Data Integration Systems

- First generation: mostly concerned with query translation, data translation
 - TSIMMIS, Information Manifold, SIMS, many others
 - Automatically inferring wrappers for sources
 - Mostly prototypes for integrating web data

- Assumption: this was the “hard part” and the rest of the system would leverage conventional/distributed DB technology
It’s Not as Easy as It Sounds…

- How do we optimize a query here?
 - Conventional DBs: we control all, and we have stats on the tables
 - Distributed DBs: we control almost all, and we have stats on the tables

- What if someone else controls all of the data?
 - Statistics – how do you get them? Will they be up to date?
 - Costs – what about network congestion?
 - Reliability – we want maximal answers if a source fails
 - … And what if some of the sources might be large?

- Also: want to give answers as early as possible
The Tukwila System

- “Child of the Information Manifold”
 - Sources are described as queries over mediated schema ("local as view")
 - Successor to the Bucket Algorithm: MiniCon [Pottinger & Levy] (we’ll discuss later)
 - Support for input bindings, etc.

- But focused on building scalable system:
 - Normal DB techniques for optimization and execution don’t work well – how do we fix that?
 - Between 1999-2002:
 - Added support for XML in a novel way (we’ll discuss this 3/3)
 - Tried to remedy the shortcomings of our initial approach
Novelties of Tukwila (in this Paper)

- **Premise:**
 - We start with little knowledge about data, sources, performance
 - Bad idea to stick with one plan or one scheduling!

- **Solution:** Build a “smarter” and more flexible runtime system!
 1. Rule-based core: optimizer can specify behaviors when events occur
 2. Integrate mid-query re-optimization at the core of execution and optimization
 3. Resurrect the pipelined hash join (invented for parallel DBs), but invent ways to handle memory constraints
Tukwila Architecture
Event-Based Control

- *Event-condition-action rules* allow optimizer to define changes in behavior at middle of pipeline
- Execution *events* …
 - Timeout, \(n \) tuples read, operator opens, out of memory, execution step completes, …
- … trigger the rules
 - Test *conditions*
 - Memory free, tuples read, operator state, …
 - Execute *actions*
 - Re-optimize, reduce memory, activate operator, …
Interleaving Planning and Execution

Generalization of [Kabra/DeWitt SIGMOD98] integrated into system

- Check at key points
- Plan in pipelined fragments
- Rules at boundaries test conditions
- Return simple statistics to optimizer
 - Optimizer does minimal re-computation of costs

```
WHEN end_of_fragment(0)
IF card(result) > 100,000
THEN re-optimize
```
Experimental Results: Interleaving Planning and Execution

Four-table joins from scaled TPC-D
Adaptive Operators: Double Pipelined Join

Hybrid Hash Join
× No output until hash built
× Asymmetric (build vs. probe) (why is this bad?)

Pipelined Hash Join
✓ Outputs data immediately
✓ Symmetric (why is this good?)
× More memory
Double Pipelined and Hash Join—
Tuples Output vs. Time - LAN
Double Pipelined Join - Wide Area/Internet
Problem: Memory Usage

- We need two hash tables in memory…

- Recall how a hybrid hash join works:
 - Load build relation until we run out of memory
 - Repeat until we’ve read the build relation:
 - Select a few buckets, page them out
 - Read some more data
 - Load data from the probe relation:
 - If it hashes to a bucket that’s in memory, probe & join
 - Else page to tempfile
 - After probe relation consumed, join tempfile with swapped buckets
Handling Overflow

Extend principles of hybrid hash algorithm:

- *Incremental left flush* – degrade into hybrid hash
 - Pause pipelining left, flush some of its hash table
 - Read remainder of right, pipeline left as in HHJ
 - Abrupt pause, then steady output of tuples
- *Symmetric flush* – lose some “coverage”
 - Flush same hash bucket in both tables simultaneously, continue to fully pipeline
 - Output production tapers off as more flushes
 - Expensive, but get first tuples faster than otherwise!
Adaptive Operators: Collector

Utilize mirrors and overlapping sources to produce results quickly

- Dynamically adjust to source speed & availability
- Scale to many sources without exceeding net bandwidth
- Policy expressed via rules

```
WHEN timeout(CustReviews)
    DO activate(NYTimes),
        activate(alt.books)
```
Brief Retrospective on this Paper

1. Rule-based core:
 - Nicely unifies adaptive behaviors, supports custom responses to events
 - But hard to generate rules, except for basic ones

2. Integrated mid-query re-optimization
 - … Let’s defer this to last!

3. Pipelined hash join with overflow handling
 - (Simultaneously resurrected by Urhan & Franklin)
 - A success: everyone doing distributed querying uses this technique now
Mid-Query Re-optimization in a Data Integration Context

- **Benefits:**
 - Can keep us from going too far down the wrong path if we have huge intermediate results

- **Drawbacks:**
 - How do we decide where to break the pipelines, given that we don’t know how big anything is?
 - May quickly find that we’re running a bad plan – no way to change until we finish the 1st pipeline
 - What about early initial answers?

- Can you think of some alternatives…?