
Query Optimization: System-R
Selinger et al. 1979

Zachary G. Ives
University of Pennsylvania

January 27, 2003
CIS 650 – Data Sharing and the Web



2

Where We Are in the Semester

First two weeks:
Database-style sharing, from a high level

Next two weeks:
The “roots” of traditional DB query answering
Need to understand the “easy” problem first

Then we start dissecting current research 
papers…



3

Administriva

Term projects
Handout describing some potential projects
Can also suggest your own – but should meet with 
me this week if you want to

Second assignment of semester:
Decide on a project topic
Do some background reading (send me mail and I’ll 
send you refs)
Decide on group partner (if you want)
Write a 1p project proposal, due 2/5 at start of class



4

Looking Back at the 70s

State of the art:  COBOL, CODASYL
Data in hierarchical and network DBs
Write procedural programs to navigate
them, extract desired data

1970-2:  Codd proposed a logic-
based data representation

Data is in sets of tuples (relations)
Representation-independent!!!

Logic-based calculus + algebra
Many possible orders of evaluation!!!

CODASYL people argued:
Logic is too hard to write
RDBs couldn’t be efficient



5

1975-9:  Making the 
Relational Model Happen

Friendlier languages, based on relational calculus
QUEL (Held et al)
SQL (Chamberlin et al)

Development of new systems
INGRES (Berkeley), System-R (IBM San Jose)
Borrowed from hierarchical DBs – storage, indexing, etc.
Much interchange between groups (e.g., Gray, Lindsay)
Internally, used the relational algebra

Key problem:  performance
Determine best order of evaluation (and use of indices) for 
evaluating relational algebra expressions



6

Query Optimization

Basic idea:  take an algebraic expression and 
compile it to machine code
System-R’s key contributions:

Storage layer (RSS) provides a set of access paths to 
managed data
Costs of different access paths (and different 
algorithms) can be modeled and performance can be 
estimated
We can efficiently compare plans using a dynamic 
programming algorithm



7

RSS and Access Paths

Tables are stored in a tuple store
Accessed via “segment scan” (sequential scan)

May have B-tree indices
Accessed via “index scan”
“Sargable predicates”

What are the cost trade-offs here?



8

Modeling Costs

Every operation starts with relations on disk, 
outputs a relation that probably goes to disk

Operations have disk and CPU costs
Begin with statistics about the data

Cardinality of relations; # of pages; # distinct values
Every predicate has a selectivity factor

How many tuples does a predicate return, vs. the 
maximum possible?



9

What are the Factors?

Sometimes, they’re well-justified:
col = value 1 / ICARD(col index)
col1 = col2 1 / MAX(ICARD(col1 index), ICARD(col2 index))
(pred1) AND (pred2) F(pred1) * F(pred2)

Sometimes, they’re rather arbitrary:
col = value 1 / 10  if no index
col > value 1 / 3 if non-arithmetic



10

Available Operators

Selections are generally as sargable predicates
Projection
Sort
Joins:

Nested loops – for each tuple in outer, join with all of 
inner
Merging scan (requires sorted data)

Group by:
Typically done with sorted data



11

How Much Should They Cost?

Depends on:
Indexes – selection, NL join, projection can make use 
of indices
Sorting – merging scans join, group by make use of 
sort order
Whether the output fits in memory or goes to disk

Indexing and sorting are very different in their 
“downstream” effect!  How?



12

The Heart of System-R:  
Optimizing Join Order

Challenges:
Joins are associative and commutative (all joins are 
binary)
Two methods of doing joins

What’s a greedy recursive algorithm for doing 
this?

What are some reasons it will be inefficient?
What are some reasons it won’t find optimal?



13

Dynamic Programming 

Allows us to avoid re-computation of sub-results
Add a few heuristics:

Left-linear join trees
Postpone cartesian products
Selections + projections are performed as early as 
possible

Example: E ⋈ D ⋈ J

“Interesting orders” – why do we need them?



14

Contributions of System-R

Established the basic paradigm for today’s 
query optimizers

Multiple access paths to choose from
Offline statistics and cost model
Heuristics to restrict search space
Dynamic programming for efficiency



15

What Has Changed Since 1979?

Statistics are more detailed
Histograms allow us to better estimate value overlap, skew, 
…(but only 1D histograms are commonly used)

Cost models are more detailed
Generally, we can separate between random access and 
sequential access on a disk

More complexity:
More algorithms (e.g., hash join), more operators (e.g., group 
by), more transformations (e.g., query decorrelation)

Different search strategies:
Sometimes cartesian product is good; sometimes left-linear 
plans are bad



16

Discussion:
When Does this Method Fail?


	Query Optimization: System-R
	Where We Are in the Semester
	Administriva
	Looking Back at the 70s
	1975-9:  Making the Relational Model Happen
	Query Optimization
	RSS and Access Paths
	Modeling Costs
	What are the Factors?
	Available Operators
	How Much Should They Cost?
	The Heart of System-R:  Optimizing Join Order
	Dynamic Programming
	Contributions of System-R
	What Has Changed Since 1979?
	Discussion:When Does this Method Fail?

