Peer-to-Peer Schema Mediation

Zachary G. Ives
University of Pennsylvania

CIS 650, Spring 2003
April 16, 2003
Administrivia

- Project status reports due today
 - Should have both a timeline and a plan for validating that your system does something useful
 - (If not, you need to work on that ASAP!)
- On 4/16 you need to have enough of the project working that:
 - You can talk about it for 5 minutes
 - You can answer my detailed questions about how/how well it works (i.e., it’s not vaporware!)
The Need for Schema Mediation

- In any company, collaboration, university, etc.:
 Different organizational units each have their *own* DBMS, schema, (partly overlapping) data, servers

 - Often important to get global view of the data *across* an organization
 - May want to share data with *other* organizations, business partners, collaborators, customers, etc.

Problem: mediating (translating) between schemas
Approaches We’ve Seen to Schema Mediation

Data warehouse
- Design a single schema
 - Do physical DB design
- Map data into warehouse schema
- Periodically update warehouse

Virtual data integration (EII)
- Design mediated schema
- Map sources to mediated schema
- Queries are rewritten and answered on demand from sources
A Single Centralized Schema is a Bottleneck!

Challenging to form a single schema for all domain data

- People don’t agree on how concepts should be represented
- Data warehouse: physical design is a strong consideration
- Mediated schema very different from original users’ schemas

Mappings may be challenging to create, and do not leverage work of previous source mappings

- Each source gets mapped to mediated schema separately

Difficult to evolve this single schema as needs change

- May “break” existing queries
- Must build consensus for any schema changes
What People Often Do…

Create *ad hoc* custom mappings between source pairs

- Define some intermediary schema
- Use custom code to export one source’s data
- Import that into the opposite source

Easily extensible – no need to agree on single schema!

Disadvantages:

- Point-to-point: $O(n^2)$ translators may be necessary
- Often requires custom code, batch updates
- Need to be careful to distinguish between local extensional data and *global domain* data (what does a table represent?)
 - Separate between *books at amazon.com* and “books in general”
One Solution – The Local Relational Model: Bernstein et al.

- A “vision paper” (not yet an implementation) from U. Trento, U. Toronto
- “Coordination formulas” between different peers’ relations:

\[\forall fn \forall ln \forall pn \forall sex \forall pr. (DavisDB : Patient(1234, fn, ln, pn, sex, pr) \rightarrow TGHDB : \exists tghid \exists n \exists a. (Patient(tghid, 1234, n, sex, a, Davis, pr) \land n = \text{concat}(fn, ln))) \]

These define how to import data from one source into another
- Every time a data source is updated, its effects get propagated
- No distinction between global and local concepts – all data is, by default, imported into the same tables

- Contrast with the main paper for today…
Peer Data Management: Decentralized Mediation for Ad Hoc Extensibility

Data integration: 1 mediated schema, m mappings to sources

Peer data management system (PDMS):
- n mediated “peer schemas,” as few as $(n - 1)$ mappings between them – evaluated transitively
- m mappings to sources
Peer-to-Peer at both Logical and Architectural Levels

A “logical” peer-to-peer model:
Every participant can contribute:

- Extensional data
- Mappings between schemas
- Computation (query answering) and caching
Mapping Formalisms from Data Integration

GAV: mediated relations as views over sources
- Easy to rewrite queries: unfold them using view definitions

LAV: sources as views over mediated relations
- More challenging to rewrite queries: answering queries using views (e.g., MiniCon [Pottinger & Levy 00])
- More flexible in representing source properties
Answering Queries in a PDMS: Transitivity Evaluating Mappings

Mappings in a PDMS are a generalization of LAV, GAV techniques (GLAV):

- **Query over schema 1 = Query over schema 2 (where possible)**
 But there are lots of limitations on when this is decidable!
- Requires unfolding: \(p(X) : \neg v1(X', Y), v2(Y, Z), \ldots \)
- Requires AQUV: \(p(X, Y), p(Y, Z) : \neg v(X', Y') \)

Start with schema being queried

- Look up mappings to neighbors; expand
- Continue iteratively until queries only over sources

We use a rule-goal “tree” to expand the mappings

- Extend some of the ideas of MiniCon to avoid unnecessary expansions
- Challenges to avoid redundancy – see paper for optimizations
Example of Query Answering

Query: \[Q(a_1, a_2) \rightarrow \text{SameProject}(a_1, a_2, p), \text{Author}(a_1, w), \text{Author}(a_2, w) \]

Mappings between peers’ schemas:
- r0: \(\text{SameProject}(a_1, a_2, p) \rightarrow \text{ProjMember}(a_1, p) \)
- r1: \(\text{CoAuthor}(a_1, a_2) \subseteq \text{Author}(a_1, w), \text{Author}(a_2, w) \)

Mappings to data sources:
- r2: \(\text{S1}(a, p, s) \subseteq \text{ProjMember}(a, p), \text{Sched}(f, s, end) \)
- r3: \(\text{CoAuthor}(f_1, f_2) \rightarrow \text{S2}(f_1, f_2) \)
Example Rule-Goal Tree Expansion

q: Q(a1, a2) :- SameProject(a1,a2,p), Author(a1,w), Author(a2,w)
Example Rule-Goal Tree Expansion

q: Q(a1, a2) :- SameProject(a1,a2,p), Author(a1,w), Author(a2,w)
Example Rule-Goal Tree Expansion

q: Q(a1, a2) :- SameProject(a1,a2,p), Author(a1,w), Author(a2,w)

Mappings between peers’ schemas:
 r0: SameProject(a1,a2,p) :- ProjMember(a1,p), ProjMember(a2,p)
 r1: CoAuthor(a1,a2) \subseteq Author(a1,w), Author(a2,w)
Example Rule-Goal Tree Expansion

q: Q(a1, a2) :- SameProject(a1,a2,p), Author(a1,w), Author(a2,w)

Mappings between peers’ schemas:

r0: SameProject(a1,a2,p) :- ProjMember(a1,p), ProjMember(a2,p)

r1: CoAuthor(a1,a2) ⊆ Author(a1,w), Author(a2,w)
Example Rule-Goal Tree Expansion

\[q: Q(a_1, a_2) \iff \text{SameProject}(a_1, a_2, p), \text{Author}(a_1, w), \text{Author}(a_2, w) \]

Mappings to data sources:

- r2: \(S_1(a, p, s) \subseteq \text{ProjMember}(a, p), \text{Sched}(a, s, \text{end}) \)
- r3: \(\text{CoAuthor}(f_1, f_2) = S_2(f_1, f_2) \)
Example Rule-Goal Tree Expansion

\[q: Q(a_1, a_2) :\text{- SameProject}(a_1, a_2, p), \text{Author}(a_1, w), \text{Author}(a_2, w) \]

Mappings to data sources:

r2: S1(a,p,s) ⊆ ProjMember(a,p), Sched(a,s,end)

r3: CoAuthor(f1,f2) = S2(f1,f2)
Example Rule-Goal Tree Expansion

q: Q(a1, a2) :- SameProject(a1,a2,p), Author(a1,w), Author(a2,w)
Example Rule-Goal Tree Expansion

q: Q(a1, a2) :- SameProject(a1,a2,p), Author(a1,w), Author(a2,w)

Q'(a1,a2) :- S1(a1,p,__), S1(a2,p,__), S2(a1,a2) ∪ S1(a1,p,__), S1(a2,p,__), S2(a2,a1)
Algorithm Scales Well to Large-Diameter PDMSs

- Randomly generated peers, definitions (simulated infrastructure)
- Relatively unoptimized Java implementation
Schema Mediation: The Core of Peer Data Management

Sharing data across schemas is a key problem today

- PDMS approach is much more flexible and extensible
- Composition of mappings leverages others’ work

One step towards a larger vision:

- Much of the power of the “semantic web” but scalable
 - We’ll talk about the semantic web in a few weeks
- Scalable, extensible P2P architecture for data sharing
Further Ongoing Work

Applying to real bioinformatics applications!

Caching and replication
- Intelligent placement of data
- Updating caches [Mork et al]

Studying mappings:
- Information loss and approximate mappings
- Composition [Madhavan & Halevy]
- Automatically learning mappings [Doan et al]

Reconciling updates across mappings