to consider only disjoined MCD-s when
combining. V2’s and V3’s are not disjoined so we would
consider only rewriting involving V3

1,2,3D->dept
c-number->444

identityV3 (dept,c-number)

3P → profs,
S → students

identityV2 (prof,student,area)

1,2,3V1(dept)

Sub-goalsϕ**Head homomorphism* hV(Y)

Rules and Properties of MiniConRules and Properties of MiniCon
For a query Q sub-goal g, and a view V sub-goal g’, we map g to g’, with
the following properties for every query variable X that is mapped to view
variable A:
Case I: X is head variable, A is head variable OK
Case II: X is not head variable, A is head variable OK
Case III: X is head variable, A is not head variable NOT OK

(x need to be in the answer but a is not exported)
Case IV: X is not head variable, A is not head variable ???

All the query sub-goals using X must be able to be mapped to other sub-goals in V
in order to be able to reconstruct the join

Given a query Q, a set of views V, and the set of MCD-s C for Q over the
views in V, the only combinations of MCD-s that result in non-redundant
rewritings of Q are of the from C1, C2, …, Cl, where

Sub-goals(Q) = Goals(C1) ∪ Goals(C2) ∪ …
For every i ≠ j, Goals(Ci) ∩ Goals(Cj) = ∅

Experimental ResultsExperimental Results
Chain queries with only
few rewritings

Chain queries with
many rewritings

Experimental ResultsExperimental Results

Every sub-goal is joined
with every other sub-goal.

Prune earlier.

Unique sub-goal joins
with everything. Few
rewritings.

Experimental ResultsExperimental Results

Prune rewritings
because of

comparison predicates

Comparison predicates don’t
slow MiniCon too much.
Only few rewritings so
overhead not large.

More and ConclusionsMore and Conclusions

Completeness
Certain answers and
maximally-contained
rewritings (closed-
world, open world
assumptions)
Use of MiniCon in
the context of query
optimization

MiniCon algorithm
scales better with
the number of
views. Though it
requires more
preprocessing, it
reduces the work at
the more expensive
rewriting phase

	MiniConAnswering Queries Using Views: A Survey. Alon Y. Halevy
	Inverse-rules AlgorithmConstruct set of rules that invert the view definition.
	Bucket Algorithm1) Create a bucket for each sub-goal in the query containing the views that have the same sub-goal and there
	MiniCon Algorithm
	MiniCon Algorithm Outline
	Example: Setting and 1st phase
	Example: MCD Construction 1/3
	Example: MCD Construction 2/3
	Example: MCD Construction 3/3
	Example: Combining MCD-s
	Rules and Properties of MiniCon
	Experimental Results
	Experimental Results
	Experimental Results
	More and Conclusions

