Query Optimization: System-R

Selinger et al. 1979

Zachary G. lves
University of Pennsylvania

January 27, 2003
CIS 650 — Data Sharing and the Web

Where We Are in the Semester

= First two weeks:
= Database-style sharing, from a high level

= Next two weeks:
= The “roots” of traditional DB query answering
= Need to understand the “easy” problem first

= Then we start dissecting current research
papers...

Administriva

= Term projects
= Handout describing some potential projects
= Can also suggest your own — but should meet with
me this week if you want to

» Second assignment of semester:
= Decide on a project topic

= Do some background reading (send me mail and I'll
send you refs)

= Decide on group partner (if you want)
= Write a 1p project proposal, due 2/5 at start of class

Looking Back at the 70s

= State of the art: COBOL, CODASYL

= Data in hierarchical and network DBs
= Write procedural programs to navigate
them, extract desired data
= 1970-2: Codd proposed a logic-
based data representation
= Datais in sets of tuples (relations)
* Representation-independent!!!

= | ogic-based calculus + algebra
* Many possible orders of evaluation!!!

= CODASYL people argued:

» Logic is too hard to write
= RDBs couldn’t be efficient

1975-9: Making the
Relational Model Happen

* Friendlier languages, based on relational calculus

= QUEL (Held et al)
= SQL (Chamberlin et al)

= Development of new systems
= INGRES (Berkeley), System-R (IBM San Jose)
» Borrowed from hierarchical DBs — storage, indexing, etc.
= Much interchange between groups (e.g., Gray, Lindsay)
» |nternally, used the relational algebra

= Key problem: performance

= Determine best order of evaluation (and use of indices) for
evaluating relational algebra expressions

Query Optimization

= Basic idea: take an algebraic expression and
compile it to machine code

= System-R’s key contributions:

= Storage layer (RSS) provides a set of access paths to
managed data

= Costs of different access paths (and different
algorithms) can be modeled and performance can be
estimated

» We can efficiently compare plans using a dynamic
programming algorithm

RSS and Access Paths

= Tables are stored in a tuple store
= Accessed via “segment scan” (sequential scan)

= May have B-tree indices
= Accessed via “index scan”
= “Sargable predicates”

= \What are the cost trade-offs here?

Modeling Costs

= Every operation starts with relations on disk,
outputs a relation that probably goes to disk

= Operations have disk and CPU costs

= Begin with statistics about the data
= Cardinality of relations; # of pages; # distinct values

= Every predicate has a selectivity factor

* How many tuples does a predicate return, vs. the
maximum possible?

What are the Factors?

= Sometimes, they're well-justified:
col = value 1 / ICARD(col index)
col1 = col2 1/ MAX(ICARD(col1 index), ICARD(col2 index))
(pred1) AND (pred2) F(pred1)* F(pred2)

= Sometimes, they're rather arbitrary:
col = value 1/10 if no index
col > value 1/ 3 if non-arithmetic

Available Operators

Selections are generally as sargable predicates
Projection

Sort

Joins:

= Nested loops — for each tuple in outer, join with all of
Inner

= Merging scan (requires sorted data)
Group by:
= Typically done with sorted data

10

How Much Should They Cost?

* Depends on:

» |ndexes — selection, NL join, projection can make use
of indices

= Sorting — merging scans join, group by make use of
sort order

= Whether the output fits in memory or goes to disk

* Indexing and sorting are very different in their
“‘downstream” effect! How?

11

The Heart of System-R:
Optimizing Join Order

= Challenges:

= Joins are associative and commutative (all joins are
binary)

= Two methods of doing joins

= What's a greedy recursive algorithm for doing
this?
= What are some reasons it will be inefficient?
= What are some reasons it won’t find optimal?

12

Dynamic Programming

Allows us to avoid re-computation of sub-results

Add a few heuiristics:
» |Left-linear join trees
= Postpone cartesian products

= Selections + projections are performed as early as
possible

Example: E < D < J

“Interesting orders” — why do we need them?

13

Contributions of System-R

= Established the basic paradigm for today’s
qguery optimizers
= Multiple access paths to choose from
= Offline statistics and cost model
= Heuristics to restrict search space
= Dynamic programming for efficiency

14

What Has Changed Since 19797

= Statistics are more detailed

= Histograms allow us to better estimate value overlap, skew,
...(but only 1D histograms are commonly used)

= Cost models are more detailed

= Generally, we can separate between random access and
sequential access on a disk

= More complexity:

= More algorithms (e.g., hash join), more operators (e.g., group
by), more transformations (e.g., query decorrelation)

= Different search strategies:

= Sometimes cartesian product is good; sometimes left-linear
plans are bad

15

Discussion:
When Does this Method Fail?

16

	Query Optimization: System-R
	Where We Are in the Semester
	Administriva
	Looking Back at the 70s
	1975-9: Making the Relational Model Happen
	Query Optimization
	RSS and Access Paths
	Modeling Costs
	What are the Factors?
	Available Operators
	How Much Should They Cost?
	The Heart of System-R: Optimizing Join Order
	Dynamic Programming
	Contributions of System-R
	What Has Changed Since 1979?
	Discussion:When Does this Method Fail?

